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Abstract

In this paper we will study the properties of
locally compact Abelian Hausdorff topological groups
{hereafter known as LCA groups) by means of tﬁéir map-
ping properties. The results contained herein are an
outgrowth of work done by Professor Armacost [Al]l on
*sufficiency classes" of LCA groups. The sufficiency
class S(H) of an LCA group H is the class of all LCA
groups G such that there are sufficiently many contin-
uous homomorphisms from G to H to separate the points of
G. This condition is easily seeh to be egquivalent to
the requirement that r1ker(f)=0, where £ ranges over all
elements of (G,H), the set of continuous homomorphisms
from G to H. This suggests consideration of the sub-

group Ry (G)= M ker(f) in any LCA dgroup G. Then S(H) is
fe(G,H) '

just the class of groups G such that RH(G)zo. The sub-~
groups RH(G) are canonical in the following sense: if
a:G.—-»G_ 1is a continucus homomorphism, then a(RH(Gl)) is

1 2

contained in RH(G This means that Ry can be considered

2)‘
a subfunctor of the identity functor on.Zi the category

c0néisting of LCA groups as objects and continuous homo-
morphisms as morphisms. The obvious generalization then
is to consider arbitrary subfunctors of the identity on

31. No& we cannot say very much about something ihis

general. However, given certain natural restrictions

we can prove guite a lot. Namely, if we assume that the
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subfunctor of the identity raff?lfis idempotent (r(r(G))=
r(G) for all LCA groups G) and a radical (r(G/r(G))=20
for all LCA groups G) then it can be shown that
r(G)=fW ker(£f) for a well defined class C of LCA groups.
fe(G,H) ‘
HEZ
Dualizing the above considerations we can also show that
any idempotent radical is of the form r{G)= . im(f}., SO
Fe - £e(H,G)
HEZ

that every idempotent radical can be explicitly con-
structed in two essentially distinct ways. |

Returning to our remarks about the sufficiency class
S(H) in connection with RH(G), we note that $(H} is only
one of two classes of LCA groups distinguished by RH.
The other is the class of all LCA groups G such that
RH(G)=:G. Obviously this condition is equivalent to the
assertion that there are no nontrivial, continuous homo-
morphisms from G to H. Let us denote this latter class
by T(H). The pair (T(H),S(H)) has some interesting
properties. There are no nontrivial homomorphisms from
a member of T(H) to a member of S(H), and T(H) is maximal
with respect to this property. If RH ié idempotent then
S§(H) is also maximal with respect to this property, and
conversely. Abstracting, we define a torsion theory for
LCA groups to be a pair (T,F) of classes of LCA groups
such that there are no continuous homomorphisms from a

member of T to a member of ¥ and such that T and F are

maximal with respect to this property. Examples of
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torsion theories abound: T contains all connected groups
and F contains all totally disconnected groups, or T
contains all densely divisible groups and F contains all
reduced groups, or T contains all groups with’every
element compact and F contains all groups with no compact
elements. In fact every ildempotent radical gives rise

to a torsion theory. Now, & torsion theory also yields
in a natural way an idempotent radical and, remarkably
enough, these correspondences are inverse to each other.
Thus we have a l-1 correspondence between torsion éheories
and idempotent radicals. This correspondence and the
representation of any idempotent radical as the inter-
section of kernels of continuous homomorphisms and as

the closure of the sum of images of continuous homomor-
phisms are the primary results of the first section.

In the second‘%ection we devote oyr attention to
specific radicals, sufficiency classes, torsion theories
and their duals. In so doing we characterize many impor-
tant classes of LCA groups by their mapping properties.
We also characierize several important canonical subgroups
of LCA groups, some of which, such as thé component of
the identity and the subgroup of all compact elements,
are well known, others of which are not well known but
have sufficiently important properties to be worthy of
attention. It is the author's hope that these investi-
gations will prove helpful in elucidating the structure

of LCA groups. In the final section we turn our attention
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to problems of this nature. This section is the least
complete and the most open-ended. We attempt to say as
much as can be said at present about these problems and
to indicate possible approaches and plausible ¢onjectures,
at least a few of which we hope will be proved at gome

point in the future.



Terminology and Conventions

All groups will be assumed to be Abelian. The word
"group" will mean LCA group, that is, locally compact
Abelian Hausdorff topological group. A group without
topology will be called a discrete group. A capital
roman letter denotes & group unless otherwise mentioned,
We will write the group cperation additively with one
exception. The circle group, T, will be written multi-
plicatively.

If H is a subset of a group then H denotes the
closure of H. We write "H<4G" to indicate that H is a
closed subgroup of G. Topological isomorphism is denoted
by "=". The symbol "0" is used in various contexts to
denote the integer O, the identity element of a group,
the subgroup containing only the identity element and
the zero homomorphism.

TT'Gi is ﬁhe direct product of the groups Gj with
iel

the product topoleogy. If there are a finite number of
factors, we may write G1><GE;{°--XGR for the direct
product. If all of the G;'s are topologically iscmorphic
to G we will write GM for the product where M is the

cardinality of the index set. EBéSi is the direct sum
i€l

of the groups Gi. If M is a cardinal number, €E5G denotes
M

the direct sum of M copies of G.
The terms "map", "mapping”, and "continuous homomor-

phism" will be used interchangeably for the sake of
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euphony. We use "(G,H)" to denote the (usually discrete)
group of continuous homomerphisms from G to H under the
pointwise operation. The identity map on a group G will
be denoted by "lg" or, if there is no chance qf confusion,
by "1". The notation "£:G-—>H" denotes a map f from G to
H. If a name is not needed for the map we write "G-YH".
A phrase such as " there exists nonzero G-—>H" should be
read as "there exists ia nonzero map from G to H"'. We use
vker (£)" and "im(f)" to denote the kKernel and the image,.
respectively, of a map £. If £:G—H and h:H—K then
hf:G—>K is the composition, hf(x) = h{f(x}) for all x¢ G.
If f:Gf—"er and H £G; then the restriction of f to H is
denoted fly. If HLG, the natural map H—G is the inclu-
sion map. The natural map G->G/H is the map that sends
x to the coset x+H.

If G is an LCA group then “8" and "(G)"" denote the
character group of G. If H<G then "A(@,H)" denotes the
annihilator of H in @, that is jfeG: f(m)=i§. 1f
a:G-rH then 4:H->G is the dual map defined by a(f)=fa e
for feH.

i is the category which has LCA groups as objects
and continuous homomorphisms as morphisms.

We say that a class C of LCA groups is closed under
closed subgroups if H< G and Ge C imply that H¢C. The
class C is closed under quotients if H< G and G &L imply
that G/HE€C. It is closed under extensions if H&C and

G/HeC imply Ge€C. Classes of LCA groups are generally
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denoted by underlined capital roman letters.
The groups which we use most frequently are listed

below. Complete descriptions may be found in [ﬁ&é] or

0 ~-rationals taken{discrete]
-reals with usual topology
Z ~-integers taken discrete
Q/2z -rationals mod 1 (discrete)(Q/Z=€Z({p~7))
z{n) -cyclic group of crder n {discrete)

7 (p®) -quasicyclic group, p prime (discrete)

T ~circle group K/Z (compact)

Q -dual group of Q (compact)

Jp -p-adic integers, p prime {compact)

Fp -p-adic numbers, p prime

J - Tpr over all primes, i.e., J=JdpRJ3xJgA"’

Frequently Used Definitions and Results

If H<G, a(G,AE.H) =58, H=~&/AEH), €/8~a(8,1)

If HEK<G then A(6,K)< A(G,H).

A(6,0)=6G, and a(&,G) =0.

An element is compact iff the closure of the subgroup
generated by that element is compact. The set of
compact elements is a closed subgroup.

The component of the identity is a closed subgroup.

A densely divisible group is one which contains a dense

divisible subgroup.



Preradicals and Torsion Theories

1.1 General Preradicals
In this section we present some basic definitions
and results concerning preradicals which we will need.

First, we remark that a subfunctor cf the identity on

the category iiis a mapping F:i—%i which associates with
every LCA group A, a closed subgroup F(A} and with every
map a:A-—>B the restriction map aiF(A):F(A)w%F(B). Note
that F(a)salF(A) is well defined if and only if |

a{F(A))XF(B). Now we present some basic definitions.

1. Definition: A preradical is a subfunctor of the iden-

tity. A preradical r is idempotent if r{r(A))=r(a) for

all LCA groups A. A preradical r is radical if
r{A/r(A)}=0 for all LCA groups A. We will call a radical

preradical a radical.

There is a natural order which we can put on pre-
radicals. Namely, if r and s are preradicals, we say
that r is less than s (written r<s) iff r(G) is contained
in s{G} for all LCA groups G. We will make use of the
order later.

Now, as with wvirtually every other concept in LCA
groups, preradicals occur in dual pairs. Let r be a

T

preradical. We define the dual preradical by:

T(G)=a(G,r(G)).

Note that if a:G->H then T(a) is a ~gy - In the future

(G)



we will generally assume this without explicit mention.
P

Note also that r(G)zA(G,?(ﬁ)). Thus we have r=r. Now

we must verify the fact that T is a preradical. We also

. Pl
note a few simple relations between r and r.

2. Lemma: {(a) T is a preradical.
(b) (2()V=&/r (@) and, dually, (G/F(c)) =r(3).

is idempotent iff r is radical. i

w

4ol
)
radical iff r is idempotent.
Proof: (a) Clearly T(G)sG so we need only show that if
~ A ; ~ A
a:G-H then a{r(G))sr(H). Now, letting a:H—G Dbe the
map dual to a, we have by [HsR, 24.39
A, a(2(6)))=5" a6, 2(e))nEE)- 57z (BN @E)) .
Since r is a preradical, S(r(HE))<r(G)n8(H). Therefore
A A =1 Fa A . . . .
r(H)<a~ - (r{(G)na(H)) which implies by the above equality
that r(ﬁ)ﬁA(ﬁ,a(?(G))). Now taking annihilators of each
side reverses the containment, s0 a(?(G))éA(H,r(ﬁ)}:

?(H), the last equality following from the definition

of T.

(b) The first statement follows immediately from
the definition of T and the fact that if H<G then
ﬁwé/h(&,ﬁ). The second statement is obtained from the
first by dualitf.

(¢) Suppose that r is radical. Then

2(2(6))=A(E(e), 2 (3))
=A(Z(G),r(G/r(G))) (by (b))

:A(?(G),G) (since r is radical)



proving that T is idempotent. Conversely, suppose r
is idempotent. Then

~ SN
CE(G/E(G))=A(G/2(6),r(G/F(G))

=2 (£ . r(r (&) (by (b))

P~ A _ '
=A(r(G),r(G)) (since r is idempotent)
=0

and hence T is radical. The other two statements

follow by duality.//

Note that if re¢s then 83%.
Now we present a result concerning the behaviour of

preradicals with respect toc quotients and subgroups.

3. Lemma: (a) If r is a preradical and K<G then r{(G/X)=0
implies r(G)<K.
(b) If r is a radical and Lsr{M) then
r(M/L)r(M) /L.
(c) If r is a preradical and KéG then r(X)=K
implies that K<r(G).
Proof: (a) The restriction of the na;ural map a:G-*G/K
sends r(G) to r(G/K)=0. Hence r(G)<ker(a)=K.
(b) (This proof is due to Stenstrdm [8]) Applying
r to the natural map M—M/ vields a map r(M)—r(M/L)
which clearly has as kernel Lnr(M)=L. Thus r{M)}/L&r(M/L).
Also, the natural map M/L-»M/r(M) (which exists since
LLr(M)) induces the map r{M/AL)—=>r(M/r{M))})=0 since r is
‘'radical. sSince the kernel of the map M/L-M/r(M) is

r{M) /L this implies that r(M/L)<r(M)/L., thereby forcing



equality.
(¢) This result is the dual of (a). applying r
to the natural map K-9G yields an inclusion map

r{K)=>»r(G). Since r(K)=K this implies that Ksr(G).//

We now isolate two important classes of LCA groups

associated with each preradical in the following

4. Definition: If r is a preradical, let

T =iG: r(G)=G} and F ={G: r(e)=0}.

This notation will be used throughout although the
preradical may be denoted by & letter other than r.
wWe make one notational convention at this point. IfC
is a c¢lass of LCA groups then’@lwill denote the class
[G: @EQ_}.

Notice that it follows immediately from the defini-
tions that r is radical iff G/r(G)Egr for all G, and
similarly r is idempotent iff r(G)eT, for all G.

In the next lemma we prove some elementary properties

of the classes T, and Fr.

5. Lemma: {(a) lr is closed under quotients, that is, if
GeT  and H¢G then G/HET,.
(b) F,. is closed under closed subgroups, that
is, if Gégr and H<G then HEF ..
(c) If GeT,. and HéF . then (G,H)=0.
A Al
(d) Ta=F and Fa=T,.
Proof: {(a) If GgT

o+ that is, r(G)=G, and p:G-G/H is the



natural map then G/H=p(G) = p(r(G)) S r(G/H), and thus
r(G/H) = G/H and so G/’He“‘I‘__r.

