THE UNTWISTING ISOMORPHISM

ROBERT R. BRUNER

Mike, here is the motivating example: let X be a G-set and H a subgroup of G. Then we can restrict X to H and induce it back up, getting $G \times_{H} X$ with left G action, or we can take the product of the G-sets G / H and X with the diagonal G action. There is an evident isomorphism of G-sets

$$
\theta: G \times_{H} X \longrightarrow G / H \times X
$$

given by $\theta([g, x])=(g H, g x)$. That this is well defined is easy:

$$
\theta([g h, x])=(g h H, g h x)=(g H, g h x)=\theta([g, h x]) .
$$

Clearly. also the map $\theta^{-1}(g H, x)=\left[g, g^{-1} x\right]$ satisfies

$$
\theta^{-1}(g h H, x)=\left[g h, h^{-1} g^{-1} x\right]=[g, x],
$$

so is well-defined. That they are G-maps and inverse to one another are easy calculations.

Here is what you need in your thesis.
For a Hopf algebra A over k a, a sub-Hopf algebra B, and a A-module M , we have the same result: there is an isomorphism of A-modules

$$
\theta: A \otimes_{B} M \longrightarrow\left(A \otimes_{B} k\right) \otimes M
$$

given by

$$
\theta(a \otimes m)=\sum\left(a^{\prime} \otimes 1\right) \otimes a^{\prime \prime} m
$$

where $\psi(a)=\sum a^{\prime} \otimes a^{\prime \prime}$. This is well defined:

$$
\begin{aligned}
\theta(a b \otimes m) & =\sum\left(a^{\prime} b^{\prime} \otimes 1\right) \otimes a^{\prime \prime} b^{\prime \prime} m \\
& =\sum\left(a^{\prime} \otimes \epsilon\left(b^{\prime}\right)\right) \otimes a^{\prime \prime} b^{\prime \prime} m \\
& =\sum \epsilon\left(b^{\prime}\right)\left(a^{\prime} \otimes 1\right) \otimes a^{\prime \prime} b^{\prime \prime} m \\
& =\sum\left(a^{\prime} \otimes 1\right) \otimes a^{\prime \prime}\left(\sum \epsilon\left(b^{\prime}\right) b^{\prime \prime}\right) m \\
& =\sum\left(a^{\prime} \otimes 1\right) \otimes a^{\prime \prime} b m \\
& =\theta(a \otimes b m)
\end{aligned}
$$

Here we use that

$$
\psi(a b)=\psi(a) \psi(b)=\left(\sum a^{\prime} \otimes a^{\prime \prime}\right)\left(\sum b^{\prime} \otimes b^{\prime \prime}\right)=\sum a^{\prime} b^{\prime} \otimes a^{\prime \prime} b^{\prime \prime}
$$

the fact that $\epsilon\left(b^{\prime}\right) \in k$ is central, and the counital identity $\sum \epsilon\left(b^{\prime}\right) b^{\prime \prime}=b=$ $\sum b^{\prime} \epsilon\left(b^{\prime \prime}\right)$.

Similarly,

$$
\theta^{-1}:\left(A \otimes_{B} k\right) \otimes M \longrightarrow A \otimes_{B} M
$$

given by

$$
\theta^{-1}((a \otimes 1) \otimes m)=\sum a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) m
$$

where χ is the antipode of A. This is well defined:

$$
\begin{aligned}
\theta^{-1}((a b \otimes 1) \otimes m) & =\sum a^{\prime} b^{\prime} \otimes \chi\left(b^{\prime \prime}\right) \chi\left(a^{\prime \prime}\right) m \\
& =\sum a^{\prime} \otimes\left(\sum b^{\prime} \chi\left(b^{\prime \prime}\right)\right) \chi\left(a^{\prime \prime}\right) m \\
& =\sum a^{\prime} \otimes \epsilon(b) \chi\left(a^{\prime \prime}\right) m \\
& =\sum a^{\prime} \epsilon(b) \otimes \chi\left(a^{\prime \prime}\right) m \\
& =\theta^{-1}((a \otimes \epsilon(b)) \otimes m)
\end{aligned}
$$

