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We give a brief exposition of results of Bredon and others on

passage to fixed points from stable C2 equivariant homotopy

(where C2 is the group of order two) and its relation to Ma-

howald’s root invariant. In particular we give Bredon’s easy

equivariant proof that the root invariant doubles the stem; the

conjecture of the title is equivalent to the Mahowald–Ravenel

conjecture that the root invariant never more than triples the

stem. Our main result is to verify by computation that the

algebraic analogue of this holds in an extensive range: this

improves on results of [Mahowald and Shick 1983].

1. INTRODUCTIONLet G be a cyclic group of order two and let � bethe nontrivial representation of G on R . As usualwe let Sk�+n denote the one point compacti�cationof the representation k� � n, so that in particu-lar (Sk�+n)G = Sn. We may consider the group[Sk�; S0]Gn of stable equivariant maps Sk�+n ! S0[Adams 1984]. The Bredon{L�o�er conjecture con-cerns the �xed-point homomorphism'k : [Sk�; S0]Gn ! [S0; S0]n;which takes a stable map f : Sk�+n ! S0 to the�xed-point map fG : Sn ! S0. LetFk = Fk�n(S0) = im'k:Because of the natural inclusion Sk� ! S(k+1)�, itis clear that Fk � Fk+1. By using the fact that theBurnside ring splits when localized away from 2, itis easy to see that 'k[ 12 ] is projection onto a directsummand for every k. Accordingly we henceforthcomplete at 2 without modifying the notation.This was �rst considered extensively in [Bredon1967a; 1967b]. A case of particular interest is whenn = 0, when the codomain is Z; Bredon madecalculations that led him to conjecture the exact
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image. The conjecture was proved in [Landweber1969] using equivariant K-theory.
Theorem 1.1 (Landweber). Let k > 0, and de�ne a(k)by the relationlog2 a(k) = ��fi : 0< i< k and k� 0; 1; 2; 4mod 8g��:Then Fk�0(S0) is the set of multiples of b(k), whereb(k) = 2a(k) if k 6� 0 mod 4 and b(k) = 4a(k) ifk � 0 mod 4.The analogous theorem for G of odd prime orderis proved in [Iriye 1989].In several ways n = 0 is exceptional, and wenow consider the case n > 0, where the codomainis a �nite 2-group. Bredon made the elementaryobservation that 'k is obviously surjective if k � nsince, for any map g : Sn ! S0, the map f = g^g isequivariant for the exchange of factors and hencede�nes a map f : Sn�+n ! S0 with 'n(f) = g.Thus:
Lemma 1.2 (Bredon). �n(S0) = F0 = F1 = � � � = Fn.�Bredon did further calculations suggesting that thegeneral e�ect of increasing k is to impose the re-quirement that Fk lies in 2m(k)�n(S0), where m(k)tends to in�nity with k. His calculations led himto make the conjecture that Fk = 0 for k > 2n.
Conjecture 1.3 (Bredon–Löffler). If k > 2n > 0, theimage of 'k : [Sk�; S0]Gn ! [S0; S0]nis zero.
Remark. The conjecture is misstated in Problem5.16 of the problem list from the 1983 Boulderconference [Schultz 1985]. The misstatement refersto the forgetful map Uk : [Sk�; S0]Gn ! [S0; S0]k+n,which is generally much harder to understand. Theforgetful map is discussed in [Greenlees 1992], us-ing calculations of Mahowald.