(b) If H<G and Ge jnf‘_r then the natural map
i:H-G induces r{(H)—r(G)=0. Thus r(H)< ker(i) =20,
and therefore H elr"‘_r. f

(c) Let GeT, and HeF .. Suppose a:G-»H. Then
a{G)=a(r(G))<r(H)=0 and hence a=0. Thus (G,H)= 0.

(d) Now GeTn iff G=T(G)=2(G,r(G)). But G=
A(G,r(G)) iff r(8)= 0 which is equivalent to the con-
dition that G er_. By definition, Ger, iff GeFy.

The other assertion follows by duality.//

The final result in this section relates properties
of a preradical r to the classes I, and F. defined by it.
We will make freguent use of this result. Pirst, we
remark that a class C is said to be closed under exten-
sions if whenever H< G and H,G/H€ C then it follows

that Ge C. Now we state the

6. Lemma: (a) Let r be a radical. Then r is idempotent
iff Er is closed under extensions.
(b) Let r be an idempotent preradical. Then
r is radical iff I, is closed under
extensions.
Proof: (a) Let r be a radical. Assume r is idempotent
and let HE< G such that H and G/H are in gr. Since G/HE F,
r({G/H)= 0 from which it follows by Lemma 3(a) that

r{G)<£ H. Therefore r(r{(G})< r{(H}). Since r is idempotent



and since Htagr this implies that r(G)< r(H) =0 from
which it follows that GE€F,.

Now aésume that F,. is closed under extensions.
Since r is radical, G/r(G) and r(G)/r{r(G)) are in B
Now G/r(G)=[G/r(r(G))] /[r(G)/r(x(G)}] so G/r(r(G))e E.
since F. is closed under extensions. By Lemma 3(a} we
have r{a) < r{r(G)). But r{r(G)) is alwavs contained in
r{(G) and hence r(G)= r(x(G)), proving that r is idenpo=~
tent.

(b) By Lemma 2{¢) and Lemma 5(d), part (b} £follows
from (a) and the observation that a class C is closed
under extensions iff‘g is closed under extensions.
(Suppose H and G/H in C implies that G is in C. Let L
and M/1. be in 2:_ Then ’izf&/}a (ﬁ,L) and ﬁj’izA(ﬁ,L) are

. ~ ; . A AL
in € so M is in C. Thus M is in C and so C is closed

R . :
under extensions. Since C=C, this suffices tc prove

both directions.)//



1.2 Torsion Theories
We now define torsion theories and prove some basic

results about them which we will need.

7. Definition: A torsion theory for Z is a pair (1,F)
of classes of LCA groups such that

(i1} (G,H)= 0 for all GeT and HE P, and

(ii) T apd F are mawimal with respect to {i).

T is called a torsion class, F a torsion-free class.

A *
/T) is

&k

Notice that (T,F) is a torsion theory iff (
a torsion theory. This follows immediately from the
fact that (G,H)=0 iff (H,G) =0 where G and H are LCA
groups [H&R, 24.41.a] .

In the next lemma we present some necessary condi-
tions for a pair (T,F) to be a torsion theory. We do
not know whether these conditions are also sufficient.
In fact, we know of no intrinsic characterization of

torsion classes or torsion-free classes.

8. Lemma: If (T,F) is a torsion theory then
{(a) T is c¢losed under quotients, extensions and
direct sums when defined.
(b) F is closed under closed subgroups, extensions
and direct products when defined.
Proof: (a) It is clear that (G/H,F)# 0 implies (G,F)# O.
Hence T is closed under quotients.
Suppose that H <G such that H and G/H are in T. Let

a€(G,F) for some FEF. Now a! g€(H,F) so ajH=o, Thusg



H<ker(a) and so the definition a*(g+H):= a(g) for all
g€ G gives a well defined element a* of (¢/M,7). But
(G/H,F) =0 and hence a¥= 0, which implies that a=0.
Since a was an arbitrary element of (G,F) it, follows
that (G,F)= 0 and thus, by maximality of 7, G&€T.
Hence T is closed under extensions.

Now let G;&€ T for each i in some index set I, such
that the direct sum @® G; is an LCA group (topologized
in such a way that @iﬁvé\i - it is known that @ Gi is
an LCA group iff all but a finite number of the G;'s are
discrete [FGI, remark following Thecrem 2.1.2] Y. If
a: @®G,—F with FEF and a¥ 0, then a[Gi#O for some i.
But this is impossible since each G;&€T. Thus
(EBGi,F‘) =0 and & G;€ T since F was an arbitrary member
of F. Hence T is closed under direct sums when they
are defined.

(b) If H{ G then clearly (T,H)# 0 implies that
(T,G)id. Hence F is closed under closed subgroups.
(Although it is not apparent from the proof, the restric-
tion to closed subgroups is necessary since a non-closed
subgroup of a locally compact group islnot locally com-
pact [H&R,S.ll} and we are dealing only with classes of
LCA groups.)

We prove that F is closed under extensions by duality.
Since (T,F}) is a torsion theory, (E,:'I\‘__) is also a torsion
theory by the remark preceding this lemma. By part (a)

of the lemma, ’§_‘-_ is closed under extensions. As shown



in the proof of Lemma 6(b), this implies F is closed
under extensions.

Now let G, e F for each i in some index set I, such
that the direct product TG, is an LCA group under the
product topology. (It is known that WG, is an LCA
group iff all but a finite number of the G;'s are
compact [3&3,6.4],) Let pjzxgeimaej be the projection
mapping. Now if a:T—TG; with a#0 for some TET
then pja:ﬁO for some j. But this is impossible sinne
(T,6;)=0 for all j. Thus a=0 and so (T,7T5;) = 0.
Since T was arbitrary, this proves, by the maximality
of P, that TTGier.//

Note that we could have proved that F is closed
under extensions directly. The proof by duality is
shorter. Also note that we could have proved by duality
that F is closed under direct products when they are
defined by using the fact that @&G; is defined exactly
when Trai is defiﬁed and é;;;aSTFGE.

In our next definition we show how to produce a

torsion theory in two dual ways from a given class of

LCA groups.

9. Definition: Given a class C of LCA groups, let

F={Fef: (c,F)=0 for all ceg} and let
T={re?: (T,7)=0 for all Fe F}.
It is immediate that (T,F) is a torsion theory. We call

(T,F) the torsion theorv generated by C. If we let

T={TeZ: (T,C)=0 for all cec} and let
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F=z{Fel: (T,F)=0 for all TET}

then (T,F) is the torsion theory cogenerated by C.

We state the following result as a lemma in order

to facilitate reference to it.

10. Lemma: (a) If (T,F) is the torsion theory generated
by C then T is the smallest torsion
class containing C.
(b) If (T,F) is the torsion theory cogen-
erated by C then F is the smallest‘
torsion-free class containing C.
Proof: {a) Suppose (_’;‘_l,gl) is a torsion theory with
gc:_'._{‘__l. Then clearly (C,F)= 0 for all C€L and F& —E—'Fl'

Thus F.c F by the definition of . Then (T,F)=0 for

1
all Te T and FeE, from which it follows by the maxi-
mality of T, that T<T,.

(b} Dually, if (gl,gl) is a torsion theory with

CcFy, it follows that Tjc T and hence F<F;.//

We now turn our attention to the classes T and F,.
defined in the previous section in order to prove our

first result connecting preradicals and torsion theories.

11. Lemma: If r is an idempotent radical then (T.,F.)

7 is a torsion theory.
Proof: By Lemma 5(c), '(T,F)=O for all 'I.‘é.;;r and FEEF,.
Now, suppose Gé?_r. Then, by definition, r{(G)# G and

hence G/r(G)# 0. Thus, (G,G/r{(G))%* 0 since it contains
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the natural map G-¥G/r(G). Now G/r(G)€ E_ since r is
radical, proving that T, is maximal with respect to the
requirement that (T,F)=0 for all Té_’gr and F& Fr-
bually, suppose G¢_13'_r. Then r{G)# 0 and sin;:_e r is
idempotent r(G)€ T,.. Thus (r(G),G)# 0, proving that E.

is also maximal. Hence, (T_.,F.) is a torsion theoxry.//

Note that if r ig either idempotent or radical and
if (gr,gr) is a torsion theory, then r is both idempo-

tent and radical by Lemmas 6 and 8.
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1.3 Kernel Radicals
We now turn our attention to a particular method
of constructing radicals from a given c¢lass of groups.

wWwe start with a

12. pDefinition: Let € be a class of LCA groups. The

c-kernel radical r, is defined by r,(G)={ )ker(£).
€ € fes,0)
cec

In the following lemma we chow that we are justified
in calling Is @ radical. We alsco show the close
connection between rc and the torsion theory cogen-
erated by C. -

13. Lemma: Let r=r the C-kernel radical. Let (I..E,)

o
be as degined in Definition 4, and let
(gb,go) be the torsion theory cogenerated
by €. Then
(a) r is a radical
(b} Io=T. and F . CFj
(c) The following are equivalent: (i) r is
idempotent, (ii) (zr'gr) is a torsion
theory, and (iii) gr::E@'
Proof: (a) First we must show that r is a preradical.
This amounts to showing that if a:G—2?H then a(r(G)) < r(H).
Now if a(g)é r(H) for some g€ G then £(a(g))# 0 for some
(£:H-?C with CE€C. But then fa:G-—C and fa(g)# 0 so
gér(c). Hence, a(r(G))< r(H).

Now we must show that r(G/r(G))=0 for all G.
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Suppose X+r(G)€ G/r(G) with x4 r(G). Then f£(x)# 0 for
some f£:G-7C with C&€C. Since r(G)X ker(f) by the def-
inition of r(G), £ induces a well defined map f*:G/r{(G}>C
by the rule f*(g+r(G))= £(g). Thus £*(x+tr{G))+# 0 and so
x+r(G) ¢ r(G/r(G)). Since x*r(G) was an arbiﬁrary non-
zero element in G/r(G), this proves that r(G/r{(c))= 0,
and therefore r is a radical.

(b) First we note that GET  iff r(G)=G and
Gégo iff {(G,C)=0 for all Ce C. Clearly the nonexist-
ence of a nonzero map from G to a member of ¢ is equiv-
alent to the condition that the kernel of every map
from G to a member of € is G. Thus 2x= Ig5- Now by
Lemma 5(c¢) and the fact that grz go we have (T,F)= 0

for all T&€T, and Fé& F,.. By the maximality of F, with

0
respect to this property, we have grc:go.

(¢) We prove the following implications which
vield the equivalence of the three conditions: (i)= (ii)
Z{iii)S(ii)=>(i). That (i)=r{(ii) follows immediately
from {(a) and Lemma 1ll. Now if (gr,gr) is a torsion
theory, then, since goz:gr by (b), we must have Fy=FE,
since both EFo and F_ are maximal with respect to the

-r

sane torsion class. Thus (ii)=(iii). If F :-.jg'_r then -

0

(QO,F y=(T ,F ) by (b}, from which it follows that
-0 =r ~r

(gr,gr) is a torsion theory since (gc,go) is a torsion

theory. Thus (iii)=y(ii). If (gr,gr) is a torsion

theory then, by Lemma 8(b), F,. is closed under exten-

sions. Then, by Lemma 6{a) r is idempotent, proving
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that (ii)=>(1).//

our next result is the first major step toward
showing the l-1 correspondence between torsion theories
and idempotent radicals. The result states that if
(T,F) is a torsion theory, the F-kernel radical, rp, is

idempotent and so (T_ ,F_ ) (as in Definition 4} is a
TTp T Tp

torsion theory. The result states further that

(T ’Er ) =(T,F). the original torsion theory. This
I'p F .

has as corollary a result we state in the following

)

section: every torsion theory is of the form (gr,ﬁr
for some idempotent kernel radical r. We also have as
an immediate corollary that if (gl,gl) and (szgg) are

distinct torsion theories then r, and r are distinct
=1 =2

idempotent radicals. We now state and prove the

14. Theorem: If (T,F) is a torsion theory, r is rp, the
F-kernel radical, and {gr,gr) is as in Definition 4,
then r is an idempotent radical and (ng)::(gr,gr).
Proof: It is clear that F cogenerates (I,F) by Lemma

10(b). By the previcus lemma then, r is a radical,

T=1T., and F.<F. Now, if GEEY then r(G)= n ker(£) £
£:G—Cef

ker(}.G) = 0. Hence G eg*_r, implying that E=F, and so

(z,g)::(gr,gr). Thus by Lemma 13{(c), r is idempotent.//
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1.4 Correspondence Between Idempotent Radicals and
Torsion Theories, Part 1

In this section we show that every idempotent radical
is a kernel radical for an appropriately chosen class
and that there is a l-1 correspondence between idempotent
radicals and torsion theories. First, we define the
radicals and classes we will work with, and then prove
a lemma which is of interest in itself. The lemma con-
tains an explicit construction of the largest idempotent
radical not greater than a given radical.

