The mod 2 Adams Spectral Sequence for tmf_*

Robert Bruner

Wayne State University, and
Universitetet i Oslo

Isaac Newton Institute
11 September 2018
Outline

1. Introduction

2. tmf_*

3. Duality

4. The Torsion-free quotient

5. The Davis-Mahowald spectral sequence

6. $Ext_{A(2)}(\mathbb{F}_2, \mathbb{F}_2)$

7. Key Differentials
A report on joint work in progress with John Rognes.

Thanks are due to the Simons Foundation for travel funds and to the Universitetet i Oslo for giving me excellent working conditions and colleagues during these last three years.

Thanks also to the Newton Institute, the organizers of the HHH programme, and the Institute staff.
Introduction

- tmf-modules whose ordinary homology we can readily calculate, but whose BP homology is much harder to get.
- The ordinary mod 2 Adams spectral sequence is thus a reasonable tool to understand these. We first needed to understand the ordinary Adams spectral sequence for tmf itself in greater detail.
- Have tmf, $tmf \wedge C2$, $tmf \wedge C\eta$, and $tmf \wedge C\nu$ in gory detail.
- Tools: DMSS, Gröbner bases, ways to make calculations finite.
- Oddity: no Toda brackets needed except as a heuristic.
- Side benefit: independent verification of earlier results, with thorough documentation.
\[\text{tmf}_* \]

Robert Bruner (WSU and UiO)
We may think of ko as made up of two $H\mathbb{Z}$’s with a bit of 2-torsion tagging along.

In the same way, tmf is made up of eight ‘ko’s’ with some B-torsion tagging along.

Here, $B \in \pi_8(tmf)$ maps to the Bott class in $\pi_8(ko)$ under a natural map $tmf \rightarrow ko$. We will call this lift to tmf the ‘Bott class’ as well.
Generators of tmf_*

First, there is the periodicity element $M \in \pi_{192}(tmf)$, not a zero-divisor. Group remaining generators by $\sqrt{\text{Ann}_{\mathbb{Z}[B]}}$: for $0 \leq k \leq 7$,

(0) $D_k \in \pi_{24k}(tmf)$, $B_k \in \pi_{24k+8}(tmf)$, $C_k \in \pi_{24k+12}(tmf)$

(2) $\eta_k \in \pi_{24k+1}(tmf)$, and

(2, B) $\nu_k \in \pi_{24k+3}(tmf)$,
$\epsilon_k \in \pi_{24k+8}(tmf)$,
$\kappa_k \in \pi_{24k+14}(tmf)$, and
$\bar{\kappa}_k \in \pi_{24k+20}(tmf)$.

- D_k, B_k, C_k and ν_k are defined for all k.
- The rest are defined only for some values of k.
When $k = 0$, we have familiar elements:

- The unit $i : S \to \text{tmf}$ sends $1, \eta, \nu, \epsilon, \kappa$ and $\bar{\kappa}$ to $D_0 = 1, \eta_0, \nu_0, \epsilon_0, \kappa_0$ and $\bar{\kappa}_0$.

Omit the subscript 0 accordingly.

- The map $\text{tmf}_* \to \text{ko}_*$ sends $D_0 = 1, B_0 = B$, and $C_0 = C$ to generators of ko_* in degrees 0, 8 and 12, respectively.

- The relation between B and $\bar{\kappa}$ is the same as that between 2 and η, or between η and ν, a kind of `Frobenius’, detected by Sq^0 in Ext.

- $\kappa^2 = B\bar{\kappa}$.
All the generators except M:

<table>
<thead>
<tr>
<th>Start+</th>
<th>0</th>
<th>8</th>
<th>12</th>
<th>1</th>
<th>3</th>
<th>8</th>
<th>14</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>B</td>
<td>C</td>
<td>η</td>
<td>ν</td>
<td>ϵ</td>
<td>κ</td>
<td>$\bar{\kappa}$</td>
</tr>
<tr>
<td>24</td>
<td>D_1</td>
<td>B_1</td>
<td>C_1</td>
<td>η_1</td>
<td>ν_1</td>
<td>ϵ_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>D_2</td>
<td>B_2</td>
<td>C_2</td>
<td>ν_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>D_3</td>
<td>B_3</td>
<td>C_3</td>
<td>η_4</td>
<td>ν_4</td>
<td>ϵ_4</td>
<td>κ_4</td>
<td>($\bar{\kappa}_4$)</td>
</tr>
<tr>
<td>96</td>
<td>D_4</td>
<td>B_4</td>
<td>C_4</td>
<td>ν_5</td>
<td>ϵ_5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>D_5</td>
<td>B_5</td>
<td>C_5</td>
<td>ν_6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>D_6</td>
<td>B_6</td>
<td>C_6</td>
<td>(ν_7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>D_7</td>
<td>B_7</td>
<td>C_7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Here, $\nu_3 = \eta_1^3$, $\bar{\kappa}_4 = \bar{\kappa}D_4$ and $\nu_7 = 0$ are not needed to generate $\pi_*(\text{tmf})$, but are convenient in general formulas.
Families of elements in tmf_*

