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K-Theory of Classifying Spaces Representation Theory

Representation Rings

Restriction, induction and conjugation induce natural transformations
between the real, complex, and quaternionic representation rings:

RU

RSp

RU

RO

qc̃ = 2

c̃q = 1 + τ qτ = q

τc = c τ c̃ = c̃

cr = 1 + τ rτ = r

rc = 2

τ

c r

c̃ q

oo

��

OO

OO

��
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K-Theory of Classifying Spaces Representation Theory

Representation Rings

For any compact Lie group, we may choose

irreducible real representations Ui ,

irreducible complex representations Vj , and

irreducible quaternionic representations Wk

so that

RU = Z〈cUi 〉 ⊕ Z〈Vj , τVj〉 ⊕ Z〈c̃Wk〉
RO = Z〈Ui 〉 ⊕ Z〈rVj〉 ⊕ Z〈rqWk〉
RSp = Z〈qcUi 〉 ⊕ Z〈qVj〉 ⊕ Z〈Wk〉
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K-Theory of Classifying Spaces Atiyah-Segal Theorem

Equivariant K-theory

Evidently,
KU0

G = RU(G )

and similarly for KO and KSp. The Atiyah-Segal Theorem asserts that the
map S ←− EG+ induces completion at the augmentation ideal:

KU0
G = RU(G ) −→ KU0

G (EG+) = KU0(BG )

and similarly for KO and KSp. Thus

KU0(BG ) = RU(G )b
I KO0(BG ) = RO(G )b

I KSp0(BG ) = RSp(G )b
I

They also show that [BG ,U] = 0 = [BG ,O] = [BG ,Sp].

Write R̂O for ROb
I hereafter.
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K-Theory of Classifying Spaces Atiyah-Segal Theorem

Using representations of G on Clifford modules, Atiyah, Bott and Shapiro
give an elegant account of the Atiyah-Segal isomorphisms, showing:

Theorem

1 KU∗
G = RU(G )[v , v−1].

2 KO∗
G = RO∗(G )[β, β−1] where

RO0(G ) = RO(G ) ∼= Z{Ui , rVj , r c̃Wk}
RO−1(G ) = RO(G )/RU(G ) ∼= F2{Ui}

RO−2(G ) = RU(G )/RSp(G ) ∼= F2{cUi} ⊕ Z{V j}
RO−3(G ) = 0

RO−4(G ) = RSp(G ) ∼= Z{qcUi , qVj ,Wk}
RO−5(G ) = RSp(G )/RU(G ) ∼= F2{Wk}

RO−6(G ) = RU(G )/RO(G ) ∼= Z{V j} ⊕ F2{c̃Wk}
RO−7(G ) = 0
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K-Theory of Classifying Spaces Atiyah-Segal Theorem

Coefficients

The action of the coefficients,

KU∗ = Z[v , v−1]

and

KO∗ =
Z[η, α, β, β−1]

(2η, η3, ηα, α2 − 4β)

with v ∈ KU−2, η ∈ KO−1, α ∈ KO−4, and β ∈ KO−8, coincide with
natural maps in representation theory.
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K-Theory of Classifying Spaces Atiyah-Segal Theorem

For example, η induces the natural quotients

RO −→ RO/RU and RSp −→ RSp/RU

and the evident inclusions

RO/RU −→ RU/RSp and RSp/RU −→ RU/RO.

On the level of Clifford algebras, multiplication by η is complexification.
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K-Theory of Classifying Spaces Atiyah-Segal Theorem

Similarly multiplication by α is quaternionification. Precisely, it is

qc : RO −→ RSp in degrees 0 mod 8

r c̃ : RSp −→ RO in degrees 4 mod 8

multiplication by 2,

F2{cUi} ⊕ Z{V j} −→ Z{V j} ⊕ F2{c̃Wk}

and
Z{V j} ⊕ F2{c̃Wk} −→ F2{cUi} ⊕ Z{V j}

in degrees 2 mod 4,

and 0 in odd degrees.
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K-Theory of Classifying Spaces Bott Periodicity

There is a more elementary deduction of the values of the completed
theory, just from the spaces involved in Bott periodicity, together with the
isomorphisms [Atiyah?]