Let r be a preradical (not necessarily idempotent or
radical). Let (I, ,F.)} be as in Definition 4. Let
(go,go) be the torsion theory cogenerated by Er and let

be the F_-kernel radical. As noted before, ¢

]’.'F 3

F, 0

clearly cogenerates (T.,F.). By Theorem 14, r is an
=0'={ EO

idempotent radical and (ga,g y= (T

F }. Using this
G rgo T

o

notation we state the

15. Lemma: (a) If r is an idempotent radical then r==r§9-

(b} If = is an idempotent radical not greater
ihan r then s-SrF . If r is radical then

=0

r < r.
Fo

Proof: {(a) Although (k) implies {(a). we need (a) to be
able to prove (b}). If r is an idempotent radical then by

Lemma 11, {gr,gr) is a torsion theory. Since (gg,go) is
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the torsion theory cogenerated by g_r, (g_o,g'_o): (_T_r,g'_r)
by Lemma 10(b). In particular, if G is an LCA group

then r(G)= 0 iff r, (G)= 0, using the fact that E4=F

E,

r
By
by Theorem 14. Now, for any LCA group G, r{G/r{(G)) =20

and therefore ro (G/r(G))=0. Hence r_ (G)< r(G) by
E, Fg

Lemma 3{(a). Similarly, r(G) ;C_rF (G) from which it
0
follows that r=r_ .
s

{(b) Let s be an idempotent radical such that
s(G) £ r{(G) for all LCA groups G. Let (g{s,g'_s) be the
torsion theory as in Definition 4 and Lemma 1l. If
(T OS) is the torsion theory cogenerated by , and

Sp is the P
~Os

Os—kernel radical then, by Lemma 10(b),

(T Fg)l = (gos,gas) and by part {a) of this lemma,

s=s . Now FE & E, since s(G) £ r(G) for all G, and

thus, by Lemma 10(b), FyCcEg- Putting all these
together, we have, for any LCA group G,
s(e)=s, (a)= [ Vxer( }<nker(f) re (G).

—0s £f:G—p £:G -
Fegos Eg E‘&go

Thus s<x, . Now if r is radical then G/r(G)e E . CF

Ey 0

for all G. Thus T (G/T(G)) Sker(G/r(G)-}%G/r(G))=
Fy

for all G. Then, by Lemma 3(a), rF (G)€ r(g) for all
=0

G, that is, rgoﬁr.//
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We now come to the main thecorem. We include
regstatements of two results already proved in order to

have these three results together.

16. Theorem: {a) Every idempotent radical is a kernel
radical.

(b) Every torsion theory has the form
(Ly.E.) for some idempotent kernel
radical r.

{(¢) There is a l-1 correspondence between
idempotent radicals and torsion
theories.

Proof: (a) This is immediate from Lemma 15{(a).

{(b) This is immediate from Theorem 1l4.

(¢) We associate with each idempotent radical r,
the torsion theory (T,.,F,) using Lemma 11, and with each
torsion theory (T,F) the idempotent F-kernel radical ri
using Theorem 1l4. Now we must show that these corre-

spondences are inverse to each other, that is, we must

show that (T,F) = {_T_rp,gr

-

) and that r=rp . The former
-r

{ra

was ghown in Theorem 14 and the latter follows fronm

Lemma 15(a) and the cbservation that 1:;‘_0:=:‘&_‘__r gsince r is

an idempotent radical.//
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1.5 Image Preradicals

In this section we give a method of constructing
idempotent preradicals which is dual to the construction
of kernel radicals. We prove results dual to the results
of section 3. We also prove results about the duality

between image preradicals and kernel radicals. We start

with a

17. Definition: Let C be a class of LCA groups. The

C-image preradical s, is defined by sc(G)==Ef im(£}.
€ - f:C7G
CecC

Now there is a complete duality between image preradicals

and kernel radicals. Specifically, we have the fcllowing

18. Lemma: Let s be the C-image preradical. Let r be

oS
the C-kernel radical. Let (ga,go) be the torsion theory

generated by C. Let (gl,gl) be the torsion theory

P
cogenerated by ¢. Let (T_,Fg) and (gr,gr) be as defined

=

in Definition 4. Then:

(a) s=%.

(b) s is an idempotent preradical.

=% P o=
(c) A and £_,= T,
VS ~
(@) To=E, and E5=1;.
(e) Eg=Eg and T_c T

(f) The following are edquivalent: (1) s is radical,
(ii} (gs,gs) is a torsion theory, and
(iidi) Q_Szga.

Proof: (a} By EA2,4.§ we have A(@,f\ker{f})::g:Ah(ﬁ).
' £:G6>C h:C—7G
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Then, it follows that

2(G) = A(G,r(G))

-"z‘:A,(G ﬂkgr(f)) (by [HsR,23.29.b and 24.10))
CE f:

§:{ zjlm{h (by the result mentioned above)
ceC hiC-G

= 2: im(h) {(a tedious but elementary calcu-
h: C*?G lation)
ceC

0

S~ im(h) =s(G).
h:C—G
ceg

(p) Immediate from {(a) and Lemma 2(c).

{c) Immediate from (a) apd Lemma 5(d4).

(d) This follows immediately from the definitions
using the fact that (G,H) =0 iff (ﬁj@)==0 (see the

remark following Definition 7).

2,
=1

—

{e) Using (c¢), {(d) and Lemma 1l3(bk) we have EO

. PN
Similarly, L =E,cE; =1

&

0"
(f) By Lemma 2(c), s is radical iff r is idempo-

=F .
-5

tent. By {¢) and the remark following Definition 7,
{gs,gs) is a torsion theory iff (gr,gr) is a torsion
theory. Finally, it is clear from (¢} and (d4) that
T.=Toy iff F.=F;. Thus this result fcilows by dualiicy

from Lemma 13(c).//

We now have a result dual to Theorem 14. It will
play the same rOle in section 6 that Theorem 14 played

in section 4.

19. Theorem: If (T,7) is a torsion theory, s is s, the
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T-image preradical, and (gs,gs} is as in Definition 4
then s is an idempotent radical and (g,g)==(gﬁ,gs}.
Proof: Clearly the torsion theory generated by T is
(1,7). By Lemma 18, s is an idempotent preradical,

E =E, and TgcT. Now, if GeT then s(G)= s_T_(G} pA
im(G—;+G)==G so that GE€ I . Therefore, (T,E) = (Tg5.Eg)

and by Lemma 18(f), s is radical.//

our final result in this section deals with the
relationship between image preradicals and kernel

radicals.

20. Theorem: There is a 1-1 correspondence between image
preradicals and kernel radicals. Furthermore, there is
a 1-1 correspondence between image radicals and idem-
potent kernel radicals.

Proof: The first statement is immediate from Lemma 18(a)
and its dual, g::r, which follows from the fact that
r=;§ (see the remark preceding Lemma 2). The second

statement follows from the first and Lemma 2(c).//
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1.6 “orrespondence Between Idempotent Radicals and
Torsion Theories, Part 2
In this section we prove results dual to those of
section 4. Let s be an arbitrary preradical and let
(gs,gs) be as in Definition 4. Let (20,30) be the

torsion theory generated by Tg, and let S be the Ty

.._O
image preradical. By Theorem 19, sm is an idempotent
=0
radical and (gﬂ,gg)::(gsT ,gsT ). Using this notation
=0 L0 :

we have the following
21. Lemma: (a) If s is an idempotent radical then s=sp .
0
(b) If r is an idempotent radical not less
than s then sTs.r. I1f s is idempotent
=0
then s <& S -
=0
proof: {a) If s is an idempotent radical then by Lemma
11 (Tg.Fg) is a torsion theory, from which it follows
that (gs,gs)::(go,go) by Lemma 10(a). Therefore s(G)=20

iff s, {(G)= 0 since (T,,F~)=(T P }. As in Lemma
Loy iy £

Tq

i5{a), this implies that s=s_ -
o

(b) Suppose r is an idempotent radical with
sﬁG)ﬂ r{G) for all G. Let (gr,gr) be the torsion theory
as in Definition 4 and Lemma 1l. If (zﬂr'EOr) is the

torsion theory generated by T and ¢ is the T,._~-image
oF Lor “or i

preradical then (zr,gr}::(EOr,gar) by Lemma 10(a) and
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r=r by part (a) of this lemma. Clearly I ,CI, since

20:

s(G) S r(G) for all G. Again using Lemma 10(a), we have

zﬁc:gr. As in Lemma 15{(b) we put all of this together

to get, for any G,

r(G)=r_  (6)= ¥ im(h) z 2_im(h) =5, (G)
Tor h:c—G  h:C—G  +0
Celory I Cely

and therefore, S < r. Now, if s is idempotent then

=
1
s(G)E T _c T, for all ¢. Thus s, (s(G))2 im(s(G)——s(G)}=
Ls€ 20 T,
s{G) for all G. By Lemma 3(c¢c) this implies sfgsT S
20

We are now ready to state the dual formulation of
our main theorem (comitting part (¢) which doces not

change}) .

22. Theorem: (a) Every idempotent radical is an image
radical.
(b} Every torsion theory has the form
(zs,gs) for some image radical s.
Proof: {a) This follows immediately from Lemma 2l{a).

(b) This is preoved in Lemma 19.//



Radicals and Sufficiency Classes in LCA Groups
2.1 Preliminaries
In this part we deal with specific instances of
the ideas defined in part one. We start with the notions
of sufficiency class and dual sufficiency class as

defined in [Al].

1. Definition: Let H be an LCA group. Then S(H) is the
class of all LCA groups G with sufficiently many contin-
uous homomorphisms into H to separate the points of G.

we call S(H) the suffigiency class of H. We call a

subgroup of G of the form £(H), where f:H—G, an H-sub-
group of G. Then S*(H) is the class of all LCA groups
G whose H-subgroups generate a dense subgroup of G. We

call S*(H) the dual sufficiencv class of H.

Now, we can restate these definitions as follows:

Ges(H) iff Nker(£)=0, and Ge s*(8) iff T im(£) =a.
f:G-—>H £f:H—=G

Restated in this way, it is clear that these classes
have been encountered in part one under different names.
To. make precise their relationship with [art one, we

define the following preradicals.

2. Definition: Let H be an LCA group. Let Ry be the

{H} -Xernel radical, N xer(£). Let R* be the {ﬂ}—image
£:G—H A

preradical, X im(f).
f:H—-=>G
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We know immediately from part one that Ry is radical,

that R*, is idempotent, and that Ry and R*ﬁ are dual

H
(see Lemmas l.13(a), 1.18(b) and 1.18(a) respectively).
Thus we are justified in calling Ry the H-radical. 1In
order to indicate the duality present, we call R*y the

H-coradical. Loosely speaking, Ry(G) is that part of G

which cannot be mapped into H. If Ry is not idemputent
then this impossibility is dependent on the way in which
RH{G) is embedded in G. Similariy R*H(G) is that part
of G into which H can be mapped.

Now, there are several facts about S(H), S*(H), Ry,
and R*y which are immediate consequences of the results
in part one. We state and prove these below.

£ %
H

Fact A: S(H)=E; and S*(H)= T
H

By definition, GEEER iff RH(G)=:O. As we remarked
H

before Definition 2, Gé& g(H) iff Rg(G)=Mker(£)= 0.
£f:6-—2H

Thus, g(H)::gR . Similarly, S*(H)=Tps .- This is the
H H

relationship between sufficiency classes and the ideas
of part one which we mentioned earlier.
For notational simplicity let us denote the class

T, = {G: RH(G):—_G} by T(H) and the class F_, =

—RH R

H
{6: R*y(G) =0} by P (H) .
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)

Fact B: §(H) = s* () and TE) = Fx(H).

In words, the first half says that(G,H) separates points
of G iff the ﬁ—subgroups of G generate a dense subgroup
of G. To prove this, we note that Ryg and R*q are dual,
then apply Fact A and Lemma 1.5(d), which states that

e dA"
F_rz_?.’f an zr'“?_’f'

Fact C: The following are equivalent:

(i) Ry is idempotent

(ii) R*ﬁ is radical

(iii) sS(H) is closed under extensions

(iv) §3(ﬁ) is closed under extensions

(v) (ng),Q(H)) ig a torsion theory

(vi) (§f(ﬁ),§*(§)) is a torsion theory
By Lemma 1.2{(c) and the fact that Ryg and R*ﬁ are dual,
(i) is equivalent to (ii). By Fact A and Lemma 1.6, (i}
and (iii) are edquivalent and (ii) and (iv) are edquiva-
lent. By Fact A and Lemma 1.11, {i) implies (v) and {(ii)
implies (vi). Finally, by Fact A and Lemmas 1.6 and 1.3,
(v) implies (i) and (vi) implies (ii). This proves the
assertion.