Now, θ is an A-homomorphism:

$$
\begin{aligned}
\theta\left(a_{1}(a \otimes m)\right) & =\theta\left(a_{1} a \otimes m\right) \\
& =\sum\left(a_{1}^{\prime} a^{\prime} \otimes 1\right) \otimes a_{1}^{\prime \prime} a^{\prime \prime} m \\
& =a_{1} \sum\left(a^{\prime} \otimes 1\right) \otimes a^{\prime \prime} m \\
& =a_{1} \theta(a \otimes m) .
\end{aligned}
$$

Next, θ^{-1} is an A-homomorphism:

$$
\begin{aligned}
\theta^{-1}\left(a_{1}((a \otimes 1) \otimes m)\right) & =\theta^{-1}\left(\sum\left(a_{1}^{\prime} a \otimes 1\right) \otimes a_{1}^{\prime \prime} m\right) \\
& =\sum\left(\left(a_{1}^{\prime}\right)^{\prime} a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) \chi\left(\left(a_{1}^{\prime}\right)^{\prime \prime}\right) a_{1}^{\prime \prime} m\right. \\
& =\sum\left(a_{1}^{\prime} a^{\prime} \otimes \chi\left(a^{\prime \prime}\right)\left(\sum \chi\left(\left(a_{1}^{\prime \prime}\right)^{\prime}\right)\left(a_{1}^{\prime \prime}\right)^{\prime \prime}\right) m\right. \\
& =\sum\left(a_{1}^{\prime} a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) \epsilon\left(a_{1}^{\prime \prime}\right) m\right. \\
& =\sum\left(\sum a_{1}^{\prime} \epsilon\left(a_{1}^{\prime \prime}\right)\right) a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) m \\
& =\sum a_{1} a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) m \\
& =a_{1} \sum a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) m \\
& =a_{1} \theta^{-1}(a \otimes m)
\end{aligned}
$$

Now,

$$
\begin{aligned}
\theta^{-1}(\theta(a \otimes m)) & =\theta^{-1}\left(\sum\left(a^{\prime} \otimes 1\right) \otimes a^{\prime \prime} m\right) \\
& =\sum\left(a^{\prime}\right)^{\prime} \otimes \chi\left(\left(a^{\prime}\right)^{\prime \prime}\right) a^{\prime \prime} m \\
& =\sum a^{\prime} \otimes \chi\left(\left(a^{\prime \prime}\right)^{\prime}\right)\left(a^{\prime \prime}\right)^{\prime \prime} m \\
& =\sum a^{\prime} \otimes\left(\sum \chi\left(\left(a^{\prime \prime}\right)^{\prime}\right)\left(a^{\prime \prime}\right)^{\prime \prime}\right) m \\
& =\sum a^{\prime} \otimes \epsilon\left(a^{\prime \prime}\right) m \\
& =\sum a^{\prime} \epsilon\left(a^{\prime \prime}\right) \otimes m \\
& =a \otimes m
\end{aligned}
$$

so that $\theta^{-1} \theta$ is the identity.

Finally,

$$
\begin{aligned}
\theta\left(\theta^{-1}((a \otimes 1) \otimes m)\right) & =\theta\left(\sum a^{\prime} \otimes \chi\left(a^{\prime \prime}\right) m\right) \\
& =\sum\left(\left(a^{\prime}\right)^{\prime} \otimes 1\right) \otimes\left(a^{\prime}\right)^{\prime \prime} \chi\left(a^{\prime \prime}\right) m \\
& =\sum\left(a^{\prime} \otimes 1\right) \otimes\left(\sum\left(a^{\prime \prime}\right)^{\prime} \chi\left(a^{\prime \prime}\right)^{\prime \prime}\right) m \\
& =\sum\left(a^{\prime} \otimes 1\right) \otimes \epsilon\left(a^{\prime \prime}\right) m \\
& =\sum\left(\sum a^{\prime} \epsilon\left(a^{\prime \prime}\right) \otimes 1\right) \otimes m \\
& =(a \otimes 1) \otimes m
\end{aligned}
$$

so that $\theta \theta^{-1}$ is the identity.
Note that we have several times used without mention the fact that coassociativity, $(\psi \otimes 1) \psi=(1 \otimes \psi) \psi$, says that

$$
\sum\left(a^{\prime}\right)^{\prime} \otimes\left(a^{\prime}\right)^{\prime \prime} \otimes a^{\prime \prime}=\sum a^{\prime} \otimes\left(a^{\prime \prime}\right)^{\prime} \otimes\left(a^{\prime \prime}\right)^{\prime \prime}
$$