- Consider the natural map $tmf_* \rightarrow MF_*/2$ to the ring of modular forms

$$MF_* = \mathbb{Z}[c_4, c_6, \Delta]/(1728\Delta = c_4^3 - c_6^2) = \mathbb{Z}[c_4, \Delta][\sqrt{c_4^3 - 12^3\Delta}]$$

- The discriminant Δ is not in the image of the map to $MF_*/2$, but it does exist in the spectral sequences leading to tmf_*

- Differential on Δ kills $\nu \bar{K}$, detected by h_2g in the Adams spectral sequence, giving Massey products at E_2 of the Adams spectral sequence

$$\Delta(x) = \langle h_2, g, x \rangle$$

$$\Delta'(x) = \langle g, h_2, x \rangle$$
Theorem

Repeated application of Δ gives classes detecting the following sequences of elements of $\pi_\ast(tmf)$:

- $8D \leftrightarrow D_1 \leftrightarrow 2D_2 \leftrightarrow D_3 \leftrightarrow 4D_4 \leftrightarrow D_5 \leftrightarrow 2D_6 \leftrightarrow D_7 \leftrightarrow 8M$.
- $C \leftrightarrow C_1 \leftrightarrow C_2 \leftrightarrow C_3 \leftrightarrow C_4 \leftrightarrow C_5 \leftrightarrow C_6 \leftrightarrow C_7 \leftrightarrow CM$.
- $B + \epsilon \leftrightarrow B_1 + \epsilon_1 \leftrightarrow B_2 \leftrightarrow B_3 \leftrightarrow B_4 + \epsilon_4 \leftrightarrow B_5 + \epsilon_5 \leftrightarrow B_6 \leftrightarrow B_7 \leftrightarrow BM$.
- $8B \leftrightarrow 8B_1 \leftrightarrow 8B_2 \leftrightarrow 8B_3 \leftrightarrow 8B_4 \leftrightarrow 8B_5 \leftrightarrow 8B_6 \leftrightarrow 8B_7 \leftrightarrow 8BM$.
Δ' on h_1 and h_2 in Ext

\[
\begin{array}{ccccccc}
 h_1 & \to & h_1 & \to & h_0 & \leftarrow & h_0 \\
 h_1 & \downarrow & h_1 & \downarrow & h_0h_2 & \downarrow & h_2 \\
 h_1w_2 & \downarrow & \{h_1^2w_2, \gamma^2\} & \downarrow & h_1\gamma^2 = h_0^2h_2w_2 & \downarrow & h_0h_2w_2 \\
 h_1w_3^2 & \downarrow & \{h_1^2w_3^2, \gamma^2w_2\} & \downarrow & h_1\gamma^2w_2 = h_0^2h_2w_3^2 & \downarrow & h_0h_2w_3^2 \\
 h_1w_3^3 & \downarrow & \{h_1^2w_3^3, \gamma^2w_2\} & \downarrow & h_1\gamma^2w_3^2 = h_0^2h_2w_3^3 & \downarrow & h_0h_2w_3^3 \\
 h_1w_4 & \downarrow & \{h_1^2w_4, \gamma^2w_2\} & \downarrow & h_1\gamma^2w_3^3 = h_0^2h_2w_3^4 & \downarrow & h_0h_2w_3^4 \\
\end{array}
\]
Effect on η_i and ν_i