Note that we may conclude from Lemmas 1.8, 1.13(b).
and 1.18(e) that T(H) and F*(H) are always closed under

extensions.

Fact D: Ry(G) is the smallest closed subgroup of G
which yields a quotient in S(H).

Since Ry is radical, G/Rg(G) is in S(H) for all LCA
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groups G. Now, if G/K & S(H) then, by Fact A and Lemma

1.3(a), Ry(G)< K.

Fact E: R*H(G) is the largest closed subgroup of G which
is in S8*(H).

Since R*H is idempoctent, R*H(G) € 8*(H) for all LCA groups
G... If K<G and K€ §*{H) then, by Fact A and T.emma 1.3(¢),

*
K<R H(G).

Fact F: GeT(H) iff (G,H)=0. Ge F*(Hd) iff (H,G)= 0.

Now G € T(8) iff nker(f)z G. This is equivalent to the
f:G—H :

requirement that ker(f) = G for all £:G—H, which is in
turn equivalent to the requirement that £=0 for all
f:G-—H, that is, {(G,H)= 3.

Dually, Ge F*(H) iff 3 im(f) =0. This is equivalent to
£:35—>G

the requirement that im(£f)=0 for all f:H-G, which is
equivalent to the requirement that £=0 for all £:H-*>G,

that is, (H,G)= 0.

Fact G: H

e_S_(Hz) iff R,, £ R_ .

1 Hz-' Hy

Bssume Lhat H) € §_(H2) . If G is an LCA group and x€ R, (G)

then £{(x})# 0 for some £:G—>H Since H, € S(H,) and

1° 1
£(x)# 0, p(f{x)})# 0 for scme P:H,~Hy. Then pf:G“H,

and pf(x)# 0 so x¢R_ (G). Thus R_ & R, . Now suppose
Ha Hj 1

< =
Rst RHl. Then RH2(I-I1) £ RHl(Hl) 0, so Hlé _s_(Hz} .
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Fact H: Hy€ S*(Hp) 1iff R¥y ¢ R¥*, .
1 2
The direct proof of one direction is tedious. We prove
P
it by duality. If Hle §?(H2) then Hye g(ﬁé) so by Fact

G, Rﬁ-s R+ By the note preceding Lemma 1.3 this implies
2 1

* %* * * - R* <
R ng R Hz. Now, suppose R ng_R H, Then Hj =R Hl(Hl)“

R*Hz(Hl) . Thus H,e S*(H,).

With these facts in hand, we turn now to a consid-
eration of specific radicals, coradicals, and their
associated classes. In some instances the results are
well known and wé simply restate them in the language of
radicals and torsion theories. Also, many of the
sufficiency classes and dual sufficiency classes were
described in [Al}). For these results we simply make the
appropriate reference to [al].

Most of the radicals and sufficiency classes that
are known correspond tc divisibkle groups. This occurs
because the divisibility of a group allows us to extend

homomorphisms into it, greatly simplifying our task.
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2.2 Description of Specific Radicals, Coradicals, and

Their Asscciated Classes

In this section we describe the specific radicals,
coradicals and associated classes which we know. We pair
the radical and coradical belonging to a particular group,
proving all that we know about both of them before moving
to the next group. We start with the R-radical and

coradical

R

3. Proposition: RR{G) is the subgroup of compact elements

of G. Ry is idempotent and S{R) is closed under exten~
sions. S(®), the class of all LCA groups with no nonzerc
compact elements, contains an LCA group G iff G=®"D,
where n is a nonnegative integer and D is a discrete,
torsion-free group. T(K), the class of all LCA groups
with all elements compact, contains exactly those groups
whose duals are totally disconnected.

Proof: Rg(G) is the subgroup of compact elements of G by

[H&R,24.34). Clearly the closed subgroup generated by

in
]

i

D

¥€ G 1s compact whether ¥ ig ceonsidered an element

0
th
0]

or of Rp(G). Hence Ry is idempotent and, by Fact C,
S(R) is closed under extensions. By{ZH&R,24.35], G¢€ S {(R)
iﬁf G=@xD as stated above. The component of the identity
in @ is the annihilator of Rg(G) [HsR,24.17]. Thus,

Rp(G) =G iff G is totally disconnected.//

4, Proposition: RﬁR(G) is the component of the identity
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in G. R*_ is radical and S*{R} is closed under exten-

R
sions. An LCA group G is in S*(R) iff G is connected.
Also, G is in S*(R) iff G=R%E where n is a ncnnegative
integer and E is compact and connected. An LCA group G
is in F*(R) iff G is totally disconnected.

Proof: Since R is self-dual, Ry and R*; are dual. Thus,
the first two statements follow immediately from [H&R,
24.17], Fact ¢ and Proposition 3. The third statement
obviously follows from the first. By [H&R,9.14], an LCA
group is connected iff it has the form R™<xE as stated
above. Since an LC2 group is totally disconnected iff
the component of the identity is 0, the last statement
is obvious.//

Thus we see that the radicals Rp and R*, are familiar
canonical subgroups. We now turn to one which is not as

familiar but which may be just as important as the two

just considered.

>

. Proposition: g(@) is the class of all torsion-free LCA

groups. R@{G} is the smallest closed subgroup of G which
yvields a torsion-free quotient. Ra is idempotent and g{@}
is closed under extensicns. An LCA group G is in gj@) iff
Fad

G is reduced.

Proof: The first statement is proved in [Al, Proposition 1].
The second statement follows from the first and Fact D.

Now, if H is a closed subgroup of G such that H and G/H

are both torsion-free, it is immediate that G is torsicon-
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free. Thus §j6) is closed under extensions and, by Fact

C, RG is idempotent. Now, G is in 2}6) iff G has no
nontrivial torsion-free gquotients. By [Al, Theorem i] this
is equivalent to the assertion that G has no divisible
subgroups, which is equivalent to the requirement that

G be reduced.//

The importance of the 6-raéi¢ai lies in the £fact
that RG{G) is the smallest closed subgroup of G which
vields a torsion-free quotient. In discrete groups this
characterizes the torsion subgroup (thus Ra(G) is the
torsion subgroup for discrete groups G). Because of
this, Rﬁ(G) is one natural generalization of the torsion
subgroup.

In [R2, 2.3)], the Q-radical is defined and discussed
from a completely different viewpoint. It is obtained by
a transfinite iterative process which makes the analogy
with the torsion subgroup meore apparent. It is obvious
from Robertson's definition that Ra(G)EIO iff G is
torsion-free. He calls LCA groups G for which Ra(G}:=G
"transfinite torsion” groups.

P .
Now we loock at the Q-coradiacal.

6. Proposition: §?(6) is the class of all compact con-

nected LCA groups. Rﬁa{G) is the largest compact con=-
nected subgroup of G. §F(a) is closed under extensions
and R*a is radical. &An LCA group G is in gﬁ(a) iff
Gnﬁ?¥Go where n is a nonnegative integer and G, is totally

disconnected.
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Proof: The first statement is proved in [Al, Theorem é].
The second statement follows from the first and Fact E.
Now, if H is a closed subgroup of G such that H and G/H
are compact and connected then, by [ H&R, 7.14 and 5.25},
G is compact and connected. Thus gffa) is closed under
extensions and, by Fact C, R*a is radical. Now if G has
the form ﬁ?tGo as above then any ccuwpuct connected sub-
group of G must be contained in G, since K" nas no non-
trivial compact subgroups. But G, has no nontrivial
connected subgroups. Thus R*ﬁ(G)ﬁ 0 and G is in g*(a).
Conversely, suppose that G has no nontrivial compact
connected subgroups. Then the component of the identity
in 6 is [R" for some nonnegative integer n by {ﬁ&3,9.14].
But K" always splits by [HR, 24.29]. Thus G=R %G, for
some G,. Now Go=G/R" and R” is the identity component

of G so by [H&R,?.B] G, is totally disconnected.//

Q

We now consider the Q-radical and the Q-coradical.
The Q-coradical, the dual of the Q-radical, will turn
out to be important in out consideration of indecomposable
LCA groups. It is the analcg in LCA groups of the max- |

imal divisible subgroup of a discrete group.

7. Proposition: S(Q) is the class of all discrete torsion-

free groups. RQ{G) is the smallest open subgroup of G
which yields a torsion-~free quotient. S(Q) is closed

under extensions and RQ is idempotent. An LCA group G
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is in T(Q) iff G= R'xG, where n is a nonnegative integer
and every element of G, is compact.

Proof: The first statement is proved in [Al, Proposition
27. The second statement follows from the first, Fact D,
and the fact that a quotient G/H is discrete iff H is
open [HiR, 5.26]. Suppose H<G such that H and G/H are
discrete and torsion-~free. Then clearly G is torsion-
free. Since G/H is discrete, H is cpen in G, but since
H is discrete this implies that G is discrete. Thus,
5{Q) is closed under extensions and, by Fact C, RQ is
idempotent. Now G is in T(Q) iff G is in F*(Q). But

6 is in p* (5) iff @ﬁ{ﬁ"xGo with Go totally disconnected
by Proposition 6. Finally, GO is totally disconnected
iff every element of G, is compact. Thus, G=R'xG,

with with every element of G, compact iff G is in T(Q).//

Note that if G is discrete then RQ(G) is the torsion
subgroup of G. In this case RQ(G):=R6(G).

It is remarkable that every group contains a smallest
apen subgroup with torsion-free quotient. ©n the face
of it, the existence of such a subgroup might seem
doubtful since the intersection of a collection of open

subgroups is not always open.

8. Proposition: S*(Q) is the class of all densely divis-
ible LCA groups. R*Q(G) is the maximal densely divisible
subgroup of G. R*Q is radical and 8*(Q) is closed under

extensions. An LCA group G is in F*(Q) iff G is reduced.
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Proof: The first statement follows from Proposition 5 and
[Al1, Theorem 1] by the fact that S*(Q) and §jﬁ) are dual.
The second statement is immediate from Fact E and the
first statement. That R*Q is radical follows from Fact C
and Proposition 5. Then by Fact C,5*(Q) is closed under
extensions. It is clear that the maximal densely divis-
ible subgroup of a group is trivial iff that group is
reduced.//

By duality and the note preceding Proposition 8,
R*Q(G)::Rﬁﬁ(s) in a compact group G.

Note that the maximal densely divisible subgroup is
the closure of the maximal divisible subgroup.

The groups R, Q and'a are the groups for which we

have the most complete results.

Q/z

In the next thecrem we find an interesting phencmenon.
Namely, the R-coradical and the Q/Z-radical are equal.
This case and its dual are the only cases which we have
found in which this occurs. It would be interesting to
characterize those pairs of LCA groups, Hl and Hz. such
that the Hl*radical and the Hz-coradical are equal.
However, this characterization may have to wait for other
examples of this phenomenon. Note that the characterization
would have to be self-dual since the ﬁ;—radical and the

P
Hi—coradical are equal exactly when the H,~-radical and

1

the Hz—coradical are equal.
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9. Proposition: $£(Q/2) is the class of all totally

disconnected\groaps. RQ/Z(G) is the identity component
of G. Thus Ry, =R*p. Rg /g is idempotent and ${Q/2)

is closed under extensions. T(Q/Z) is the class of all
connected LCA groups.

Proof: That $(Q/2) is the class of all totally discon-
nected groups is proved in [Al, Proposiiion 5). It
follows immediately that RQ/Z(G) is the identity compo=-
nent of G. The other statements then feollow immediately
from Proposition 4.//

We now consider the Q/Z-coradical.

10. Proposition: R*Q/Z(G) is the closure of the maximal
divisible torsion subgroup of G. S*(Q/2) is the class
of all LCA groups containing a dense subgroup which is
a divisible torsion group. F*(Q/Z) is the class of all
LCA groups whose torsion subgroup is reduced.

Proof: To prove the first statement we need only show
that the maximal divisible torsion subgroup, M, of G

equals = im(f). Clearly = im(£)cCM since 2 im(f) is
£:Q/2-G £:Q/2-7G £:Q/2 G

a divisible torsion subgroup of ¢. Now M iz algebraically
a direct sum of various Z{p™)'s [?. 23.1]1 so there are
enough homomorphisms from Q/2 to cover M. Since Q/Z is
discrete, these are all continuous no matter what topol-

ogy M has. Hence M< 3 im(f), proving equality. Thus

£:Q/2G
R*Q/Z(G): M, proving the first statement. Since Ge S*(Q/Z)
iff R¥* (G)= G, the second statement is obvious.

Q/z
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Now G € F*{Q/2) iff R* {G) = 0 which is equivalent to

Q/z
the requirement that M= 0. This occurs exactly when the
torsion subgréup of G is reduced.//

Note that it would be equivalent to describe F*(Q/Z)
as the class of all LCA groups containing no divisible
torsion group.