[BG ,BO × Z] = R̂O(G ), [BG ,BSp × Z] = R̂Sp(G ),

and
[BG ,BU × Z] = R̂U(G ), [BG ,U] = 0.
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K-Theory of Classifying Spaces Bott Periodicity

Recall that Bott periodicity says that starting with BO × Z and repeatedly
taking loops gives

O

O/U

U/Sp

BSp × Z

Sp

Sp/U

U/O, and then

BO × Z again.
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K-Theory of Classifying Spaces Bott Periodicity

Theorem

The values of [BG ,−] on the infinite loop spaces above are as follows:

1 [BG ,O] = R̂O(G )/R̂U(G )

2 [BG ,Sp] = R̂Sp(G )/R̂U(G )

3 [BG ,U/Sp] = 0

4 [BG ,U/O] = 0

5 [BG ,O/U] = R̂U(G )/R̂Sp(G )

6 [BG ,Sp/U] = R̂U(G )/R̂O(G )
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K-Theory of Classifying Spaces Bott Periodicity

Proof.

[BG ,O] = R̂O(G )/R̂U(G ) by mapping BG into the fibration sequence

Ω(U) // Ω(U/O) // O // U.

BU × Z // BO × Z

since [BG ,U] = 0.
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K-Theory of Classifying Spaces Bott Periodicity

Proof.

[BG ,Sp] = R̂Sp(G )/R̂U(G ) by mapping BG into the fibration sequence

Ω(U) // Ω(U/Sp) // Sp // U.

BU × Z // BSp × Z

since [BG ,U] = 0.
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K-Theory of Classifying Spaces Bott Periodicity

Proof.

[BG ,U/Sp] = 0 by mapping BG into the fibration sequence

U −→ U/Sp −→ BSp × Z −→ BU × Z,

since c̃ : R̂Sp(G ) −→ R̂U(G ) is a monomorphism.

[BG ,U/O] = 0 by mapping BG into the fibration sequence

U −→ U/O −→ BO × Z −→ BU × Z,

since c : R̂O(G ) −→ R̂U(G ) is a monomorphism.
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K-Theory of Classifying Spaces Bott Periodicity

Proof.

[BG ,O/U] = R̂U(G )/R̂Sp(G ) by mapping BG into the fibration sequence

Ω2(O/U) // Ω(U) // Ω(O) // Ω(O/U) // U // O.

BSp × Z // BU × Z // O/U // U/Sp

and using [BG ,U/Sp] = 0.

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryGeneral Theory Münster 20 / 66



K-Theory of Classifying Spaces Bott Periodicity

Proof.

Finally, for Part (6) we see [BG ,Sp/U] = R̂U(G )/R̂O(G ) by mapping BG
into the fibration sequence

Ω2(Sp/U) // Ω(U) // Ω(Sp) // Ω(Sp/U) // U // Sp.

BO × Z // BU × Z // Sp/U // U/O

and using [BG ,U/O] = 0.
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Connective K-Theory Bockstein Spectral Sequences

Coefficients

Taking connective covers gives

ku∗ = Z[v ]

and

ko∗ =
Z[η, α, β]

(2η, η3, ηα, α2 − 4β)
.

These now relate cohomology and periodic K-theory:

ko

c

��

[β−1] // KO

c

��
HZ kuoo

[v−1]
// KU
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Connective K-Theory Bockstein Spectral Sequences

The cofiber sequence

Σ2ku
v−→ ku −→ HZ −→ Σ3ku

results in a Bockstein spectral sequence

HZ∗(X )[v ] =⇒ ku∗(X )

with first differential
Q1 : HZ −→ Σ3HZ

Essentially the same as the Atiyah-Hirzebruch spectral sequence since

· · · v−→ Σ2iku
v−→ · · · v−→ Σ2ku

v−→ ku

is the Postnikov tower of ku.
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Connective K-Theory Bockstein Spectral Sequences

Similarly, the cofiber sequence

Σko
η−→ ko

c−→ ku
R−→ Σ2ko

results in a Bockstein spectral sequence

ku∗(X )[η] =⇒ ko∗(X )

with first differential cR

closely related to 1 + τ in the periodic theory,

and to Sq2 in cohomology.

Better, since η3 = 0,

it collapses: E 4 = E∞

at E∞ it is concentrated on lines 0, 1 and 2.
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Connective K-Theory Bockstein Spectral Sequences

The η-c-R sequence, its differential, and related operations

Σ2ku

v

��

r

$$JJJJJJJJJ

Σko
η // ko

c // ku
R //

d1 $$JJJJJJJJJJ

��

Σ2ko

c

��
Σ2ku

��
HF2

Sq2
// Σ2HF2
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Connective K-Theory Adams Spectral Sequence

Since H∗ku = A//E (1) and H∗ko = A//A(1), we have Adams spectral
sequences

Exts,tE(1)(F2,H
∗BG ) =⇒ ku−t+sBG

and
Exts,tA(1)(F2,H

∗BG ) =⇒ ko−t+sBG

(Associated graded cannot distinguish ku∗BG from ku∗G .)
’Accounting device’, destroys multiplicative information.

