The Root Invariant

Robert Bruner
Wayne State University

NTNU, Trondheim
29 July 2019

Outline

(1) The Equivariant Story
(2) The Non-equivariant Story
(3) Confluence

4 More recent work
(5) Conclusion

Outline

(1) The Equivariant Story

(2) The Non-equivariant Story
(3) Confluence

4 More recent work
(5) Conclusion

History

$G=C_{2}$
$\xi=$ nontrivial 1-dim real representation of G
$S^{k \xi+n}=$ one point compactification of $k \xi+n$, so $\left(S^{k \xi+n}\right)^{G}=S^{n}$.
The Bredon-Löffler conjecture concerns the f.p. hom $\phi_{k}(f)=f^{G}$,

$$
\phi_{k}:\left[S^{k \xi}, S^{0}\right]_{n}^{G} \longrightarrow\left[S^{0}, S^{0}\right]_{n}
$$

and the associated Bredon filtration

$$
F_{k}=\operatorname{im}\left(\phi_{k}\right)
$$

Clearly $F_{k} \supset F_{k+1}$.

Bredon conjectured (1967) and Landweber proved (1969) that, in π_{0}, this is closely related to the vector fields number

$$
v(k)=\mid\{i \mid 0<i<k \text { and } k \equiv 0,1,2,4 \quad(\bmod 8)\} \mid
$$

Theorem

$$
F_{k} \pi_{0}=\left\{\begin{array}{lll}
2^{v(k)+2} & k \equiv 0 & (\bmod 4) \\
2^{v(k)+1} & k \not \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Bredon also made the following elementary observation.

Bredon conjectured (1967) and Landweber proved (1969) that, in π_{0}, this is closely related to the vector fields number

$$
v(k)=\mid\{i \mid 0<i<k \text { and } k \equiv 0,1,2,4 \quad(\bmod 8)\} \mid
$$

Theorem

$$
F_{k} \pi_{0}=\left\{\begin{array}{lll}
2^{v(k)+2} & k \equiv 0 & (\bmod 4) \\
2^{v(k)+1} & k \not \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Bredon also made the following elementary observation.
Lemma (Bredon)
$\pi_{n}\left(S^{0}\right)=F_{0}=F_{1}=\cdots=F_{n}$.

Bredon conjectured (1967) and Landweber proved (1969) that, in π_{0}, this is closely related to the vector fields number

$$
v(k)=\mid\{i \mid 0<i<k \text { and } k \equiv 0,1,2,4 \quad(\bmod 8)\} \mid
$$

Theorem

$$
F_{k} \pi_{0}=\left\{\begin{array}{lll}
2^{v(k)+2} & k \equiv 0 & (\bmod 4) \\
2^{v(k)+1} & k \not \equiv 0 & (\bmod 4)
\end{array}\right.
$$

Bredon also made the following elementary observation.
Lemma (Bredon)
$\pi_{n}\left(S^{0}\right)=F_{0}=F_{1}=\cdots=F_{n}$.

Proof.

$$
\left(S^{n} \xrightarrow{g} S^{0}\right)=\phi_{n}\left(S^{n \xi+n} \simeq S^{n} \wedge S^{n} \xrightarrow{g \wedge g} S^{0} \wedge S^{0} \simeq S^{0}\right)
$$

Examples

Consider $\mathbb{C} \subset \mathbb{H} \subset \mathbb{O}$ with usual G actions, so that the f.p. are $\mathbb{R} \subset \mathbb{C} \subset \mathbb{H}$. The G-equivariant Hopf map

and $\phi_{1}(\widetilde{\eta})=2$, the non-equivariant real Hopf map

Similarly, the G-equivariant quaternionic Hopf map

and $\phi_{2}(\widetilde{\nu})=\eta$, the non-equivariant complex Hopf map

Similarly $\phi_{4}(\widetilde{\sigma})=\nu$.

We find, taking composites, that

$$
\begin{aligned}
& \pi_{1}=F_{2} \supset F_{3}=0 \\
& \pi_{2}=F_{4} \supset F_{5}=0
\end{aligned}
$$

and

Bredon-Löffler Conjecture

Conjecture (Bredon-Löffler)

If $n>0$ then $F_{2 n+1} \pi_{n}=0$.
That is, if $k>2 n>0$ then the image of

$$
\phi_{k}:\left[S^{k \xi}, S^{0}\right]_{n}^{G} \longrightarrow\left[S^{0}, S^{0}\right]_{n}
$$

is zero.