2. CONNECTION WITH THE ROOT INVARIANTMahowald was also led to de�ne a �ltration ofthe 2-completed stable stem �n(S0). This usesThom spectra on in�nite projective space RP1 ;if � denotes the tautological line bundle, we letPk := (RP1)k�. The use of the same letter � isreasonable since (EG+ ^ SV )=G ' BGV for any�nite group G and virtual representation V [Lewiset al. 1986, X.6.3]. By a theorem of Lin [1980] wehave S0 = holim ���k �P�k, so that for each k we havea map S0 ! �P�k. Now de�ne the Mahowald �l-tration byMk =Mk�n(S0) = ker��nS0 ! �n(�P�k)�:Observe that an x 2Mk nMk+1 determines a cosetR(x) � [Sn; P�k=P�k�1] = �n+k(S0);called the root invariant of x. We denote by jR(x)jthe degree n + k of this coset. Similarly, if x 2Fk n Fk+1, the co�bre sequenceSk ^G+ ! Sk� ! S(k+1)�and the adjunction [Sk^G+; S0]Gn �= [Sk; S0]n allowus to de�ne a cosetB(x) � [Sk; S0]n = �n+k(S0);which we call the Bredon root invariant of x.We begin by showing that Mahowald's �ltrationis the same as Bredon's and that the two versionsof the root invariant agree. The proof that the�ltrations agree is extremely short, and for manypurposes (such as Corollary 2.3) this is all that isrequired.
Proposition 2.1. For any k � 0 we have Mk = Fk.Further , B(x) = R(x) for any x 2 �n(S0).
Proof. By obstruction theory, since S1� is nonequi-variantly contractible, we see that[X; Y ^ S1�]G� = [XG; Y G]�;and in particular this applies when X = Sk� andY = S0. Thus 'k is induced by the inclusion
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S0 ! S1�, and because of the co�bre sequenceEG+ ! S0 ! S1� we have a long exact sequence� � � ! [Sk�; EG+]Gn ! [Sk�; S0]Gn 'k�!'k�! [Sk�; S1�]Gn ! [Sk�; �EG+]Gn ! � � � :HenceFk = im'k= ker�[Sk�; S1�]Gn ! [Sk�; �EG+]Gn � =Mk;where the last equality uses the fact that[Sk�; �EG+]Gn = [S0; �EG+ ^ S�k�]Gn�= [S0; (�EG+ ^ S�k�)=G]n= [S0; �P�k]nby Adams' isomorphism [Adams 1984, 5.4].For the second part of the proposition, we needa lemma.
Lemma 2.2. Let A i! B j! C @! �A be a co�bre se-quence, and 
Y �! F �! X �! Y a �bre sequence.Consider the diagram[A;
Y ] ��! [A;F ] ��! [A;X] ��! [A; Y ]

[B;
Y ]"i� ��! [B;F ]"i� ��! [B;X]"i� ��! [B;Y ]"i�
[C;
Y ]"j� ��! [C;F ]"j� ��! [C;X]"j� ��! [C; Y ]"j�
[�A;
Y ]"@� ��! [�A;F ]"@� ��! [�A;X]"@� ��! [�A; Y ]."@�

If f 2 [C;X] satis�es �fj = 0, then�(@�)�1(��f) � (��)�1i�(��)�1(j�f):
Remark. We would have equality except that theindeterminacy on the left is (�i)�[�B;Y ], whilethat on the right is (�i)�[�B;Y ] + ��[�A;X].
Proof. This is a simple exercise in the manipulationof cone coordinates and the standard equivalences

Co�bre j ' �A and Fibre(�) ' 
Y used to estab-lish the Barratt{Puppe sequences. Any element of(@�)�1(��f) � [Co�bre j; Y ]provides a null homotopy H : B ^ I ! Y of �fj.The adjoint ~H : B ! F (I; Y ) together with fjde�nes an element of (��)�1(j�f). The given mapf provides a null homotopy A ^ I ! X whoseadjoint A ! F (I;X) can be combined with themap in (��)�1(j�f) to produce an element of(��)�1i�(��)�1(j�f) � [A; Fibre � ]:The equivalences Co�bre j ' �A and Fibre � '
Y then convert these maps into maps �A ! Yand A ! 
Y whose adjoints are negatives of oneanother. �Returning to the proof of Proposition 2.1, we takeas our co�bre sequenceSk ^G+ ! Sk� ! S(k+1)� ! Sk+1 ^G+and as our �bre sequence the negative of the co�bresequence EG+ ! S0 ! S1� ! �EG+(recall that the negative of a �bre sequence is a co�-bre sequence and vice versa). Omitting the threeminus signs in each row, we have the diagram inFigure 1.If � 2 [S0; S0]n = [S(k+1)�; S1�]Gn is in Fk n Fk+1,then R(�) is the lifting to the lower right cornerwhile B(�) is the lifting to the upper left. Puttingthe minus signs back in so that we may applythe lemma, we see that R(�) changes sign whileB(�) does not. Hence R(�) � B(�). Finally,the indeterminacies are the same in this case, since[Sk; S1�] = 0. �This means that the results for the �xed-point �l-tration apply equally well to Mahowald's �ltration.It is a historical curiosity that the results aboutMahowald's �ltration were reproved later by morecomplicated means. Thus Bredon's easy observa-tion (Lemma 1.2) that 'k is surjective for k � nbecomes a theorem in [Jones 1985]:
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[Sk; EG+]n �= ! [Sk; S0]n ! [Sk; S1�]n = 0 ! [Sk; �EG+]n
[Sk�; EG+]Gn" ! [Sk�; S0]Gn" 'k ! [Sk�; S1�]Gn" ! [Sk�; �EG+]Gn"