Typical use: show the Bott map acts monomorphically in a range beyond
the edge of periodicity, so that relations can be accurately detected in
periodic K-theory, which is determined by representation theory. Use the
Adams spectral sequence to verify that the implications of these relations
suffice.
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Connective K-Theory Postnikov Tower of ko

Since H∗ko, H∗HZ and H∗H are all induced up from A(1), we can
compute the cohomology of the Postnikov sections of ko in A(1)-Mod and
then tensor up to A.

ko // HZ // Σko〈1〉

0 ◦ ◦oo

1

2 ◦ ◦oo

3 ◦ ◦

4

5 ◦ ◦
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Connective K-Theory Postnikov Tower of ko

ko〈1〉 // H // Σko〈2〉

1 ◦ ◦oo

2 ◦ ◦

3 ◦
vvv

vv
◦oo

4 ◦ ◦ ◦
vvv

vv
◦

5 ◦ ◦

6 ◦ ◦

7 ◦ ◦
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Connective K-Theory Postnikov Tower of ko

ko〈2〉 // Σ2H // Σko〈4〉

2 ◦ ◦oo

3 ◦ ◦

4 ◦ ◦
xxx

xx

5 ◦ ◦ ◦
xxx

xx
◦rr

6 ◦ ◦

7 ◦ ◦

8 ◦ ◦
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Connective K-Theory Postnikov Tower of ko

ko〈4〉 // Σ4HZ // Σko〈8〉

4 ◦ ◦oo

5

6 ◦ ◦

7 ◦ ◦

8

9 ◦ ◦oo
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Connective K-Theory Postnikov Tower of ko

Corollary

The primary differentials in the Atiyah-Hirzebruch spectral sequences
Hp(X , koq) =⇒ kop−q(X ) and Hp(X ,KOq) =⇒ KOp−q(X ) are:

Hp(X , ko8i )
d2−→ Hp+2(X , ko8i+1) is Hp(X ,Z)

Sq2

−→ Hp+2(X ,Z/2),

Hp(X , ko8i+1)
d2−→ Hp+2(X , ko8i+2) is

Hp(X ,Z/2)
Sq2

−→ Hp+2(X ,Z/2),

Hp(X , ko8i+2)
d3−→ Hp+3(X , ko8i+4) is Hp(X ,Z/2)

Sq3

−→ Hp+3(X ,Z),
and

Hp(X , ko8i+4)
d5−→ Hp+5(X , ko8i+8) is Hp(X ,Z)

Sq5

−→ Hp+5(X ,Z).
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Connective K-Theory Equivariant Connective K-Theory

The crude truncation ku = KU[0,∞) which we used in the non-equivariant
case will not produce an interesting result in the equivariant case.
In particular it will not have Euler classes, and would not be complex
orientable.

Solution: observe that any equivariant kuG should sit in a commutative
square

kuG
//

��

KUG

��
F (EG+, kuG )

' // F (EG+, infG1 ku) // F (EG+, infG1 KU)

and define kuG to be the pullback.

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryGeneral Theory Münster 37 / 66



Connective K-Theory Equivariant Connective K-Theory

Greenlees [JPAA 2004] showed this has good properties:

1 kuG is a (strict) commutative ring G-spectrum.

2 If H ⊂ G then resGH kuG = kuH .

3 kuG is a split ring G -spectrum.

4 kuG [v−1] = KUG .

5 ku∗G is Noetherian.

6 kuG is complex orientable.

7 ku∗G −→ ku∗BG is completion

8 There is a local cohomology spectral sequence.
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Connective K-Theory Equivariant Connective K-Theory

The same construction works in the real case.
We define koG to be the pullback.

koG
//

��

KOG

��
F (EG+, infG1 ko) // F (EG+, infG1 KO)
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Connective K-Theory Equivariant Connective K-Theory

Calculational consequence

The coefficient rings sit in pullback squares

ku∗G //

��

KU∗
G

��

ko∗G //

��

KO∗
G

��
ku∗(BG ) // KU∗(BG ) ko∗(BG ) // KO∗(BG )
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Connective K-Theory Equivariant Connective K-Theory

More interesting, if Ĝ = G × C2, there is a Ĝ spectrum KR representing
G -equivariant periodic Real K-theory, in the sense of Atiyah.
There exists a C2-map KR −→ KRG which is a C2-equivalence, hence a

Ĝ -map inf
bG
C2

KR −→ KR of Ĝ -spectra which is a C2-equivalence, so that

F (EG+,KR) ' F (EG+, inf
bG
C2

KR)

as Ĝ -spectra.
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Connective K-Theory Equivariant Connective K-Theory

We then define kRG to be the pullback in Ĝ -spectra

kRG
//

��

KR

��

F (EG+, inf
bG
C2

kR) // F (EG+, inf
bG
C2

KR)

where the lower left kR is the connective cover of the C2-spectrum KR.