The Bredon Root Invariant

Suppose that $x \in F_{k} \pi_{n} \backslash F_{k+1} \pi_{n}$. Then there are $\widetilde{x}: S^{k \xi} \longrightarrow S^{0}$ with $\phi_{k}(\widetilde{x})=x$ but no such \widetilde{x} extends to $S^{(k+1) \xi}$.

$$
S^{k} \wedge G_{+} \xrightarrow{\alpha_{k}} S^{k \xi} \longrightarrow S^{(k+1) \xi}
$$

The adjoint of $\widetilde{x} \alpha_{k}$ is the underlying non-equivariant map

$$
U_{k}(\widetilde{x}) \in\left[S^{k}, S^{0}\right]_{n}=\pi_{n+k}\left(S^{0}\right) .
$$

Definition

If $x \in F_{k} \pi_{n} \backslash F_{k+1} \pi_{n}$ then the Bredon root invariant $B(x)$ is the coset $U_{k}\left(\phi_{k}^{-1}(x)\right) \subset \pi_{n+k}\left(S^{0}\right)$.

Write $|x|=n$ for $x \in \pi_{n}\left(S^{0}\right)$. The easy Lemma about the Bredon filtration can be restated in terms of the Bredon root invariant.

Corollary $|B(x)| \geq 2|x|$.

We can similarly restate the Bredon-Löffler conjecture.

Write $|x|=n$ for $x \in \pi_{n}\left(S^{0}\right)$. The easy Lemma about the Bredon filtration can be restated in terms of the Bredon root invariant.

Corollary $|B(x)| \geq 2|x|$.

We can similarly restate the Bredon-Löffler conjecture.

Conjecture

 $|B(x)| \leq 3|x|$.Write $|x|=n$ for $x \in \pi_{n}\left(S^{0}\right)$. The easy Lemma about the Bredon filtration can be restated in terms of the Bredon root invariant.

Corollary
 $|B(x)| \geq 2|x|$.

We can similarly restate the Bredon-Löffler conjecture.

Conjecture

 $|B(x)| \leq 3|x|$.

Our examples give

- $B(2)=\eta, B(4)=\eta^{2}, B(8)=\eta^{3}=4 \nu$
- $B(\eta)=\nu$
- $B(\nu)=\sigma$

However, we will see that $B(\sigma)=\sigma^{2}$.

There is also the elementary observation

Our examples give

- $B(2)=\eta, B(4)=\eta^{2}, B(8)=\eta^{3}=4 \nu$
- $B(\eta)=\nu$
- $B(\nu)=\sigma$

However, we will see that $B(\sigma)=\sigma^{2}$.

There is also the elementary observation

Our examples give

- $B(2)=\eta, B(4)=\eta^{2}, B(8)=\eta^{3}=4 \nu$
- $B(\eta)=\nu$
- $B(\nu)=\sigma$

However, we will see that $B(\sigma)=\sigma^{2}$.
There is also the elementary observation

Our examples give

- $B(2)=\eta, B(4)=\eta^{2}, B(8)=\eta^{3}=4 \nu$
- $B(\eta)=\nu$
- $B(\nu)=\sigma$

However, we will see that $B(\sigma)=\sigma^{2}$.
There is also the elementary observation
Theorem (B)

- $|B(x y)|>|B(x)|+|B(y)|$
- If $|B(x y)|=|B(x)|+|B(y)|$ then $B(x) B(y) \subset B(x y)$.

Our examples give

- $B(2)=\eta, B(4)=\eta^{2}, B(8)=\eta^{3}=4 \nu$
- $B(\eta)=\nu$
- $B(\nu)=\sigma$

However, we will see that $B(\sigma)=\sigma^{2}$.
There is also the elementary observation
Theorem (B)

- $|B(x y)| \geq|B(x)|+|B(y)|$
- If $|B(x y)|=|B(x)|+|B(y)|$ then $B(x) B(y) \subset B(x y)$.