\[
\begin{array}{cccccc}
\eta & \eta^2 & \eta^3 = 4\nu & 2\nu & \nu \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\eta_1 & \eta_1 & \eta_2 = 2\nu_1 & \nu_1 & \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\eta_1^2 & \eta_1^2 & \eta_2^2 = 4\nu_2 & 2\nu_2 & \nu_2 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\eta_1^3 & \eta_1^3 & \\
\downarrow & \downarrow & \\
\eta_4 & \eta_4 & \eta_2^2 = 4\nu_4 & 2\nu_4 & \nu_4 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\eta_1\eta_4 & \eta_1\eta_4 & \eta_1\eta_4 = 2\nu_5 & \nu_5 & \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\eta_1^2\eta_4 & \eta_1^2\eta_4 = 4\nu_6 & 2\nu_6 & \nu_6 \\
\end{array}
\]
Let $\Gamma_B(tmf_*)$ be the B-power torsion, those $x \in tmf_*$ such that $B^ix = 0$ for $i \gg 0$.

Theorem

$\nu_k, \epsilon_k, \kappa_k, \bar{\kappa} \in \Gamma_B(tmf_*)$.

Theorem

If $x \in \Gamma_B(tmf_*)$ then $Bx = \epsilon x$.
General principle:

if \(x, y \in \{\eta, \nu, \epsilon, \kappa\} \) then \(x_i y_j \) depends only on \(x, y, \) and \(i + j \).

Exceptions stem from the varying 2-divisibility of the \(24k + 3 \) stem. For example,

\[
\nu_1\nu_k = \begin{cases}
2\nu \nu_{k+1} & k = 1, 5 \\
0 & \text{other } k \leq 7
\end{cases}
\]

\[
\nu_2\nu_2 = \nu \nu_4, \, \nu_2\nu_4 = \nu \nu_6, \text{ and } \nu_2\nu_6 = \nu \nu_8 = \nu^2 M.
\]
(In general, let \(x_{k+8} = x_k M \).)

\[
\nu_4\nu_6 = \pm \nu \nu_2 M.
\]
24 to 48
Robert Bruner (WSU and UiO)

48 to 72

\[\text{Diagram showing points labeled } \eta_1, \eta_2, \kappa, \nu, \epsilon, \bar{\kappa}, \text{ etc.} \]
72 to 96
96 to 120
120 to 144
144 to 168
168 to 192
Definition

If \(x \in \pi_d R \) and \(M \) is an \(R \)-module, let

\[
M[1/x] = \text{hocolim} \left(M \xrightarrow{x} \Sigma^{-d} M \xrightarrow{x} \Sigma^{-2d} M \xrightarrow{x} \ldots \right)
\]

and let \(M/x^\infty \) be the homotopy cofiber of \(M \longrightarrow M[1/x] \).

We can iterate this to get \(M/(x^\infty, y^\infty) = M/x^\infty \wedge_R M/y^\infty \), etcetera.

We get

\[
0 \longrightarrow \pi_*(M)/x^\infty \longrightarrow \pi_*(M/x^\infty) \longrightarrow \Gamma_x \pi_{*-1}(M) \longrightarrow 0
\]

Theorem

\[
\Sigma^{20} \text{tmf} \simeq I(\text{tmf}/(2^\infty, B^\infty, M^\infty))
\]
Sketch proof:

- Let N_\ast be the $\mathbb{Z}[B]$ submodule of $\pi_\ast(tmf)$ generated in degrees less than 192 (equivalently, ≤ 180).
- $\Gamma_B N_\ast$ is zero outside $3 \leq \ast \leq 164$
- N_\ast/B^∞ is zero above dimension 172 and is \mathbb{Z}, generated by C_7/B, in degree 172.
- Multiplication $N_\ast \otimes \mathbb{Z}[M] \rightarrow \pi_\ast(tmf)$ is a $\mathbb{Z}[B, M]$-isomorphism.
- $\Gamma_M \pi_\ast(tmf) = 0$
- $N_\ast \otimes \mathbb{Z}[M]/M^\infty \cong \pi_\ast(tmf)/M^\infty \cong \pi_\ast(tmf/M^\infty)$
- Short exact sequence

$$0 \rightarrow N_\ast/B^\infty \otimes \mathbb{Z}[M]/M^\infty \rightarrow \pi_\ast(tmf/(B^\infty, M^\infty))$$

$$\rightarrow \Gamma_B N_{\ast-1} \otimes \mathbb{Z}[M]/M^\infty \rightarrow 0$$
Sketch proof: (cont)