¥t would be nice to know whether or ... . ¢/ is

radical. It seems most likely that R*Q/Z is radical.

We now turn to the group dual to Q/Z.

1<

Note: Recall that J denotes the product T XT X T gxJ 7%X°°°
containing one copy of each of the p-adic integer groups,

JP.

11. Proposition: If Gé&€S(J) then G is a torsion-free

reduced LCA droup.

Proof: If G€ S(J) then GCe $*(Q/2) since F=Q/z. Then by
Proposition 10, % has a dense divisible torsion subgroup.
Since © has a dense divisible subgroup, G is torsion-free

by [Al, Theorem 1]. We also have that the torsion sub-

{51

_— . = .
group, T{8), is dense, that is, T{(G) = A {_H;R, 23.24.a]

Tl

A{G,T(8))=A(G,T()) =2(G,G)=0. Now, by[Hsr, 24.24], the
maximal divisible subgroup of G is contained in A(G,T(@))
ard is therefore 0. Thus G is reduced.//

At present, the only description we have of T(J) is
the one obtained by dualizing the description of F*{(Q/Z):

an LCA group G is in T{(J) iff the torsion subgroup of ’5
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is reduced. We alsc do not know whether or not Ry is
idempotent. Our knowledge of the J-coradical is more
extensive. 1In fact, the J-coradical is the {R-radical.
This is the dual of the equality between the R~coradical

and the Q/Z-radical.

12. Proposition: R*J(G) is equal to R&ﬁG), the suhgroup

of all compact elements of G. R*J is radical and S*(J)
is closed under extensions. 8*(J), the class of all
LCA groups with all elements compact, contains an LCA
group G iff B is totally disconnected. F*(J), the class
of all LCA groups with no nonzero compact elements,
contains an LCA group G iff G=f"xD where n is a non-
negative integer and D is a discrete torsion-free group.
Proof: That R*J::Rmzfollows from Proposition 9 and the
fact that R*J is dual to Ry /7 and Rﬁais dual to RjR.

The other statements follow from Proposition 3.//

z(p7)

Before we present the focllowing proposition we need
a definition. Let p be a prime. An LCA group G is a
topoloaical m-groun iff 1im png:=0 for 211 g C {sce

n-»=e
{R1, section i] or [Al, Definition 2}). A p-group is a

topological p-group but not all topological p-groups are
p—-groups. For example, the torsion-free group Jp is a

topological p-group but is clearly not a p-group.

13. Proposition: Let p be a prime. An LCA group G is in

S{z2(p™)) iff G is totally disconnected and every compact

open subgroup of G is a topological p-group.
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Proof: This is Proposition 3 in [al].//
We know of no nontrivial description of T(Z(p™))

or R .
Z(p~)

In the next proposition we use the following
notation. If G is an LCA group and p is a prime then

- . : . .
Gp.n{gEEG- p'g=0 for scme integer n} (G, is called
the p-component of Gj.

14. Proposition: Let p be a prime. R*Z(p“)(s) is the

closure of the maximal divisible p-group contained in
G. An LCA group G is in $*(Z(p*)) iff G has a dense
subgroup which is a divisible p-group. An LCA group G
is in F*(Z(p*)) iff Gp is reduced. Eduivalently, G is
in F*{2(p~)) iff G contains no divisible p-group.
Proof: Copy the proof of Proposition 10 substituting
p-group for torsion group, p-component Gp for torsion
subgroup, and Z (™) for Q/2.//

We now consider the dual of Z{(p”).

Ip
The only information we have about the Jp—radical

ariad its associated classes are those statements which are

trivially equivalent to the assertion that R is dual

P
to R*g(pp). For example, an LCA group G is in g(Jp) iff
€ contains a dense divisible p-group. We do not know
the duals of the properties mentioned in Proposition 14.
Also, part of the difficulty in this case arises because

Jp is not divisible. We can, however, dualize the
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description of 8{(Z2(p™) ). That dualization is the

substance of the following

-

15. Proposition: Let p be a prime. An LCA group G is

in §?(Jp) iff every element of G is compact and every
quotient of G by a compact open subgroup is a (discrete)
pP-group.

Proof: By Proposition 13 and the duality between S(z2(p™))
and $*(J;), G is in §%(J3,) iff % is totally disconnected
and every compact open subgroup of 8 is a topological
p-group. By [H&R, 24.17] G is totally disconnected iff
every element of G is compact. By [R1, 3.18] and

[Hsr, 23.25 and 23.23.a], every quotient of G by a
compact open subgroup is a topological p~group iff every
compact open subgroup of G is a topological p-group.

But quotients by open subgrcoups are discrete [H&R, 5.26]
and discrete topological p-groups are p-groups |R1, 3.21.//

We now tzake up the self-dual group Fp.

o

Our knowledge of RFP' R*FP and their assocociated
classes is very limited. We can only describe g{F )} and
S*(F_J}.
- P

16, Propesition: Let p be a prime. An LCA group G is in

§(Fp) iff G is totally disconnected and every compact
open subgroup of G has the form JPN for some cardinal
number N.

Proof: This is Proposition 4 in [Al].//

Since Fp is self-dual, we obtain a description of
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§?(Fp) by dualizing the preceding proposition.

17. Propositicn: Let p be a prime. An LCA group G is in

§?(FP) iff every element of G is compact and every quotient
of G by a compact open subgroup is topologically iscomor-
phic to a direct sum of Z/(F°) 's.

Proof: This follows from Proposition 16 exactly as
Proposition 15 follows from Proposition 14, using the

fact that (JPNY\zggz(p“), the direct sum of N copies §f

z (p”) [HsR, 23.21 and 25.2].//

E (J)

The next group we consider is the minimal divisible
extension of J£=67E. Let us dencte the minimal divisibkle
extension of an LCA group G by E(G) (see [H:R, 25.32) for
a discussion of minimal divisible extensions. Algebrai-
cally, E(G) is just the minimal divisible extension of
G as a discrete group. The topology given E(G) is the
one "“inherited" from G which implies that G is open in
E{(G).) Alternatively, we may describe E(J) as the local
direct product of Fp's (one for each prime p) with
respect to the compact open subgroups Jp [H&R, 25.32.&].
Let us reserve the symbol "E_ " to stand for E{(J) in order
to simplify our notation. Slightly more is known about
the E,-radical and ccradical than about the preceding

few radicals and coradicals.
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18. Proposition: S(E,) is the class of all totally dis-

connected torsion-free LCA groups. S(E.) is closed
under extensions and REO is idempotent.
Proof: S(Eg) is described in [Al, Proposition 6l1. By
Propositions 5 and 9, S(E,) is closed under extensions.
By Fact C. Rg_ is idempotent.//

By [H&R, 23.33] B, is self-dual. Hence, w& obtain
the major part of the followinyg proposition by duality

from the preceding proposition.

19. Proposition: §ﬁ{EO) is the class of all densely

divisible LCA groups all of whose elements are compact.
8*(E,) is cleosed under extensions and R*EO is radical.
An LCA group G is in F*(E,} if R*Q(G)F\Rmﬁﬁ)::o.

Proof: The first statement follows from Proposition 18
by [HaR, 24.17]), [Al, Theorem 1] and Fact B since E  is
self-dual. The second statement follows from Fact C and
Proposition 18. Now R*EQ(G} is densely divisible with
all elements compact since R*EO is idempotent. This
implies that R*EO(G) is contained in R*Q(G) and RggG)

by Propositions 3 and 8. Thus R*EO(G) is contained in

their intersection. Thus, if their intersection is 0,

R*, (G)=0 and, by Fact 7, GePr*(E.).//
o — Q

We consider one more group. It is distinguished by
the fact that its coradical is the closure of the torsion

subgroup.
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o0
&P z(n)
n=1
o
Let us denote the {discrete) LCA group & 2Z(n) by
n=1

the symbol "NO" in order to simplify notation.

20. Proposition: R*§ {G) is the closure of the torsion
o

subgroup of G. §?(§0) is the class of all LCA grouni
with dense torsion subgroup. g?(&o) is the class of all
torsion-free LCA groups.

Proof: The second statement is mentioned bﬁt not proved

in [Al1] following Proposition 6. Although the proof is
quite easy, we include it for completeness. Clearly the
first statement will be proved if we show that the torsion

subgroup of G is equal to Z im{f). Obviously, ¥ im(f)
f:Nd~9G f:NO“*G

is contained in the torsion subgroup of G since N, is
torsion. If X is in the torsion subkgroup of G and o{(x}=Kk
then x is contained in the image of the projection
Nb—aztk) followed by the topological isomorphism which
sends 1€ 2Z{k}) to x. Thus we have proved the f£first state-
ment. The second and third statements are immediate from
the first.//

We now show that R¥* is not a satisfactory general-

No
ization of the torsion subgroup of a discrete group since
it is not even a radical. In the next proposition we use
the following notation. If G is an LCA group then nG
denotes the subgroup ing: g€ G}, that is, the set of

elements of G divisible by n.
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21. Proposition: R*No is not radical.

Proof: Let G be the group described in [HsR, 24.44.cl.

- OO
1t is shown there that G is reduced and that [ \nG#0.
n=1
By [HsR, 24.24, 23.24.a and 23.25} we have

o0
C#/\ nG = A(G,R¥y
n=1 (o]

L3Ny TR fow Pl T * N
(G))=[G/R NO(G)] where R NO(G) is
the closure of the torsion subgroup of @ Ly Proposition
20. Since G is reduced, A(G,R*NO(@)) is certainly not
densely divisible (being nonzero). BY 1Al, Theorem 1]
ﬁ/R*NO(%) is not torsion-free, so by Proposition 20,

R*No(ﬁyh* (@3)#10 and hence R*N is not radical.//
o

N o

A~
22. Corollary: Rﬁ\ is not idempotent. gﬁ(No} and S(Ng)
o}

are not closed under extensions.

Proof: These follow directly from Proposition 21 by

Fact C.//

For convenience of reference, we now list in concise
form the canonical subgroups we have discussed with their
major properties. We omit only those abkout which we know
nothing. We recall that all H-radicals, RH‘ are radical

and ihat all H-coradicals, R* are idempotent in order

g
to avoid repeating these facts in each case. We group
the list into dual pairs. We have included a few results
from section 4 for completeness.

We also list the pair of classes associated with each

preradical discussed. Again we include a few results from

section 4 for completeness. We indicate by an asterisk



43

on the left those which are known to be torsion theories.
Again, we group them into dual pairs.

From tﬁé number of gaps in the following tables it
is apparent that there is still some work to be done on
these radicals and their associated classes. We would
also like to know whether or not the descriptions given
for 8(z(p™)), $*(J3,). 8(Fp), and $*(Fp) are the simplest
possible. They seem rather strong conditions. Perhaps
they are edquivalent to simpler conditions which appear

slightly stronger.
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KNOWN CANONICAL SUBGROUPS

e (U e R I S S

P . . T . T e I I T T T TR ]

Rg= (idempotent) subgroup containing all compact
R*J (radical) elements
R*.= (radical}) component of the identity
Ro /7, {idempotent)
Rﬁ-(idempotent) smallest closed subgroup with
torsion-free dquotient
R*Q {(radical) maximal densely civisible subgroup
R*@ {radical) maximal compact connected subgroup
(RgnR*p )
RQ (idempotent) smallest open subgroup with torsion-
free quotient (RmfRﬁQ)
R*Q/Z maximal densely divisible torsion
subgroup
A
- . et e -
R z (™) maximal densely divisible p-subgroup
rhrd
g T

R*Ho {not radical) closure of the torsion subgroup

—————————, . — " Dl iy o By AN Sl Sy ol . e e U AL A I RS L AT AR Al D AT B S AR AR, S R S S A oy WA iy e Ml ol R . e A S

Rﬂo (idempotent) smallest closed subgroup with
totally disconnected torsion-free
quotient (R@+Rﬁa)

R*; (radical) maximal densely divisible subgroup
© containing only compact elements

wan v omim e e e s o e e e e e mm s e e e s mm e G s A s e e ame e
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KNOWN SUPFICIENCY CLASSES, ETC,

i o e e wes smm mw e ew e e e e

i T T e e I " S S )