Outline

(1) The Equivariant Story

(2) The Non-equivariant Story

Non-equivariant Prehistory

Mahowald's 1967 AMS Memoir The Metastable Homotopy of S^{n}

DEFINITION 4.4. Let a be an element of either Ext or π_{*} for a sphere. Let i: $S^{n} \rightarrow P_{n}$, the inclusion onto the bottam cell. Suppose there is a j such that for $P_{n-j} \xrightarrow{p} P_{n^{*}} i^{\prime}(a) \& i m p_{*}$ stably. Let j be the smallest integer with this property. Then consider

$$
\begin{aligned}
\mathrm{s}^{\mathrm{n}-j} \rightarrow \mathrm{P}_{\mathrm{n}-j} \xrightarrow{p_{2}} & P_{\mathrm{n}-j+1} \\
& P_{n} \downarrow_{1}
\end{aligned}
$$

By the root of $a, \sqrt{\alpha}$ we mean $a_{*}(\bar{a})$ for any \bar{a} satisfying $p_{I}{ }^{*} \bar{a}=1^{*} \alpha$. Then $n-j$ is the dimension of the root.

History

Let $P_{k}=T(k \xi)$, where ξ is the nontrivial line bundle over $\mathbb{R} P^{\infty}$. Lin's Theorem tells us that $S^{0} \xrightarrow{\simeq} \lim _{k} \Sigma P_{-k}$ and there is the associated Mahowald filtration.

$$
M_{k}:=\operatorname{ker}\left(\pi_{n} S^{0} \longrightarrow \Sigma P_{-k}\right)
$$

Definition (The Mahowald Root Invariant)

For $x \in M_{k} \backslash M_{k+1}$, let $R(\alpha)$ be the set of lifts:

- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- ask for a Cartan formula for the root invariant,
- conjecture that $R(x)|\leq 3| x \mid$.
- conjecture that if R_{k} is the subgroup generated by root invariants in $\pi_{k}\left(S^{0}\right)$, then

- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- ask for a Cartan formula for the root invariant,
\Rightarrow conjecture that $R(x)|\leq 3| x \mid$.
\Rightarrow conjecture that if R_{k} is the subgroup generated by root invariants in $\pi_{k}\left(S^{0}\right)$, then

- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- ask for a Cartan formula for the root invariant,
- conjecture that $R(x)|\leq 3| x \mid$.
\Rightarrow conjecture that if R_{k} is the subgroup generated by root invariants in $\pi_{k}\left(S^{0}\right)$, then

- Mahowald's work on the AHSS $\Longrightarrow \pi_{*}\left(P_{n}\right)$ gave him extensive knowledge of this filtration and the root invariants.
- Applications to the EHP-SS and its variants.
- Metastable homotopy of the sphere.
- Mahowald and Ravenel (Topology, 1988/1993) collected much of what was known and
- ask for a Cartan formula for the root invariant,
- conjecture that $R(x)|\leq 3| x \mid$.
- conjecture that if R_{k} is the subgroup generated by root invariants in $\pi_{k}\left(S^{0}\right)$, then

$$
\lim _{k \rightarrow \infty} \frac{\log _{p} \#\left(\pi_{k}\left(S^{0}\right)\right)}{\log _{p} \#\left(R_{k}\right)}=\frac{1}{p^{2}}
$$

Outline

(1) The Equivariant Story

(2) The Non-equivariant Story
(3) Confluence

4 More recent work
(5) Conclusion

Confluence

A 1992 email from John Greenlees

Confluence

A 1992 email from John Greenlees

- proved that the Bredon and Mahowald filtrations agree,
- proposed the Bredon-Löffler conjecture as an interesting subject of study,
- said that Peter May had told him that my programs might be able to compute the analogous filtration at the E_{2}-term, and
- asked if I was interested in doing this, if so.
- They could and I was; so began an internet collaboration,
- resulting in The Bredon-Löffler Conjecture, published in the J. of Experimental Mathematics in 1995.

Confluence

A 1992 email from John Greenlees

- proved that the Bredon and Mahowald filtrations agree,
- proposed the Bredon-Löffler conjecture as an interesting subject of study,
- said that Peter May had told him that my programs might be able to compute the analogous filtration at the E_{2}-term, and
- asked if I was interested in doing this, if so.
- They could and I was; so began an internet collaboration,
- resulting in The Bredon-Löffler Conjecture, published in the J. of Experimental Mathematics in 1995.