- \(\pi_*(tmf/(B^\infty, M^\infty)) \) is concentrated in degrees \(\leq -20 \) and in degree \(-20\) is \(\mathbb{Z} \) generated by \(C_7/BM \).
- It is 0 in degree -21, so the short exact sequence

\[
0 \longrightarrow \pi_*(tmf/(B^\infty, M^\infty))/2^\infty \longrightarrow \pi_*(tmf/(2^\infty, B^\infty, M^\infty)) \longrightarrow \Gamma_2\pi_*^{-1}(tmf/(B^\infty, M^\infty)) \longrightarrow 0
\]

implies that \(\pi_*(tmf/(2^\infty, B^\infty, M^\infty)) \) is concentrated in degrees \(\leq -20 \) and in degree \(-20\) is \(\mathbb{Z}/2^\infty \).
- \(\pi_*(I(tmf/(2^\infty, B^\infty, M^\infty))) \) is concentrated in degrees \(\geq 20 \) and is \(\mathbb{Z}_2 \) in degree 20.
- Choosing a 2-adic generator, we get a \(tmf \)-module map inducing an isomorphism in \(\pi_{20} \) between 20-connected spectra

\[
\Sigma^{20} tmf \longrightarrow I(tmf/(2^\infty, B^\infty, M^\infty))
\]

- It is an equivalence by inducing along \(tmf \longrightarrow BP\langle 2 \rangle \)
As usual, the equivalence of spectra yields isomorphisms (and pairings) with different shifts on the homotopy. Filter $\pi_\ast(tmf)$ by

$$
\Delta \pi_\ast(tmf) \subset \Gamma_B \pi_\ast(tmf) \subset \Gamma_2 \pi_\ast(tmf) \subset \pi_\ast(tmf)
$$

where

- Δ is the submodule of Γ_B generated by the classes not in degrees 3 (mod 24), and
- $ko[k]$ is the $\mathbb{Z}[B]$ submodule generated by $\{D_k, B_k, C_k\}$ together with the appropriate η's:

0: η, η^2

1: $\eta_1, \eta \eta_1$

2: $\eta B_2, \eta_1^2$

3: $\eta B_3, \eta^2 B_3$

4: $\eta_4, \eta \eta_4$

5: $\eta B_5, \eta_1 \eta_4$

6: $\eta B_6, \eta^2 B_6$

7: $\eta B_7, \eta^2 B_7$
Proposition

As a $\mathbb{Z}[B, M]$ module

$$\frac{\Gamma_B \pi_* (tmf)}{\Delta \pi_* (tmf)} \cong \bigoplus_{k=0}^{7} \langle \nu_k \rangle \otimes \mathbb{Z}[M]$$

and

$$\frac{\pi_* (tmf)}{\Gamma_B \pi_* (tmf)} \cong \bigoplus_{k=0}^{7} ko[k] \otimes \mathbb{Z}[M]$$
Duality in the B-torsion

Figure: Duality between $\Delta[0]$ and $\Delta[6]$
<table>
<thead>
<tr>
<th>ν₁</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>35</td>
</tr>
<tr>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

ε₁ κ	32	35
ϵ₁	35	39
κν₁	39	42
η₁	42	

ν₅	142	138	135
ε₅ κ	142	138	135
ϵ₅	138	135	131
κν₅	135	131	128
η₁ κ₄	131	128	125
ε₅	128	125	123

Figure: Duality between Δ[1] and Δ[5]
Figure: Duality between \(\Delta[2] \) and \(\Delta[4] \)
Figure: Self-duality of $\Delta[3]$
Proposition

\[\langle \nu_{7-k} \rangle \text{ is Pontrjagin 171-dual to } \langle B_k/B \rangle: \]

\[
\bigoplus_{k=0}^{7} \langle \nu_k \rangle_{171-*} \cong \text{Hom} \left(\bigoplus_{k=0}^{7} \langle B_k/B \rangle, \mathbb{Q}/\mathbb{Z} \right)
\]

(Note however that \(\nu_7 = 0 \) and \(0 = \langle B_0/B \rangle \subset ko[0]/B^\infty \).)