"TCRSION" CLASSES
groups with all
elements compact

connected groups

bk e s e s T e v . o T Y — . T2 T Y T T w4y

duals of reduced
groups

densely divis-
ible groups
compact connec-
ted groups

groups R xGg,
with all ele-
ments of G

o
compact
groups G such

that G=Ra+RﬁR

densely divis-
ible groups with
all elements
compact

groups contain-
ing a dense
divisible tor-
sion group

2?2

(D bl e ks il AL ke o T TR TR R . —— - ——— ——

groups contain-
ing a dense
divisible
p-group

h Gl L A s A Al s T Y — o T WO T — T r— - - —— ——

dr W W W MM e e mm  me  wm mm mm wem mm

— o e emm wm mm aW W W W W R e e e

"TORSION-FREE" CLASSES

Ml iy i i e Wty Gl S e e i e S e A i e it S S

S(R)= groups with no

P*(J) compact elements

E*(R)= totally discon-

s$(Q/2) nected groups

g(ﬁ} torsiun~free
groups

&% (Q) reduced groups

g#(é) groups with non-
compact identity
component

sS(Q) discrete torsion-
free groups

S(Ey) totally discon-
nected tcrsion-
free groups

E*(E,) groups in which
R*\Rg=0

P*(Q/Z) groups whose tor-
sion subgroup is
reduced

S{J) contains torsion-
free reduced
groups

FP*(Z(p")) groups with
reduced p=~CoOmMpon-—
ent

Q(Jp) 22

T — T — " — —— Al . e T W T ————— A2k T Sl

(continued)
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T(2(p™)) 22 S§(2(p™)) totally discon-
' nected groups in
which every com-
pact open sub-
group is a top~
ological p-group

§?(Jp) groups with all F*(Jp) ??
elements compact
such that every
quotient by a
compact open sub-
group is a top-
ological p~group
totally discon-
nected groups in
which every com-
pact open sub-
group is GﬁJp

S*(Fp) groups with all F*(F_) 2?
= - p
elements compact
such that every
quotient by a
compact open sub-
group is =@2 (p*)

N
S*(Ny) groups with g*(&o) torsion-free
dense torsion groups
subgroup
T(Ng) 22 g(NO) ?7?

s v e e e e e am e em ew mm wm ew A e em mm me mm mm wwe R e s e e

* indicates a torsion theory
1 indicates a pair which is not a torsion theory

2 Note that the description of S(J) is not complete.
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2.3 Containment Relations

In this section we make heavy use of Facts G and H
from saction-one to investigate the containment relations
between the radicals and coradicals introduced in section
two. Since most of the proofs involved are nearly
trivial, we return to the format of section one, stating
our results as "Facts" and proving them with as much
dispatch as is possible. We start with two facts which

were proved in the previous section.

Fact CR1l: R*J$RTR and Ry /7 =R*;.
These were proved in Propositions 9 and 12.
We prove a lemma now which will simplify our proofs

somewhat.

. * *
23. Lemma: If H< G then RG‘-‘»RH and R G/HS'R a"
Proof: By Lemma l.5(a,b) and Fact A, He€ §(G) and

G/He §*(G). The result then follows from Facts G and H.//

. —_ * *
24. Corollary: If G HleZ then R ng,R G and Rgs,RHl.
Proof: Since H., is a factor of G, it is both a duotient

1
of G and a c¢leosed subgroup of G. The result thus follows

from Lemma 23.//

. *
Fact CR2: R* £ R Q/z" RQ/ZS‘ RZ(Poo) P R*pr_ R*Eo,

Ré -<-RF , R*¥* &£ R*_, and RJﬁ Ry for any prime p.
p P

It is obvious that Z(p*) is a factor of Q/2, that

Fp is a factor of Eqs and that Jp is a factor of J. Thus
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these all follow immediately from Corollary 24.

t : R * 4 R*. , < , and
Fact CR3 REO«S_RJ, Rq/z,_REO RFP Ryps an

R*Z(pm)ﬁ R*Fp for any prime p.

These follow from Lemma 23 and the fact that

E,/J®=Q/Z and Fp/Jpxz(p”) .

. < QX ‘R*% £
Fact CR4: R*ﬁ <R FpéR Jp and Rz(p“’)“ RFpg Rq for any

prime p.
Now, ’5 is compact and has no proper open subgroups

so by Proposition 17, ﬁeg*(Fp) . Now F_ is compact and

P

every quotient of F_ by a compact open subgroup is

P
topologically isomorphic to Z(F°) so by Proposition 15,
Fpe §_*(Jp) . Thus the first result follows by Fact H.
The other result follows by duality from the remark

following Lemma 1.2 (that if rss then S<7%).

. & < * R. LT .
Fact CR5: R B* R Q and ‘:{Q_ REO
Since E, is divisible, Eoé‘: S*(Q) by Proposition 8.

The results follow by Fact H and duality.

F CR6: R¥ d *o s Ri7- .
Fact 5 QNO‘{‘R’C‘} an RQ}ANO
Now R*bi is the closure of the torsion subgroup by
o]
Proposition 20, and G/Ra(G) ig torsion~free by Proposition

5. Thus Ra contains the torsicn subgroup, and since F%

is closed, it contains R*N . The other result follows
Q

by duality.
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- £ %
Pact CR7: RQ/ZS“REO and R*Eo_, R I°

By Proposition 18, Eo is totally disconnected. BY
Preoposition 9, Eoeg(Q/z) . The result follows by Fact G

and duality.

Fact CRS8: Ra«s. R <Rq and R*ﬁéR*mﬁ R*Q.
‘ Now R is torsion-free so by Propositi TRE _S_(ﬁ) .
Clearly Q has no nonzero compact elements. Thus by

Proposition 3, Q€ §(R). Then by Fact G and duality the

result follows.

. . P
Fact CRI: R*q s <R*  and R < Rj.

o
Clearly any image of Q/2 is torsion and is therefore
contained in R*y , the closure of the torsion subgroup.
o}
% * i * £ %
Since R No is closed, R Q/Z'R No* The second result
follows Dby duality.

Now, the obvious containments can be derived from
Facts CR1 thrcough CR9. We have taken care to prove a
minimal subset of them in the following sense. Suppose
it is true that A< B<C. Then we proved that A<B and
R < but we did not prove that A4 C since this can be
obtained by transitivity. We will construct a graph
later in this section which will display the implied
ccptainments clearly. However, a few comments are 1in
order first. We have noc guarantee that the containment

results proved so far are complete. There are two other

types of results which it would be necessary te prove for
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each of the preradicals we are considering in order to
complete these results. First, for each preradical r,
we.should prove that the only preradicals greater than
or equal to r (among those we are considering) are those
we have proved to be greater than or equal to r. Facts
G and H of section one would be useful in this since it
is often elementary to determine wueil.icr or not a given
LCA group is contained in a specific sufficiency class

or dual sufficiency class. As an example, we prove

Fact CR10: Let p be a prime. None of the following are

true: (i) R¥, , <R¥p , (ii) R*, <R*_
(1) R¥g g $R¥p . (11) R¥p =R%

(111) Ry €Rg ., (iv) Rp % Ry.

Wwe see that {(iii) and (iv) are dual to (i) and (ii)
so that we need only prove (i) and (ii) false. It is
clear from Propeositions 17 and 10 that Q/Z?gg*(Fp) since
every quotient of Q/Z by a compact open subgroup is
topologically isomorphic to Q/Z, and that Fpég_* (Q/Z)
since Fp is torsion free. Fact H then completes the
procof.

If the class neededto carry out this sort cf proof
has not been characterized (e.g., §(Jp)) a counterexample
would be necessary.

The second type of result which should be proved
is that each containment is in general strict. Clearly

only pairs, r<s, for which there is no preradical

between r and s (among the preradicals being considered),
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need be checked. Facts G and H are as useful in this
task as in the first one. Counterexamples are sonetimes
needed. For example, as a simple corollary to Proposition

21 we have the following

- * 1
Fact CR1l: R NO#:Rﬁ'
By Propesition 21, R*ﬁo is not radical. Since Rﬁ is

radical, the result is obvious.

Since it is unlikely that any significant results
would be obtained by completing the containment results
in the manner indicated, we avoid that onerous task and
content ourselves with the knowledge that it can be done
in a relatively effecient manner should it ever seem
desirable.

We collect Facts CR1 through CR1ll in graphical form
on the following page for easy reference. The arrangement
is such that the preradical r is contained in the pre-
radical s iff s can be reached from r by lines which

lead toward the top of the graph.
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Known Containment Relations Between Preradicals in an

Arbitrary LCA Group

J=J2xJ‘3stx---g‘g’Jp EO"—:E(J)

@Component of the identity
@Subgroup of compact elements
@Strict containment

@ Not comparable

@ Not comparable

@ClOSure of the torsion subgroup

Figure 1
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2.4 Misca}laneous Results

In this section we prove various further results
about the radicals, coradicals and associated classes
studied in sections two and three.

Our first result lends considerable weight to the
feeling that &8 is the natural generalization for LCA
groups of the torsion subgroup of « discrete group.
Recall from Proposition 20 and Facts CR6 and CR1ll that
RG strictly contains the clesure of the torsion subgroup.

We now have the following

25. Theorem: Ra is the smallest radical which contains
the torsion subgroup.
Proof: If r is a radical then r(G/r(G))= 0 for any LCA
group G. If r contains the torsion subgroup then G/r(G)
must be torsion-free. By Proposition 5, G/x(G)€ ﬁla).
Thus, by Fact D, Ry <. Since Ra is radical, it is the
smallest radical containing the torsion subgroup.//

The redquirement that r be radical in Theorem 25 is
not actually a restriction since we certainly want a
"generalized torsion subgroup” to yield a quotient whose
"generalized torsion subgroup” is 0, which is just another
way of saying that we want it to be radical. We will
return to the g—radical in part three.

We now prove two resulits (and their duals) concern-—
_ing the relationship between wvarious radicals and corad-

icals.
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26. Proposition: Rﬁa(G)z:RﬁjG)r\R*R(G) and
RQ(G) :R@G):&- R*R(G) for any LCA dgroup G.
Proof: By Proposition 4, R*R(G) is the identity compo-
nent of G. By [H&R, 9.14] it must have the form RXE
where E is compact and connected. Now RR{G) is the sub-
group of compact elements of G by Proposition 3. No
nonzero element of K is compact and, since E is compact,
every element of E is compact. Thus RR(G)F\ R*R(G) =E.
It is clear that E is the maximal compact connected
subgroup of G, so the first equality follows by Proposi-
tion 6. Dualizing (taking annihilators), the second
equality follows by [H%R, 23.29.b] since Rg(G)+ R*p(G)
is always open and thus closed by [H&R, 9.26.a and 5.51.//
We can derive a cocuple of interesting corollaries

from this result.

27. Corcllary: If r is any preradical such that
R*p < T <Ry then Ry (G) = Rp(6) + r(G) and R¥3(G)= R*Q(G)n’f(G)
for all LCA groups G. In particular, this holds if r is

R or R (then,? is R*p , R¥*

+ R ‘
o Z (™) FP o Jp
respectively).

s O R*F

Proof: Since rfERQ, clearly RQ(G)=:RQ(G)+-r(G) for any
LCA group G. By the preceding proposition then, RQ(G)z
RR(G) ¥ R*g(G) + r(G). Since R¥*p <z, Ry(G) = RRIG) + r(G).
Since RQ(G) is closed, the second edquality follows as in
Proposition 26. Clearly the preradicals named satisfy

the requirement (see Figure 1).//
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Obviocusly a similar result holds for preradicals
between Rp and Rg. It was not stated because we do not
have any examples of such preradicals. The next result
is a trivial consequernce of Corollary 27. However, it
is sufficiently interesting and is obtained with so

little work that it deserves mention.

28. Corollarv: Let r be as in Corollary 27. Then

Rp(3) + r(G) is open and R*&ﬁG)f\?(G) is compact in
every LCA group G.

Proof: RQ(G) is open by Proposition 7. The result then

follows from Zorollary 27 and the fact that the annihil-
ator of an open subgroup is compact [H&R, 23.29.a]l.//

We now have a result similar to Proposition 26.

29. Proposition: REO(G):.Ra(G)+ R*“#G) and

B
Proof: By (R2, 4.6 and 4.7] G can be written in the form

R* O(G):=R*Q(G)ﬂ RRﬁG) for any LCA group G.

GPKGO where G5 has no subgroups topologically iscomorphic
toR. We will consider G, first. Let us write A =Rj(G)
and c::R*ﬁﬁGO) for netational simplicity. In the pre-

vious section it was shown that R_ (G contains A and

Es

o

¢ and therefore their sum. Now C is compact by [H&R,
9.14] since G, has no subgroups topologically isomor-
phic to R. Thus, by [H&R, 4.4], A+C is closed.
Recalling that C is the component of the identity (Prop-
osition 4), we see that G /(A+C) is totally disconnected

by [H&R, 7.3 and 7.111. Now we will show that Gg/(A +C)
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is torsion-free. Suppose that mg&f£ A+ C, say mg=a+c
with a €A and c€C for some gEGO.‘ Then, since C is
divisible [H&R, 24.24],we have m(g-c,)= a for some c,é& C.
Since GO/A is torsion-free (Proposition 5} this implies
that g:ao+co for some ag€A. Thus gé A+ C and
G,/(A+C) is therefore torsion-free. Since Go/(A+C) is
torsion-free and totally disconnected,VREoiwb;f;A-Fc by
Fact D and Proposition 18. Thus, REO(GO)::Ra(GO)4-RﬂR(Go).
Now, REO(G)T-—}'R“-FREO(GO} by Proposition 18 since K is
connected. Also, Rﬁ(G)::Ra(GO) by Proposition 5 since
R is torsion-free. Finally, R*o (G) =R"+R*p(G,) by
Proposition 4 since R is connected (or simply recall the
definition of R%;). Thus, we have REO(G)::REO(GG)i—ﬂT‘z
R@(G0)+-RﬂR(G0)+ﬁ¥”=R6(G)4—R*RjG). pualizing, we obtain
the second equality by [HsR, 24.421.//

Notice that this implies that Rﬁ(G)+'R*m§G) is closed
in any LCA group G. Obviously a result analogous to

Corollary 27 could be proved but since we know of no

preradicals between RE and Rj or between R and RﬁR
o]
it is of little interest.
W2 can use Proposition 29 tc cbitain & complete

characterization of groups with trivial E,-coradical.