Confluence

A 1992 email from John Greenlees

- proved that the Bredon and Mahowald filtrations agree,
- proposed the Bredon-Löffler conjecture as an interesting subject of study,
- said that Peter May had told him that my programs might be able to compute the analogous filtration at the E_{2}-term, and
- asked if I was interested in doing this, if so.
- They could and I was; so began an internet collaboration,
- resulting in The Bredon-Löffler Conjecture, published in the J. of Experimental Mathematics in 1995

Confluence

A 1992 email from John Greenlees

- proved that the Bredon and Mahowald filtrations agree,
- proposed the Bredon-Löffler conjecture as an interesting subject of study,
- said that Peter May had told him that my programs might be able to compute the analogous filtration at the E_{2}-term, and
- asked if I was interested in doing this, if so.
- They could and I was; so began an internet collaboration,
- resulting in The Bredon-Löffler Conjecture, published in the J. of Experimental Mathematics in 1995.

Confluence

A 1992 email from John Greenlees

- proved that the Bredon and Mahowald filtrations agree,
- proposed the Bredon-Löffler conjecture as an interesting subject of study,
- said that Peter May had told him that my programs might be able to compute the analogous filtration at the E_{2}-term, and
- asked if I was interested in doing this, if so.
- They could and I was; so began an internet collaboration,
- resulting in The Bredon-Löffler Conjecture, published in the J. of Experimental Mathematics in 1995

Confluence

A 1992 email from John Greenlees

- proved that the Bredon and Mahowald filtrations agree,
- proposed the Bredon-Löffler conjecture as an interesting subject of study,
- said that Peter May had told him that my programs might be able to compute the analogous filtration at the E_{2}-term, and
- asked if I was interested in doing this, if so.
- They could and I was; so began an internet collaboration,
- resulting in The Bredon-Löffler Conjecture, published in the J. of Experimental Mathematics in 1995.

First result:

Theorem (B\&G)

Proof:

Obstruction theory implies

$$
\left[X, Y \wedge S^{\infty \xi}\right]_{n}^{G} \cong\left[X^{G}, Y^{G}\right]_{n}
$$

Thus, ϕ_{k} is induced by the inclusion $S^{0} \longrightarrow S^{\infty \xi}$. The cofiber sequence $E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi}$ gives the I.e.s

First result:
Theorem (B\&G)

- $F_{k}=M_{k}$
- $B=R$

Proof:
Obstruction theory implies

$$
\left[X, Y \wedge S^{\infty \xi}\right]_{n}^{G} \cong\left[X^{G}, Y^{G}\right]_{n}
$$

Thus, ϕ_{k} is induced by the inclusion $S^{0} \longrightarrow S^{\infty \xi}$. The cofiber sequence $E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi}$ gives the l.e.s

$$
\longrightarrow\left[S^{k \xi}, S^{0}\right]_{n}^{G} \xrightarrow{\phi_{k}}\left[S^{k \xi}, S^{\infty \xi}\right]_{n}^{G} \longrightarrow\left[S^{k \xi}, \Sigma E G_{+}\right]_{n}^{G}
$$

First result:
Theorem (B\&G)

- $F_{k}=M_{k}$
- $B=R$

Proof:
Obstruction theory implies

$$
\left[X, Y \wedge S^{\infty}\right]_{n}^{G} \cong\left[X^{G}, Y^{G}\right]_{n}
$$

Thus, ϕ_{k} is induced by the inclusion $S^{0} \longrightarrow S^{\infty \xi}$. The cofiber sequence $E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi}$ gives the l.e.s

$$
\longrightarrow\left[S^{k \xi}, S^{0}\right]_{n}^{G} \xrightarrow{\phi_{k}}\left[S^{k \xi}, S^{\infty \xi}\right]_{n}^{G} \longrightarrow\left[S^{k \xi}, \Sigma E G_{+}\right]_{n}^{G}
$$

First result:

Theorem (B\&G)

- $F_{k}=M_{k}$
- $B=R$

Proof:
Obstruction theory implies

$$
\left[X, Y \wedge S^{\infty \xi}\right]_{n}^{G} \cong\left[X^{G}, Y^{G}\right]_{n}
$$

Thus, ϕ_{k} is induced by the inclusion $S^{0} \longrightarrow S^{\infty \xi}$. The cofiber sequence $E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi}$ gives the I.e.s

$$
\cdots \longrightarrow\left[S^{k \xi}, S^{0}\right]_{n}^{G} \xrightarrow{\phi_{k}}\left[S^{k \xi}, S^{\infty \xi}\right]_{n}^{G} \longrightarrow\left[S^{k \xi}, \Sigma E G_{+}\right]_{n}^{G} \longrightarrow \cdots
$$