Further, in \(\pi_*(tmf/B^\infty) \) the class which maps to \(\nu_k \in \Gamma_B \pi_*(tmf) \) lifts to a class \(\tilde{\nu}_k \) with \(2^j \tilde{\nu}_k = C_k/B \).
Maps to $MF_{*/2}$

- The elliptic spectral sequence of Hopkins (2002) has edge hom
 \[e: \pi_*(tmf) \longrightarrow MF_{*/2} = \mathbb{Z}[c_4, c_6, \Delta]/(c_4^3 - c_6^2 = 1728\Delta) \]

- $MF_{*/2}$ is the ring of integral modular forms, with c_4, c_6 and Δ in weights $*/2 = 4$, 6 and 12, corresponding to topological degrees $* = 8$, 12 and 24.

- By Hopkins (2002) and Bauer (2008), $\text{im}(e)$ is additively
 $\mathbb{Z}\{a_{i,j,k}c_4^i c_6^j \Delta^k | i \geq 0, j \in \{0, 1\}, k \geq 0\}$ where
 \[a_{i,j,k} = \begin{cases} 24/\gcd(k, 24) & \text{for } i = 0 \text{ and } j = 0, \\ 1 & \text{for } i \geq 1 \text{ and } j = 0, \\ 2 & \text{for } j = 1. \end{cases} \]

 This is an integral result. See also Douglas-Francis-Henriques-Hill (2014) and Konter (2012).
Proposition

- \(\ker(e) = \Gamma_{2\pi_*}(tmf) \).
- \(B_k \) can be chosen to map to \(c_4 \Delta^k \), for each \(0 \leq k \leq 7 \).
- \(C_k \) can be chosen to map to \(2c_6 \Delta^k \), for each \(0 \leq k \leq 7 \).
- \(D_k \) can be chosen to map to \(2^i \Delta^k \) for \(1 \leq k \leq 7 \), where

\[
i = \begin{cases}
3 & k \equiv 1 \pmod{2} \\
2 & k \equiv 2 \pmod{4} \\
1 & k = 4
\end{cases}
\]

(We complete at 2 here.)

- The image in \(MF_{*/2} \) and the Adams representative in \(E_{\infty}(tmf) \) uniquely determines each of \(B_k, C_k \) and \(D_k \) in \(\pi_*(tmf) \), with the exception of \(C_2, B_3 \) and \(C_6 \). In each case, the ambiguity is a class of order 2.
• C_2 is determined modulo $2\tilde{\kappa}^3 = \nu^3 \nu_2 = \eta \epsilon \nu_2$,

• B_3 is determined modulo $\tilde{\kappa}^4$, and

• C_6 is determined modulo $\nu^3 \nu_6 = \eta \epsilon \nu_6$.
The Davis-Mahowald spectral sequence is a substitute for the Cartan-Eilenberg spectral sequence when the sub Hopf algebra is not normal.

In Davis and Mahowald (1982) the multiplicative structure is a somewhat \textit{ad hoc} afterthought. We give precise conditions for it.

- Γ, Hopf algebra over k
- $\Lambda \subset \Gamma$, sub Hopf algebra
- $\Omega := \Gamma \left/ \Lambda \right. = \Gamma \otimes_{\Lambda} k$ is a quotient Γ-module coalgebra
DMSS, dual formulation

- Γ_* commutative Hopf algebra.
- Λ_* quotient Hopf algebra of Γ.
- $\Omega_* = \Gamma_* \square_{\Lambda_*} k$ left Γ_*-comodule algebra.
- Require (suitable) Γ_*-comodule algebra resolution $k \to (\Omega_* \otimes R^*, d)$.
- Get multiplicative Davis–Mahowald spectral sequence

$$E_1^{\sigma,s,*} = \text{Ext}_{\Lambda_*}^{s,*}(k, R^\sigma) \Longrightarrow \sigma \text{Ext}_{\Gamma_*}^{s+\sigma,*}(k, k).$$

- Untwisting $\Omega_* \otimes R^\sigma \cong \Gamma_* \square_{\Lambda_*} R^\sigma$ is multiplicative for commutative Γ_*.
DMSS, dual formulation, cont.