This characterization is the substance of

30. Proposition: The following are equivalent for any

LCA group G: {(a) R*EO(G)::O
(b) the maximal densely divisible subgroup

R*5 (G}, contains no compact elements,
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that is, R*Q(G)r\R&ﬂG)::O
e} R*Q(G):zﬁfxn where n is a nonnegative
integer and D is a discrete divisible
torsion-£free group.
Note: At first it might seem that this could have been
proved in Proposition 19 without the use of Proposition
29. The difficulty, however, lies in the fact that we
had no guarantee that R¥*p(G)Nn ngG) would be densely
divisible until we proved Proposition 29.
Proof: The equivalence of (a) and (b) follows directly
from Proposition 29. The equivalence of (b) and (c)
follows immediately from Proposition 3.//
We can obtain from Proposition 30 a splitting

theorem.

31. Theorem: If G is an LCA group such that R*E (G)=20
[ o}
then G<umeDxGO where n is a nonnegative integer, D=& Q
N

for some cardinal number N, and GO is totally disconnected
and reduced. That is, the component of the identity and
the maximal densely divisible subgroup both split.

Proof: By the preceding proposition, R*Q(G}asm?x where

D is a direct sum of copies of Q by [F, 23.11. Since

the component of the identity is contained in R*n (Fact
CR8 and Proposition 4) we see that it is R'. gince R"
always splits [32, 4.6] we have Gﬁzm?xGl with G; totally
disconnected. Clearly D<Gq. Since Gy is totally dis-

connected, D can be split from it by [R2, 4.23]. Thus,
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G~ R'xDxG,. Since R" is the component of the identity,
G, is totally disconnected [H&R, 7.3], and since R™xD is
the maximal dénsely divisible subgroup, G, is reduced
(Proposition 8).//

We know of no other results analogous to Propositions
26 and 29. However, it would not be surprising to find
that some more exist.

We now consider the containment relations between
our radicals and coradicals in an important special
case. We will use a structure thecorem due to Robertson

[32, 5.2]. Using our notation, his theorem is the

following.

32. Theorem{Robertson): Let G be an LCA group. Then

Gexqwu(éaQ)xﬁmxH where n is a nonnegative integer, N and
N

M are arbitrary cardinals, and H does not have any sub-
groups topologically isomorphic to Q or K, or quotient

groups topologically isomorphic to 4. Moreover, Rmﬁﬂ)

is open in H, R*R(H)S Ra(H} and R*Q(H)$ Rg(H) .

Note: By [R2, 2.6] Robertson's Gp is R*Q(G} and by [Rz,

2.4] his Gy is Ry (G).

By restricting our attention to H as above we can
obtain much stronger containment results than we can in
a general LCA group. By use of this theorem we can often
reduce our considerations to the group H. At this point
the stronger containment relations are very useful. Wwe

can derive three equalities in addition to the contain-
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ments mentioned in Theorem 32.

33. Lemma: Let H be as in Theorem 32. Then:
{a) Rﬁéﬁ)ﬂ=RQ(H)
(b) R*ﬁ(H)= RﬂR(H)
{c) Rﬁ(H)==REO(H)

(d) R*Q(H)= R* H)

Eo(
Proof: (a) By Theorem 32, Rp(H) is open. Hence H/ngH)

is discrete {H&R, 5.26]. By Proposition 3, H/Rg(H) is
torsion~free. Hence Rg({H) < RmﬂH) by Fact D. Since Rgp <Ry
(Fact CR8) this forces equality.

({b) If H is as in Theorem 32 then the identity
component R*, (H) is compact by [H&R, 9.14] since H has
noc subgroups topologically iscmorphic to R. Thus H
satisfies the conditions imposed on H in Thecrem 32.

Thus (b) follows by duality from {a) applied to %.

{c) Since the identity component R*R(H) is contained
in Ra(H), the quotient H/RG(H) is totally disconnected by
[#sr, 7.3 and 7.11]. By Proposition 3, H/Rg(H) is tor-
sion-free. Hence, by Proposition 18 and Fact D,

REO(H)ﬁ Rﬁ(H) which implies their equality by PFact CR5.

{d) As in (b) this follows by duality from (¢).//

These relations are presented in compact form on the

following page exactly as in Figure 1.
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Known Containment Relations in an LCA Group H as in

Theorem 32 (H has no subgroups ~=Q or iR, no

guotients =Q)

ol
n=1
@D Component of the identity - compact

@a Subgroup of compact elements - open

C) Closure cof the torsion subgroup

Figure 2
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The following fact is interesting and might be
useful at some time. If (T,F) is a torsion theory and
r is the corresponding radical then any LCA group G is
an extension of a unique element of T (namely, r(G)) by
a unique element of F (namely, G/r(G)). Put in other
terms, if H< G such that HeT and G/He F then H= r(G).
This is an immediate consequence of Lemma L.3{:.:).
This fact is simply a generalization of several well
known facts. PFor example, the identity component is
the unique connected subgroup which yields a totally
disconnected quotient. The reason this fact has not
been very useful yvet may be that the torsion theories
about which we know a fair amount are associated with
exactly those canonical subgroups which are well known
and whose properties have already been exploited to a

considerable degree.
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The Structure of LCA Groups - Open Problems

In this part we consider various dquestions about
the structure of LCA groups and prove as much as we now
know. None of the answers are really complete. We
present a number of dquestions which are interesting in
themselves or which seem necessary to answer before
further progress can be made on the intrinsically inter-
esting questions. We consider in the first two sections
embedding and compactifications, and indecomposability
and splitting. The last section contains primarily
questions of wvaried nature.

Whatever else its merit, the third part of this
paper certainly proves that research in LCA groups will
not come to a halt because of a lack of interesting

unsolved problems anytime in the forseeable future.
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3.1 Embedding and Compactification

Let H be a compact LCA group. Given an arbitrary
LCA group G, we will embed a continuous homomorphic
image of G in a product of H's. In fact, it will be
the largest such image for which this is possible.

We define the function p:G—-’rTI'H(f)E where f ranges
over {(G,H)., each H(f)ﬁﬁﬁ, by p(g)::(f(g))fE%(G'H} for
all g€ G. That is, if fi is a particular map G-?H then
the fi-th coordinate of pl(g) is just f£;(g). Now, it is
obvious that p is a homomorphism since each £ €(G,H) is
a homomorphism and the group operation in TTH(f) is
coordinatewise. Now, p is also continuous; suppose
ﬁ::U(fl}XU{fz)*'--xU(fk)XTfH(f) {where f ranges over the
elements of (G,H) not in {fl,...,fgg in the last product)
is a nhood of 0 in TTH(f). By the continuity of £,
there exists a nhood V; of O inkG such that fi(vi)CLULfi)
for each i=1,...,k. Clearly ijkvi is a nhood of 0 in

k
G and p(/\V;)<U. Thus p is a continuous homomorphism.
i=1

We now have the following

1. Proposition: p{G) is a continuous isomorphic image of

G/Ry(G). P(G)=G/Ry(G) iff G/Rg(G) is compact.
Proof: It is immediate that ker(p):;RH(G) since g€ ker(p)
iff p(g) =10 which is equivalent to the assertion that

£(g)= 0 for all f¢ (G,H) which is true iff g ¢ { \kxer(f)=
‘ £:G—H
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Ry {G). Thus, if we define p*:G/Ryz(G)—rp(G) by p*(g+Ryz(G))
= p(g) then p* is an algebraic isomorphism. Letting

uzG ~*G/Ry (G) be the natural map we have p*u=p. Since

p is continuous and u is open, p* is continuous, proving
the first assertion. Now, if p(G}::G/RH(G) then p(G) is
locally compact since G/Rg(G) is. Thus p(G) is closed

in TTH(fj-by [HSR, 5.11] and,since.TTH(f) is cowpast,

p{G) is compact. Then G/RH(G) is compact since it is
topologically isomorphic to p(G). Now suppose G/RH(G) is
compact. Then p* is a 1-1 continuous map from a compact
set to a Hausdorff set and is therefore a homeomorphism.//

Clearly G/Ry(G) is the largest image of G (i.e., the
image with the smallest kernel) which can be mapped by a
continuous homomorphism into any product'ﬂ'Hi with each
Hy=H. (If s:G—+T Hy then r;se (G,H}, where ry is the
i-th projecticn map. Thus RH(G)s.ker(ris) for each ry
and therefore Ry(G) < (\ker(ris)::ker(s}.)

Now if we let GH::ETET then Gy is a compactificaticn
of G/Ryz(G). MNote that GH::(G/RH(G))H. This is a general-
ization of the Bohr compactification. If H is taken to
be T. the circle group, then GT is the Rohr compactifi-
cation G [HsR, 26.11). Actually, it turns out that

this does not really generalize the Bohr compactification

at all. In fact, we have the

2. Proposition: The compactification Gy of G is topologi-

cally isomorphic to a Bohr compactification of G and of

G/RH (G).
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Proof: In [H&R, 26.13] it is proved that if H is compact
and if p is a continuous homomorphism from G onto a
dense subgroup of H, then H is a Bohr compactification
of G. Since GH::(G/RH(G))H, Gy is a Bohr compactifi-
cation of both G and G/Ry(G).//

This does not mean that we might as well forget the
compactifications Gy. It is difficul’ to determine
exactly which Bohr compactification is topologically

isomorphic to G 2lsoc, we may be assured that Gy has

e
certain desired properties by its construction. For
example, the‘a compactification is always torsion-free.
In general, Gye 8(H) for any G whatsoever.

Now, if H is not compact, the above procedure cannot
ke carried out since only finite products of H will be
locally compact. However, if H has compact open sub-
groups, it may be possible to carry ocut an analogous con-
struction using local direct products rather than full
direct products. If that is possible then an embedding
is possible. However, it is unlikely that a compactifi-

cation will result since a local direct product is compact

only if it is a full direct product.

Problem l: Carry out such a construction for non-compact
H or show that it is impossible. Investigate the proper-
ties of the embedding that results if it is possible.

Note that if H=1, for example, this construction
is certainly not possible since R has no compact open sub-

groups.
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Problem 2: Investigate the properties of the compactifi-
cations Gy for compact H. Compute some examples if

possible,

Conjecture: The compactification Gy of G is topologically
isomorphic to the Bohr compactification of G obtained
from the set of characters in G which factor through H
(that is, those characters ve¢G such that ¥=§x for some

« &{G,H) and some Keﬁ).
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3.2 Indecomposability and Splitting

In this\seotion we prove results asserting that
under certain‘conditions LCA groups split into a direct
product or direct sum. We also state and use several
important results which are proved elsewhere concerning
the splitting of LCA groups. The splitting results are
of interest in themselves ana Uugy help elucidate the
structure of LCA groups. However, they are also useful
in characterizing the indecomposable LCA groups.

There are two particular splitting theorems from
the theory of discrete {(abelian) groups which we would
like to generalize to LCA groups. They are:

(i) a discrete abelian group is the direct sum of a
divisible group and a reduced group [F,21.3].
(ii) (Kulikov) An indecomposable discrete abelian group

is either torsion-free, Z(n) or z () [8,27.43.

These results imply that an indecomposable discrete
abelian group is either Z(p?), Z(p®), torsion-~free divis-
ible, or torsion-free reduced.

Before we can state plausibkble generalizations of
these theorems we must decide how to generalize the
maximal divisible subgrcoup and the torsion subgroup.

From the results of part two, especially Thecorem 2.25

and the remark following Theorem 2.8, it is fairly clear
that R*Q is the natural analog of the maximal divisible
subgroup and that R@ is the natural analog of the torsion

subgroup. Now, an example of one of the most pleasing
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aspects of the theory of LCA dgroups appears. These wo
subgroups are dual to one another! Thus R*Q(G) splits
from G iff Ra(ﬁ) splits £rom G. Recalling that Rﬁ(G) is
the torsion subgroup of G if G is discrete, we see
immediately that the analog for LCA groups of (i) is not
true in general since there are discrete groups whose
torsion subgroup does not split. The truth or falsity
of the analog cof (ii) is not as eésily settled. 1In fact,
we do not know whether or not it is true. By the end of
this section we will have proved as much as we now Xnow
about it. We now state it as a conjecture for easy

reference.