[S(k+1)�; EG+]Gn" ! [S(k+1)�; S0]Gn" 'k+1! [S(k+1)�; S1�]Gn"�= ! [S(k+1)�; �EG+]Gn"
[Sk+1; EG+]n" ! [Sk+1; S0]n" ! [Sk+1; S1�]n = 0" ! [Sk+1; �EG+]n"

FIGURE 1. Diagram arising from the co�bre sequence Sk ^G+ ! Sk� ! S(k+1)� ! Sk+1 ^G+ and the �bresequence equal to the negative of the co�bre sequence EG+ ! S0 ! S1� ! �EG+. See preceding page.
Corollary 2.3 (Root invariant doubles the stem). If x 2�n(S0) then jR(x)j � 2n. �This applies also to odd primes for H. R. Miller'sanalogue, which says that if jxj = 2k�", with " = 0or 1, then jR(s)j � 2(pk � ") (that is, essentially,that the root invariant must multiply the stem byat least p), although the equivariant proof may loseone stem in the estimate. Bredon's idea was usedin [Greenlees and May 1995] to give a result forarbitrary �nite groups.The Bredon{L�o�er conjecture, combined withProposition 2.1, becomes the Mahowald{Ravenelconjecture bounding the degree of the root invari-ant. Indeed if the Bredon{L�o�er conjecture holdsthen F2n+1 = 0 so that the last possible nontrivialsubquotient is F2n=F2n+1.
Conjecture 2.4 (Mahowald–Ravenel). If x 2 �n(S0),then jR(x)j � 3n.Mahowald and Ravenel also observe [1993, p. 871]that jR(x)j � (p+1)jxj at odd primes in all knowncases, although they do not make the formal con-jecture that this is generally true.Although we will not use it here, Proposition 2.1provides us with an interesting description of theroot invariant that is probably well known to theexperts, but does not seem to be in the literature.

Proposition 2.5. For x 2 �n(S0) we may calculatethe root invariant of x by �nding the largest k forwhich x 2 im'k and then setting R(x) = Uk'�1k (x).
Proof. The Bredon root invariant is the compositeof '�1k , for k maximal, with the homomorphisminduced by the attaching map Sk ^G+ ! Sk� andthe adjunction isomorphism:[Sk�; S0]Gn ! [Sk ^G+; S0]Gn = [Sk; S0]n:Since the attaching map is the adjoint of the (non-equivariant) identity map Sk ! Sk�, the result fol-lows. �
3. THE ALGEBRAIC CONJECTUREThe groups involved in the conjecture can be calcu-lated by Adams spectral sequences in various ways.The algebraic version of the conjecture arises as theE2 analogue of the geometric conjecture. In a par-ticular case the algebraic conjecture may or maynot prove the geometric one; this is discussed indetail in [Mahowald and Ravenel 1993, 2.9]. See[Mahowald and Shick 1983; Shick 1987] for furtherdiscussion of the algebraic root invariant.Now consider the diagram in Figure 2. The con-jecture is that for k > 2n the map 'k is zero, orequivalently, that Mahowald's map is a monomor-phism. The diagram shows that this is equivalentto � being a monomorphism.
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� � � ! [Sk�; S0]Gn 'k! [Sk�; S1�]Gn Mahowald! [Sk�; �EG+]Gn ! � � �
[S1�; S1�]Gn"�= �= ! [S1�; �EG+]Gn ;"�

FIGURE 2. The algebraic version of the Bredon{L�o�er conjecture says that, for k > 2n, Mahowald's map is amonomorphism. Here the horizontal isomorphism is Lin's Theorem [Lin 1980], and the vertical isomorphism iselementary obstruction theory.The advantage of considering � is that it re-lates groups of maps into free G-spaces, for whichthere is a uniform method of calculation [Greenlees1988]. To explain this we summarise the proper-ties of the relevant cohomology theory f�G(X). Wehave used the letter f (for `free') to ensure consis-tency with [Greenlees and May 1995], although theletter c was used in [Greenlees 1988]. The theoryis so named because of its representing spectrum,and the de�nition of its homology theory:fG� (X) = H�(EG+ ^G X; F2):In general it is not so easy to describe the coho-mology theory, but for our purposes it su�ces toknow two facts:
(i) ifX is G-free, f�G(X) = H�(EG+^GX; F2), and
(ii) f admits Thom isomorphismsf�G(S� ^X) �= f�G(S1 ^X)for any X.These facts allow one to calculate the ring of oper-ations f�Gf = H�(BG+)
A;where A is the mod 2 Steenrod algebra, and themodules f�G(Sk�) over it, as in [Greenlees 1988].To state the result we consider the module L =H�(BG+)[x�1] = F2 [x; x�1] as a module over A.The submodule nonzero in degrees � a is denotedLa. The quotient nonzero in degrees � b is denotedLb, and the subquotient that is nonzero only indegrees from [a; b] is denoted Lba.
Lemma 3.1. (a) f�G(S1�) = �L.
(b) f�G(Sk�) = �Lk�1.

(c) For 0 � k � l, the inclusion mapsSk� ! Sl� ! S1�induce the projections�Lk�1  �Ll�1  �L: �The main theorem of [Greenlees 1988] states in thiscase that for any G-free, 2-complete, bounded be-low spectrum Y of �nite type there is an Adamsspectral sequenceEs;t2 = Exts;tH�(BG+)
A(f�G(Y ); f�G(X)) =) [X;Y ]G� :In particular this applies to calculate maps intoEG+ itself. In this case, sincef�G(EG+) = H�(BG+);by change of rings the spectral sequence becomesEs;t2 = Exts;tA (F2 ; f�G(X)) =) [X; EG+]G� :Therefore, the E2 analogue of Conjecture 1.3 isas follows (where the suspension from �EG+ hasbeen cancelled with that from Lemma 3.1).
Conjecture 3.2. The natural quotient map L! Lk�1induces a monomorphism of Exts;tA (F2 ; � ) for k >2(t� s) > 0.For purposes of calculation, it is more convenientto dualize so that we are dealing with modules thatare bounded below. Suppose M , N and R are A-modules. With the diagonal action on R
M andthe conjugation action, (af)(m) = � a0f(�(a00)m),on Hom(M;N), we have a natural isomorphismExtA(R; Hom(M;N)) �= ExtA(R
M; N);
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ExtA(F2 ; L) ! ExtA(F2 ; Lk�1) L ! Lk�1
ExtA(F2 ; (�L)�)

wwww ! ExtA(F2 ; (�L�k)�)
wwww �L �L�k

ExtA(�L; F2)
wwww ! ExtA(�L�k; F2)

wwww �L
wwwww  �L�k

wwww
ExtA(F2 ; F2)

wwww ! ExtA(�L�k; F2)
wwww F2#  �L�k

wwww
FIGURE 3. Algebraic dualities and homomorphisms, and the induced isomorphisms and homomorphisms ofExt groups.which specializes to ExtA(F2 ; M�) �= ExtA(M; F2).Using the identi�cation L� �= �L, and, more gen-erally, (Lba)� �= �L�a�1�b�1 , together with the isomor-phism Exts;tA (�L; F2) �= Exts;tA (F2 ; F2);which is the main result of [Lin et al. 1980], wereach the following convenient algebraic statementof 3.2. (It may help to look at Figure 3, whichdisplays the dualities.)

Conjecture 3.3. The natural quotient map �L�k !F2 induces a monomorphism of Exts;tA ( � ; F2) fork > 2(t� s) > 0.This is the version of the conjecture that we haveused for calculations.
4. THE CALCULATIONSIf we let P (k; n) be the statement that k : Exts;tA (F2 ; F2)! Exts;tA (�L�k; F2)is a monomorphism whenever t � s = n, Conjec-ture 3.3 is the claim that P (k; n) holds if 0 <2n < k: The factorization �L�(k+1) ! �L�k ! F2shows that P (k; n)) P (k+ 1; n). Thus, to verifythe conjecture experimentally for small values of kand n, we may con�ne attention to odd k.Using the programs described in [Bruner 1992],together with more recent extensions that com-pute induced chain maps, we have computed  k