- Assume a graded Γ^*-comodule algebra $R^* = \bigoplus_{\sigma} R^\sigma$ and homomorphisms $d : \Omega^* \otimes R^\sigma \to \Omega^* \otimes R^{\sigma+1}$
- such that $(\Omega^* \otimes R^*, d)$ is a differential graded Γ^*-comodule algebra and the unit $k \to (\Omega^* \otimes R^*, d)$ is a quasi-isomorphism.
- Get an algebra spectral sequence

$$E_{1}^{\sigma,s} = \text{Ext}^{s}_{\Lambda^*}(k, R^\sigma) \Longrightarrow_{\sigma} \text{Ext}^{s+\sigma}_{\Gamma^*}(k, k)$$

- Product $E_{1}^{\sigma,*,*} \otimes E_{1}^{\tau,*,*} \to E_{1}^{\sigma+\tau,*,*}$ equals pairing induced by Λ^*-comodule product $R^\sigma \otimes R^\tau \to R^{\sigma+\tau}$.
Main example: $A(2)$

- Commutative Hopf algebras

\[\Gamma_* = A(2)_* \rightarrow A(1)_* = \Lambda_* \]

i.e.,

\[\mathbb{F}_2[\xi_1, \bar{\xi}_2, \bar{\xi}_3]/(\xi_1^8, \bar{\xi}_2^4, \bar{\xi}_3^2) \rightarrow \mathbb{F}_2[\xi_1, \bar{\xi}_2]/(\xi_1^4, \bar{\xi}_2^2) \]

- The left $A(2)_*$-comodule algebra

\[\Omega_* = A(2)_* \square_{A(1)_*} \mathbb{F}_2 = E[\xi_1^4, \bar{\xi}_2^2, \bar{\xi}_3] \]

is a sub $A(2)_*$-comodule algebra, but not a sub coalgebra.
Main example, cont.

- Resolve by $A(2)_*\text{-comodule algebra} \ R^* = \mathbb{F}_2[x_4, x_6, x_7]$ with coaction

$$\nu(x_4) = 1 \otimes x_4$$
$$\nu(x_6) = 1 \otimes x_6 + \xi_1^2 \otimes x_4$$
$$\nu(x_7) = 1 \otimes x_7 + \xi_1 \otimes x_6 + \bar{\xi}_2 \otimes x_4.$$

- Resolution $\mathbb{F}_2 \to \Omega_* \otimes R^*$ has differential

$$d(\xi_1^4) = x_4$$
$$d(\bar{\xi}_2^2) = x_6$$
$$d(\bar{\xi}_3) = x_7$$
The Davis-Mahowald spectral sequence

\[\sigma = 0 \]

- \(R^0 = \mathbb{F}_2 \)
- \(E^{0,*,*}_1 = \text{Ext}^{*,*}_{A(1)}(\mathbb{F}_2, \mathbb{F}_2) = ko^{*,*} \).
\[\sigma = 1 \]

- \[R^1 = \mathbb{F}_2 \{ x_4, x_6, x_7 \} = \Sigma^4 H_*(S \cup \eta e^2 \cup 2 e^3) \].
- \[E^{1,*,*}_1 = \text{Ext}^{*,*}_{A(1)}(\mathbb{F}_2, R^1) = ksp^{*,*}\{h_2\} \].
The Davis-Mahowald spectral sequence

\[\sigma = 2 \]

- \[R^2 = \mathbb{F}_2 \{ x_4^2, x_4 x_6, x_4 x_7, x_6^2, x_6 x_7, x_7^2 \} \].
- \[E_2^{2,*,*} = \text{Ext}_{A(1)_*}^*(\mathbb{F}_2, R^2) = G_2^{*,*} \{ h_2^2 \} \].
\[\sigma = 3 \]

- \(\dim R^3 = 10 \).
- \(E_{1}^{3,**} = \text{Ext}_{A(1)}^{**,\ast}(\mathbb{F}_2, R^3) = G_{3,\ast}^{\ast} \{ h_2^3 \} \).
Theorem (Shimada and Iwai)

The cohomology of $A(2)$ is

$$\text{Ext}_{A(2)}(\mathbb{F}_2, \mathbb{F}_2) = \mathbb{F}_2[h_0, h_1, h_2, c_0, d_0, e_0, g, \alpha, \beta, \gamma, \delta, w_1, w_2]/I.$$

The ideal I has 54 generators:

- $h_0h_1, h_1h_2, h_0^2h_2 - h_1^3, h_0h_2^2, h_2^3$
- \ldots
- $c_0\gamma - h_1\delta, \beta\gamma - g^2, d_0^2 - gw_1, \gamma\delta - h_1c_0w_2$,
- $\gamma^2 - h_1^2w_2 - g\beta^2, \alpha^4 - h_0^4w_2 - w_1g^2$
Free over $\mathbb{F}_2[w_1, w_2]$; here w_1 and w_2 restrict to v_1^4 and v_2^8, resp.