Thus,

$$
\begin{aligned}
F_{k} & =\operatorname{im}\left(\phi_{k}\right) \\
& =\operatorname{ker}\left(\left[S^{k \xi}, S^{\infty \xi}\right]_{n}^{G} \longrightarrow\left[S^{k \xi}, \Sigma E G_{+}\right]_{n}^{G}\right. \\
& =M_{k}
\end{aligned}
$$

where we use

$$
\begin{aligned}
{\left[S^{k \xi}, \Sigma E G_{+}\right]_{n}^{G} } & =\left[S^{0}, \Sigma E G_{+} \wedge S^{-k \xi}\right]_{n}^{G} \\
& \cong\left[S^{0},\left(\Sigma E G_{+} \wedge S^{-k \xi}\right) / G\right]_{n} \\
& =\left[S^{0}, \Sigma P_{-k}\right]_{n}
\end{aligned}
$$

To show $R(x)=B(x)$, let $x \in F_{k} \backslash F_{k+1}$.
Map the sequence

$$
S^{k} \wedge G_{+} \longrightarrow S^{k \xi} \longrightarrow S^{(k+1) \xi} \longrightarrow S^{k+1} \wedge G_{+}
$$

to the sequence

$$
E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi} \longrightarrow \Sigma E G_{+}
$$

and use the isomorphisms

- $\left[S^{j \xi}, S^{\infty \xi}\right]_{n}^{G} \cong\left[S^{0}, S^{0}\right] n$

for $j=k$ and $k+1$, to get a grid of exact sequences.

To show $R(x)=B(x)$, let $x \in F_{k} \backslash F_{k+1}$.
Map the sequence

$$
S^{k} \wedge G_{+} \longrightarrow S^{k \xi} \longrightarrow S^{(k+1) \xi} \longrightarrow S^{k+1} \wedge G_{+}
$$

to the sequence

$$
E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi} \longrightarrow \Sigma E G_{+}
$$

and use the isomorphisms

- $\left[S^{j \xi}, S^{\infty \xi}\right]_{n}^{G} \cong\left[S^{0}, S^{0}\right] n$
- $\left[S^{j} \wedge G_{+}, X\right]_{n}^{G} \cong\left[S^{j}, X\right]_{n}$
for $j=k$ and $k+1$, to get a grid of exact sequences.

To show $R(x)=B(x)$, let $x \in F_{k} \backslash F_{k+1}$.
Map the sequence

$$
S^{k} \wedge G_{+} \longrightarrow S^{k \xi} \longrightarrow S^{(k+1) \xi} \longrightarrow S^{k+1} \wedge G_{+}
$$

to the sequence

$$
E G_{+} \longrightarrow S^{0} \longrightarrow S^{\infty \xi} \longrightarrow \Sigma E G_{+}
$$

and use the isomorphisms

- $\left[S^{j \xi}, S^{\infty \xi}\right]_{n}^{G} \cong\left[S^{0}, S^{0}\right] n$
- $\left[S^{j} \wedge G_{+}, X\right]_{n}^{G} \cong\left[S^{j}, X\right]_{n}$
- $\left[S^{j}, S^{\infty \xi}\right]_{n}=0$
for $j=k$ and $k+1$, to get a grid of exact sequences.
$R(x)$ is the lift of x to the lower right corner, and $B(x)$ is the lift of x to the upper left corner.

A standard result about maps of cofiber sequences into fiber sequences shows they agree.

Consequences:

- Simple equivariant description of $R(X)$.
- The Cartan formula.
- Elementary proof that $|R(x)| \geq 2|X|$.
- The Mahowald-Ravenel conjecture $=$ the Bredon-Löffler conjecture.

Consequences:

- Simple equivariant description of $R(X)$.
- The Cartan formula.
- Elementary proof that $|R(x)| \geq 2|X|$
- The Mahowald-Ravenel conjecture $=$ the Bredon-Löffler conjecture.

Consequences:

- Simple equivariant description of $R(X)$.
- The Cartan formula.
- Elementary proof that $|R(x)| \geq 2|X|$.
- The Mahowald-Ravenel conjecture $=$ the Bredon-Löffler conjecture.