3. Conjecture: Let G be an LCA group. If R@(G) is a proper

subgroup of G then G is decomposable. Dually, if R*Q(G)
is a proper subgroup of G then G is decomposable.

The first statement says that an indecomposable LCA
group either has no torsion~free quotients or is torsion-
free itself. The dual formulation is eguivalent to the
statement that an indecomposable LCA group is either
densely divisible or reduced. We will find this a con-
venient form of the conjecture to deal with, primarily
because of a theorem of Robertson's {[R2, 6.4]. There is
one other plausible analog of (ii) which has not been

disproved. For completeness, we state it as a

4. Conjecture: Let G be an LCA group. If RmﬂG) is a

proper subgroup of G, then G is decomposable. Dually,
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if R*R(G) is a proper subgroup of G then G is decompos-
able. N

The first statement of the conjecture says that an
indecomposable LCA group either has all elements compact
or it has no compact elements, in which case it must
either be R or a discrete torsion-free group (Proposition
2.3). The dual statement says that an indecomposable
LCA group is either connected (in which case it must be
R or a compact connected group) or totally disconnected
(Proposition 2.4).

It is known that none of the subkgroups R@(G), R*Q(G).
Rm(G) and R*R{G) always split [32, 4.10]. This casts no
doubt on the conjectures however, since the torsion sub-
group does not always split from a discrete group, yet
(ii) is true.

We begin with some results about splitting in compact
groups obtained primarily by duality from the discrete
case. Next we present several results concerning split-
ting in general LCA groups. Finally, we will finish this
section by proving as much as we can about Conjecture 3.

We begin ocur investigation of compact groups with

the result which is dual to (i).

5. Proposition: Rﬁ(G) splits from every compact group G.

Thus, a compact group can be written as the direct product
of a torsion-free group and a group with no torsion-free
quotients.

Proof: Since R*Q(G) splits from every discrete group the
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first statement follows by duality. The second statement
is then evident from Proposition 2.5.//
We now present a result which we will use in our

determination of the indecomposable compact groups.

6. Proposition: Let G be a compact connected LCA dgroup.

Then G has dense torsion subgroup iff G is reduced.

Proof: This is Proposition 7 in [ALll.//

7. Cereollary: If G is a compact connected LCA group then
Gsv§T573<@M'where T{G) is the torsion subgroup of G and

M is a cardinal number.

Proof: If G is compact and connected then 8 is discrete

and torsion-free. Thus aﬂzéﬁ{@Q) where A is reduced and
M

M is some cardinal number [F, 21.3 and 23.1}. Therefore

M
Gﬁsgiﬂﬁl. By Prcoposition &, % =T({&). Since'ﬁ is torsion-
o~ . . e A M
free, T(G)=T{(A), proving that G=T(G) xQ .//
We can now characterize the compact indecomposable

groups.

8. Proposition: If G is a compact indecomposable group

then G is z(p™), Jp, 8 or a compact connected torsion
dense group.

Proof: If G is a compact indecomposable group then G is a
disgrete indecomposable group. By (i) and (ii), G is
Z(p™), 2(F°), Q or a reduced torsion-free group, since a

divisible torsion-free group is a direct sum of Q's [F,

23.1]. Taking duals, we have proved all but the last
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case. Tf @ is a reduced torsion-free discrete group then
G is compact and, by [HsR, 24.25), connected. Finally,
by Propositioﬁ 6, G has dense torsion subgroup.//

Note that the determination of those compact con-
nected torsion dense groups which are indecomposable is
equivalent to the determination of those discrete reduced
torsion-free groups which are indecomposable, a problem
that is known to be quite difficult [X, remark following

Theorem lO].

9. Remark: It is not difficult to determine by inspection,
using the results of part two, that Conjectures 3 and 4

are satisfied by discrete groups and compact groups.

We now present several known splititing results and
structure theorems in preparation £for our study of
indecomposable LCA groups. First, a word about termi-
nology. We say that an LCA group H splits from an LCA
group G if any closed subgroup of G topologically iso-

morphic to H splits from G.

IQ. Proposition: The identity component, RﬁR(G), splits
in any torsion-£free LCA group G. The subgroup of compact
elements, Rgp(G), splits in any densely divisible LCA
group G.

Proof: The first statement is proved in [HsR, 25.30.cl.
The second statement follows from the first by duality
since torsion-free and densely divisible are dual by

[Al, Theorem 1].//
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11. Proposition:ggzupﬁ) can be split from any totally

disconnected\group. Fp can be split from any torsion-

free group. GL? Q can be split from any group with compact

identity component.

Proof: These are proved in [R2, 4.13, 4.21 and 4.23].//

The structure theorem due to Robertson which we.
quoted as Theorem 2.32 is a simple application of the
preceding proposition since any group can be written as
R"xG, where Gg has compact identity component [ﬁ&R, 24.30

and 7.8).

12. Proposition: If the LCA group G has a closed subgroup

topologically isomorphic to a discrete divisible torsion
group D then G =D, XG; where D=D,.
Proof: This is contained in [AJ, Theorem 1Tl1.//
Note that the subgroup D itself may not split, although
some subgroup isomorphic to it will.

The next result is a very useful characterizaticn

of nonreduced LCA groups due to Robertson [RB, 6.4].

A ———

13. Proposition: If an LCA group is not reduced then it

contains a c¢losed subgroup topologically isomorphic to
®, Q, Z2(p*}. Fp or a quotient of Q.

Proof: See [R2, 6.41.//

We are now ready to work on Conjecture 3. We start

with a simple
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14, Lemma: If G is an indecomposable LCA group then G is
topologically isomorphic to |, Q, 6 or a group of the form
H as in Theorem 2.32.

Proof: This is obvious from Thecrem 2.32.//

Since R, 0 and Q are all torsion-free and divisible
they all satisfy Conjecture 3. Thus in investigating
Conjecture 3 we may restrict attention to LCA groups G
satisfying the following conditions:

(2) G is neither discrete nor compact.

(b) G has no closed subgrcoups topologically isomor-

phic to K or Q.

(c) G has no quotients isomorphic to‘ﬁ

{d) RRjG) is open in G and R*RjG) is compact.

(e) R*p(G)< RZ(G) and R*q(G) < Rp(G) -

(£) Rp(G)=Rg(G), R*(G)=R*3(G)., RH(G)= Ry (G).

and R*Q(G)==R*EO(G).
Note that (a) follows from Remark 9. The other conditions
follow from Theorem 2.32 and Lemma 2.33.

We will now use Propositicon 13 to further restrict

the possibilitiszs for a nonreduced indecomposable LCR

group.

15. Lemma: If G is an indecomposable LCA group then one
of - the following is true:
(i) ¢ is tcpologically isomorphic to R, Q,’ﬁ, Z (D7)
or Fp.

{ii) G is reduced
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(iii) G satisfies conditions (a) - (£f), G is not
t?rsion-free, and G has a closed subgroup
topologically isomorphic to FP.

(iv) G satisfies conditions (b) - (f) and has a
¢losed subgroup topologically isomorphic to a
quotient oflg.

Proof: By Lemma 14, either G is topologically isomorphic
to R, Q or'a, or else G satisfies conditions (b) - (f).
Therefore, suppose G satisfies (b) - (f) and is not
reduced. By Proposition 13, G contains a copy of ®, @,
Z(p™), Fp or a quotient of Q. Now, R and Q are ruled
ocut by condition (b}. If G contains a copy of Z{p~)
then it splits by Proposition 12. Since G is indecom-
posable, G=*Z(p™)} which satisfies (i). Suppocse G has a
closed subgroup topologically isomorphic to Fp. If G is
not torsion-free then (iii) is satisfied since G is
clearly neither discrete nor compact. If G is torsion-
free then the copy of Fp splits by Proposition 1ll. Since

G is indecomposable, G F_, which satisfies (i}). Finally,

P
if G contains a quotient of O then (iv} is satified.//
We need tc prove that an indecomposable group of
type (iii) or (iv) must be densely divisikle in order to
prove Conjecture 3.
We now prove a lemma which asserts that we can 1lift

a splitting from a quotient back to the original group

under certain conditions.
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16. Lemma: Let D andB be closed subgroups of an LCA group
A such that DMNB =0 and the image of D in A/B under the
natural map s?lits. I£f D is g-compact then D splits

from A.

Proof: Suppose that A/B=(D +B)/B* A,/B. Then clearly
DNAp=0. Let X€A. Then Xx+B=(d+RB)+ (a+B) for some
d€D and a£A,. Thus x=d+a+Db for some b&p. But
B<A,, and thus x=d+ (a+Db) €D *A,. This proves that
D+Ag=A. If D is ¢~compact then A=Dx A, by FG, 3.2].//

Now we apply this lemma to case (iii) of Lemma 15.

17. Lemma: If G is an indecomposable LCA group satisfying

case (iii) of Lemma 15 then either G=F_ or Rﬁ(G} contains

P
every closed subgroup of G topologically isomorphic to FP.
Proof: Let R=Rg(G) and let D <G such that D=Fp. Let
£:G->G/R be the natural map. Since R contains the identity
component of G (condition e), G/R is totally disconnected.
Suppose DA R =0. Then £|p is 1-1 so by [R2, 4.1l £|; is
a topological iscomorphism. Thus f(D)::FP. Since G/R is

torsion-free (Proposition 5), £(D) splits. By Lemma 16,

D splits since F_ is ¢ ~compact [HSR, 10.5]. Since G is

P

indecomposabkble, Gx=F Now suppose that DOAR+#0. If D

o
is not contained in R then £(D) is algebraically iscmor-
phic to Z(p™) which is impossible since G/R is torsion-

free. Thus D<R.//

This is the extent of our knowledge about Conjecture

3. If it is false then it is a group satisfying case
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(iii) or (iv) of Lemma 15 with the additional condition

from Lemma 17 in case (iii) for which it fails.

Problem 3: Prove or disprove Conjectures 3 and 4.
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3.3 Questions
In this section we present some open problems

connected with the results we have proved.

Problem 4: If G is self-dual(Gad) then ces(6) and
645§(G). Is the converse true? Characterize those
groups G for which GegS(6) and G€S(G). Also, if G is
self-dual then Rg =RG. Does the converse hold? Charac-
terize the groups G for which RG::R@'
In [A3] the LCA groups G such that Ge T(8) were
described. From the description obtained it was easy
to show that if Ge&g(@) then G 4 T(G). Perhaps this
problem should be attacked by first trying to find all

LCA groups G such that ¢ e;s_(’é) .

Problem 5: Find necessary and sufficient conditions for
a class of LCA groups to be a torsion class, a torsion-
free class, a sufficiency class, or a dual sufficiency
class. Stenstrdm IS] gives necessary and sufficient
conditions for a class to be a torsion class or a torsion-
free class in the category of modules. His proof that
his conditions are sufficient involves representing the
sum of submedules as a quotient of their direct sum.
This procedure does not adapt to LCA groups because the
topology is not preserved properly. Also, arbitrary
direct sums are not defined.

The results contained in Lemmas 1.5 énd 1.8 are

obvious necessary conditions.
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Problem 6: Are there any triples (gl,zz,gs) of classes
of LCA groups such that (21,22) and (22t23) are both

torsion theories? Are there longer sedquences of this

sort?

Problem 7: Estimate the numbef of distinct idempotent
radicals (if they form a set). This might be possible
if necessary and sufficient conditions for a class to be
a torsion or torsion~-free class wefe known. Estimate
the number of distinct idempotent radicals of the form
RH or R*H. These correspond to torsion theories gen-

erated or cogenerated by a single group.

Problem 8: Characterize left exact radicals and their

associated classes.

Problem 9: Characterize the sufficiencyfﬂgésses which are
closed under quotients. This is a rather restrictive
condition. Clearly S(T) is one such since it contains

all LCA groups. If G is not totally disconnected then

it follows from [A2, 1.1 and 1.7] and [H&R, 24.12] that

G has an open onto character and thus a quotient isomor-
phic to T. Thus $(G)=8(T). Now, S(Q/Z), the class of

all totally disconnected groups is closed under dquotients.
The problem then reduces to the determination of those
proper subclasses of S(Q/Z) which are closed under quotients

and which are sufficiency classes.

Problem 10: Is Ry idempotent whenever H is divisible?
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Problem ll: Under what conditions on_Hl and Hy is it true

- = R* ? 11 ¢
that Rﬁl RHj _or that RHl R Hy Reca hat

* = =R¥*
R R RQ/Z and RGZ R 3

Problem 12: Study “open®" radicals and coradicals defined

by OH(G) = nker(f) and O* (G)= 3 im(f).
£f:G—H B £:H—G
£ open £ open

Recall that open continuous homomorphisms correspond to

quotients.
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