for odd k � 55, for s < 20, and a range of valuesof t. The range of t was chosen so as to deter-mine, for as many elements x of ExtA(F2 ; F2) aspossible in a reasonable amount of computer time,the minimum odd k for which  k(x) is nonzero inExtA(�L�k; F2). We refer to the number k as theodd cell �ltration of x. The Bredon{Mahowald �l-tration of x will then be either k � 1 or k � 2.Table 1 displays the results obtained.
5. CONCLUSIONSThe calculations show that the conjecture holds forall t� s < 30, and that P (65; 30) holds, just shortof the conjectured P (61; 30): Previously, the con-jecture was known to hold for t� s � 16 from thecalculations of Ext root invariants in [Mahowaldand Shick 1983], so our calculations nearly doublethe stem through which the conjecture is known.Note that the Adams{Barratt elements P ihj1, inbidegrees (s; t�s) = (j+4i; j+8i), have maximal�ltration for j = 2 or 3, showing that the conjec-ture is sharp for these stems. The elements P ih1have less than maximal �ltration, by an amountthat suggests some inuence of divisibilty by 2,while the remaining Adams{Barratt elements (thatis, elements of least positive stem in each Adams�ltration) appear to have odd cell �ltration 2 lessthan maximal. Since this occurs near the vanishingline, it may be amenable to proof by the techniquesthat establish the vanishing line and the range of



Bruner and Greenlees: The Bredon–Löffler Conjecture 295t� s0123456789101112131415161718192021222324252627282930313233343536373839

s = 01 1335
9

17

33

235791111
17191921

33353537
41

357
111313
191921232325

3535; 353739414343

49
1315
19212323; 23252729
3537373939

43; 4345

511

15212121; 25232527272931
3737; 413941434545

611

212325272325293141
37433941434545; 4547; 47

713

23
272531
313737394341454345; 474749

817

2931
3137393941414141; 4543434547; 4949

919

33353739; 41394143434545; 49454547???

1019

373741434341454947; 5165?

1121

39
434545
515149?

1225

4547
5153?????

1327

47515353; 65???; ???

1427

535365?????

1529

55
???
?

1633

??
??

1735

????

1835

????; ?

1937

?
?

2041

?
TABLE 1. At column s, row t � s, we show the odd cell �ltration for a basis of Exts;tA (F2 ; F2), when the entryis 55 or less. (For typographical reasons, we have exchanged rows and columns from the usual Adams spectralsequence.) Thus, an entry k means that the algebraic root invariant increases the stem by k � 1 or k � 2, andthe conjecture for the n-th stem is that all entries in the row t � s = n are at most 2n + 1. If the entry is65, this means that the element maps nontrivially to L�65. (We computed the map for k = 60 and 65 as partof our initial exploration of the problem.) If the entry is a question mark, we have no information about thisbidegree. The values 55 and less are minimal; that is, if the entry at column s, row t � s is k � 55, we havecomputed the minimal resolution of L�(k�2) through at least internal degree t to verify that the entry shouldnot be k � 2.Adams periodicity. Equally, one might hope toprove the geometric conjecture on the image of Jby using an e-invariant based on equivariant K-theory.

Inspecting Table 1, we see an interesting patternemerge. The line below which the homomorphismExts;tA (F2 ; F2)! Exts;tA (�L�k; F2) is monic appearsto have slope � 12 and (t � s)-intercept k (in the
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k = 9 k = 17

k = 29 k = 33
FIGURE 4. Exts;tA (�L�k; F2), for representative values of k. Elements in the image of Exts;tA (F2 ; F2) are indi-cated by �, and all others by N. The orientation is conventional, with t� s horizontal; the leftmost column ofeach chart represents t � s = 0. Multiplication by h0, h1, and h2 is indicated by solid vertical, solid diagonal,and dotted lines, respectively. The number of dots at each position (s; t� s) is the F2 -rank of Exts;tA (F2 ; F2).conventional display with s vertical and t� s hori-zontal), which forms a kind of k-dual to the Adamsvanishing line. If this is true, then Conjecture 3.3would follow from the intersection of this line withthe Adams vanishing line in ExtA(F2 ; F2):

The results of some representative Ext calcula-tions are displayed in Figure 4.There now seems to be considerable evidencethat the Bredon{L�o�er conjecture holds at thelevel of Ext groups.
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