Consequences:

- Simple equivariant description of $R(X)$.
- The Cartan formula.
- Elementary proof that $|R(x)| \geq 2|X|$.
- The Mahowald-Ravenel conjecture $=$ the Bredon-Löffler conjecture.

Ext analog

Exactness of

$$
\begin{gathered}
{\left[S^{k \xi}, S^{0}\right]_{n}^{G} \xrightarrow{\phi_{k}}\left[S^{k \xi}, S^{\infty \xi}\right]_{n}^{G} \longrightarrow\left[S^{k \xi}, \Sigma E G_{+}\right]_{n}^{G}} \\
\downarrow \cong \\
\Downarrow \cong \\
{\left[S^{k \xi}, S^{0}\right]_{n}^{G} \longrightarrow\left[S^{0}, S^{0}\right]_{n} \longrightarrow\left[S^{0}, \Sigma P_{-k}\right]_{n}}
\end{gathered}
$$

shows
(BL Conj) $\phi_{k}=0$ for $k>2 n>0$
is equivalent to

$$
\pi_{n}\left(S^{0}\right) \longrightarrow \pi_{n}\left(\sum P_{-k}\right) \text { mono for } k>2 n>0 .
$$

Let $L_{-k}=H^{*} P_{-k}$. The map $S^{0} \longrightarrow \Sigma P_{-k}$ above induces the non-zero homomorphism $r_{k}: \Sigma L_{-k} \longrightarrow \mathbb{F}_{2}$.

Conjecture (The algebraic Bredon-Löffler conjecture)

$$
r_{k}^{*}: \mathrm{Ext}_{A}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \mathrm{Ext}_{A}^{s, t}\left(\Sigma L_{-k}, \mathbb{F}_{2}\right)
$$

is a monomorphism if $k>2(t-s)>0$.
We showed

While preparing this talk, I checked

Let $L_{-k}=H^{*} P_{-k}$. The map $S^{0} \longrightarrow \Sigma P_{-k}$ above induces the non-zero homomorphism $r_{k}: \Sigma L_{-k} \longrightarrow \mathbb{F}_{2}$.

Conjecture (The algebraic Bredon-Löffler conjecture)

$$
r_{k}^{*}: \mathrm{Ext}_{A}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \mathrm{Ext}_{A}^{s, t}\left(\Sigma L_{-k}, \mathbb{F}_{2}\right)
$$

is a monomorphism if $k>2(t-s)>0$.
We showed
Theorem (B\&G)
The algebraic Bredon-Löffler conjecture holds for $t-s<30$.
While preparing this talk, I checked

Let $L_{-k}=H^{*} P_{-k}$. The map $S^{0} \longrightarrow \Sigma P_{-k}$ above induces the non-zero homomorphism $r_{k}: \Sigma L_{-k} \longrightarrow \mathbb{F}_{2}$.

Conjecture (The algebraic Bredon-Löffler conjecture)

$$
r_{k}^{*}: \mathrm{Ext}_{A}^{s, t}\left(\mathbb{F}_{2}, \mathbb{F}_{2}\right) \longrightarrow \mathrm{Ext}_{A}^{s, t}\left(\Sigma L_{-k}, \mathbb{F}_{2}\right)
$$

is a monomorphism if $k>2(t-s)>0$.
We showed
Theorem (B\&G)
The algebraic Bredon-Löffler conjecture holds for $t-s<30$.
While preparing this talk, I checked

Theorem

The algebraic Bredon-Löffler conjecture holds for $t-s<33$.

- Sharp for $h_{1} P^{i} h_{1}$ and $h_{1}^{2} P^{i} h_{1}$ in the range calculated. (This is likely accessible for all i.)
- In 1996, I was able to show the much weaker bound

- This is not close to

but it is the only such bound known.
- The exact calculations suggest an interesting strengthening.
- Sharp for $h_{1} P^{i} h_{1}$ and $h_{1}^{2} P^{i} h_{1}$ in the range calculated. (This is likely accessible for all i.)
- In 1996, I was able to show the much weaker bound

$$
\sqrt{3+\frac{k}{2}}>t-s+2
$$

- This is not close to

but it is the only such bound known.
- The exact calculations suggest an interesting strengthening.
- Sharp for $h_{1} P^{i} h_{1}$ and $h_{1}^{2} P^{i} h_{1}$ in the range calculated. (This is likely accessible for all i.)
- In 1996, I was able to show the much weaker bound

$$
\sqrt{3+\frac{k}{2}}>t-s+2
$$

- This is not close to

$$
\frac{k}{2}>t-s
$$

but it is the only such bound known.