A sum of cyclic $R = \mathbb{F}_2[g, w_1, w_2]$-modules isomorphic to R, $R/(g)$ and $R/(g^2)$.

Four infinite families, $h_0^i \alpha^j$, $i \geq 0$, $0 \leq j \leq 3$.

Thirty-two other summands.

E_3, E_4 and $E_5 = E_\infty$ are then modules over $R_1 = \mathbb{F}_2[g, w_1, w_2^2]$ and $R_2 = \mathbb{F}_2[g, w_1, w_2^4]$ resp. Mostly cyclic.
R_0 generators of $\text{Ext}_A(2)(\mathbb{F}_2, \mathbb{F}_2)$

No circle indicates an R_0, one circle an $R_0/(g)$, and two circles an $R_0/(g^2)$.
First differentials

Squaring operations in Ext quickly give us quite a few differentials.

- $d_2(\alpha) = h_2 w_1$ and $d_2(\beta) = h_0 d_0$
- $d_3(\alpha^2) = h_1 d_0 w_1$ and $d_3(\beta^2) = h_1 g w_1$
- $d_3(w_2^2) = Sq^9(d_2(w_2))$

From these many others follow by the Leibniz rule.
Key differentials

There are three *hard* differentials, from which we can deduce everything else using the product structure. They are

Theorem

- $d_3(e_0) = c_0 w_1$
- $d_4(e_0 g) = gw_1^2$
- $d_2(w_2) = \alpha \beta g$
\[d_3(e_0) = c_0 w_1 \]

- The Im(J) generator \(\rho \in \pi_{15}(S) \) in Adams filtration 4 must either map to 0 or \(\eta \kappa \) in \(\pi_{15}(tmf) \).
- \(\eta \rho \in \pi_*(S) \) is detected by \(\{ Pc_0 \} \) in \(\pi_*(S) \), which maps to \(c_0 w_1 \) in \(\text{Ext}_{A(2)}(F_2, F_2) \).
- \(\eta^2 \kappa = 0 \) in \(\pi_*(S) \) (Toda).
- \(c_0 w_1 \) must be a boundary and \(d_3(e_0) \) is the only chance.
0 to 24

Key Differentials

Robert Bruner (WSU and UiO)
\(\text{tmf}_* \text{ at } p = 2\)
INI 60 / 65
\[d_4(e_0g) = gw_1^2 \]

- \(\eta^2 \bar{\kappa} \) is detected by \(Pd_0 \) in \(\pi_{22}(S) \) (Barratt-Mahowald-Tangora, Mimura?). This maps to \(d_0w_1 \) in \(\text{Ext}_{A(2)}(\mathbb{F}_2, \mathbb{F}_2) \).
- \(\kappa \cdot \eta^2 \bar{\kappa} = 0 \) since \(\eta^2 \kappa = 0 \)
- \(\kappa \cdot \eta^2 \bar{\kappa} \) is detected by \(d_0 \cdot Pd_0 \) which maps to \(d_0^2w_1 = gw_1^2 \) in \(\text{Ext}_{A(2)}(\mathbb{F}_2, \mathbb{F}_2) \).
- \(d_4(e_0g) \) is the only class which can hit it.
Most differentials not shown
$d_2(w_2) = \alpha \beta g$

Corollary

$d_4(d_0 e_0) = d_0 w_1^2$ and $d_4(\beta^2 g) = \alpha^2 e_0 w_1$ and these are both nonzero.

Theorem

$d_4(h_1^2 w_2) = \alpha^2 e_0 w_1$, $d_2(w_2) = \alpha \beta g$, and $d_3(h_1 w_2) = g^2 w_1$.

- γ must live to at least E_6, so $d_4(\gamma^2) = 0$
- $\gamma^2 = h_1^2 w_2 + \beta^2 g$, so $d_4(h_1^2 w_2) = \alpha^2 e_0 w_1 \neq 0$
- If $d_2(w_2) = 0$ then $d_4(h_1^2 w_2) = 0$, contradiction, and $d_2(w_2) = \alpha \beta g$ is the only possibility.
- If $d_3(h_1 w_2) = 0$ then $d_4(h_1^2 w_2) = 0$, contradiction, and $d_3(h_1 w_2) = g^2 w_1$ is the only possibility.
Key Differentials

34 to 58

Most differentials not shown
Thank you