- The exact calculations suggest an interesting strengthening.
- Sharp for $h_{1} P^{i} h_{1}$ and $h_{1}^{2} P^{i} h_{1}$ in the range calculated. (This is likely accessible for all i.)
- In 1996, I was able to show the much weaker bound

$$
\sqrt{3+\frac{k}{2}}>t-s+2
$$

- This is not close to

$$
\frac{k}{2}>t-s
$$

but it is the only such bound known.

- The exact calculations suggest an interesting strengthening.

Conjecture (Strong algebraic Bredon-Löffler conjecture)

r_{k}^{*} is a monomorphism if

$$
s<\frac{k-n}{2}
$$

- This is also correct in degree 0 , giving Landweber's result.
- Like Adams' vanishing line, it is probably not a straight line.
- Consequences for the root invariant:

- Consistent with the conjecture that the root invariant of a v_{n}-periodic class is v_{n+1}-periodic.
- This is also correct in degree 0 , giving Landweber's result.
- Like Adams' vanishing line, it is probably not a straight line.
- Consequences for the root invariant:

- Consistent with the conjecture that the root invariant of a v_{n}-periodic class is v_{n+1}-periodic.
- This is also correct in degree 0 , giving Landweber's result.
- Like Adams' vanishing line, it is probably not a straight line.
- Consequences for the root invariant:

- Consistent with the conjecture that the root invariant of a v_{n}-periodic class is v_{n+1}-periodic.
- This is also correct in degree 0 , giving Landweber's result.
- Like Adams' vanishing line, it is probably not a straight line.
- Consequences for the root invariant:

- Consistent with the conjecture that the root invariant of a v_{n}-periodic class is v_{n+1}-periodic.

Outline

(1) The Equivariant Story

(2) The Non-equivariant Story
(3) Confluence
(4) More recent work

(5) Conclusion

Further work

- Mark Behrens, 'Root invariants in the Adams spectral sequence'. Trans. AMS (2006).
- Hopkins, Lin, Shi, Xu, 'Intersection Forms of Spin 4-manifolds and the Pin(2)-equivariant Mahowald Invariant', arXiv:1812.04052v3.
- J. D. Quigley, 'The Motivic Mahowald invariant', arXiv:1801.06035 and ff.
- Guillou and Isaksen, 'The Bredon-Landweber region in C_{2}-equivariant stable homotopy groups', arXiv:1907.01539.

Further work

- Mark Behrens, 'Root invariants in the Adams spectral sequence'. Trans. AMS (2006).
- Hopkins, Lin, Shi, Xu, 'Intersection Forms of Spin 4-manifolds and the Pin(2)-equivariant Mahowald Invariant', arXiv:1812.04052v3.
- Guillou and Isaksen, 'The Bredon-Landweber region in C_{2}-equivariant stable homotopy groups', arXiv:1907.01539.

Further work

- Mark Behrens, 'Root invariants in the Adams spectral sequence'. Trans. AMS (2006).
- Hopkins, Lin, Shi, Xu, 'Intersection Forms of Spin 4-manifolds and the Pin(2)-equivariant Mahowald Invariant', arXiv:1812.04052v3.
- J. D. Quigley, 'The Motivic Mahowald invariant', arXiv:1801.06035 and ff.
- Guillou and Isaksen, 'The Bredon-Landweber region in C_{2}-equivariant stable homotopy groups', arXiv:1907.01539.

Further work

- Mark Behrens, 'Root invariants in the Adams spectral sequence'. Trans. AMS (2006).
- Hopkins, Lin, Shi, Xu, 'Intersection Forms of Spin 4-manifolds and the Pin(2)-equivariant Mahowald Invariant', arXiv:1812.04052v3.
- J. D. Quigley, 'The Motivic Mahowald invariant', arXiv:1801.06035 and ff.
- Guillou and Isaksen, 'The Bredon-Landweber region in C_{2}-equivariant stable homotopy groups', arXiv:1907.01539.

Outline

(1) The Equivariant Story

(2) The Non-equivariant Story
(3) Confluence
(4) More recent work
(5) Conclusion

> In recognition of the important role that John Greenlees has played in bringing equivariant methods into play,

Happy
First
Non-abelian
Simple
Birthday,
John