Theorem

As G-spectra, kRG ' kuG and (kRG )C2 ' koG .
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Connective K-Theory Chern Classes

There are compatible Chern classes in cohomology, in connective and
periodic K-theories, and in representation theory

cH
i cku

i
�oo � v i

// cK
i cR

i
�oo

H2i (BU(n);Z)

��

ku2iBU(n)

��

oo v i
// K 0BU(n)

��

R(U(n))

��

oo

H2i (BT n;Z) ku2iBT noo v i
// K 0BT n R(T n)oo

which restrict to the symmetric polynomials in the Euler classes of the
natural line bundles on a maximal torus T n ⊂ U(n).
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Connective K-Theory Chern Classes

Chern classes in representation theory

Definition

Let n = dim(V ). Then

cR
k (V ) =

k∑
i=0

(−1)i
(

n − i

n − k

)
Λi (V )

Definition

The Chern (or ’gamma’) filtration of representation theory:
JUi (G ) ⊂ R(G ) is the ideal generated by all products ci1(V1) · · · cik (Vk)
with i1 + · · · ik ≥ i .

This is multiplicative:

JUj(G )JUk(G ) ⊂ JUj+k(G )
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Connective K-Theory Chern Classes

The formula for the ck in terms of the Λi is the same as the formula for
the Λk in terms of the ci

Λk(V ) =
k∑

i=0

(−1)i
(

n − i

n − k

)
cR
i (V )

since this formula is the one that relates symmetric polynomials in
variables t1, . . . , tn to symmmetric polynomials in 1− t1, . . . , 1− tn, and
t 7→ 1− t is an involution.
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Connective K-Theory Chern Classes

Modified Rees ring

Given a ring R and a multiplicative filtration F = {R = F0 ⊃ F1 ⊃ · · · }
the Modified Rees ring

MRees(R,F) = {
∞∑

i=−N

ri t
i | r−i ∈ Fi for i > 0}

The usual Rees ring construction uses Fi = I i for an ideal I ⊂ R.

If C is the Chern filtration of R(G ) then

MRees(RU(G )) := MRees(RU(G ), C)

is a very good aproximation to ku∗G .
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Connective K-Theory Near the Edge of Periodicity

The Complex Case

Lemma

JU1(G ) is the augmentation ideal JU(G ), consisting of representations of
virtual dimension 0.

Proof.

Since JU is generated by first Chern classes, cR
1 (V ) = dim(V )− V ,

JU ⊂ JU1.
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Connective K-Theory Near the Edge of Periodicity

Proof.

(Cont.) Conversely, for k > 0,

dim(cR
k (V )) = dim

k∑
i=0

(−1)i
(

n − i

n − k

)
Λi (V )

=
k∑

i=0

(−1)i
(

n − i

n − k

)
dim Λi (V )

=
k∑

i=0

(−1)i
(

n − i

n − k

)(
n

i

)

=

(
n

n − k

) k∑
i=0

(−1)i
(

k

i

)
= 0

so JU1 ⊂ JU.
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Connective K-Theory Near the Edge of Periodicity

Lemma

JU2 consists of representations of virtual dimension 0 and virtual
determinant 1.

For the defining representation of U(n),

det = Λn = 1− cR
1 + · · ·+ (−1)ncR

n

= 1− vcku
1 + · · ·+ (−v)ncku

n .

Since SU(n) is the fiber of det : U(n) −→ U(1),

ku∗BSU(n) = ku∗BU(n)/(cku
1 (det )

= ku∗[[c1, . . . , cn]]/((1− Λn)/v)

= ku∗[[c1, . . . , cn]]/(c1 − vc2 + v2c3 − · · ·+ (−v)n−1cn).

(‘Unnaturally’ isomorphic to ku∗[[c2, . . . , cn]].)
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Connective K-Theory Near the Edge of Periodicity

JU2 is generated by products of Chern classes and by ci (V ) for i ≥ 2.

Let JU ′
2 be the ideal of virtual dimension 0, determinant 1 representations,

i.e., those whose classifing map lifts over BSU −→ BU −→ BU × Z.

For V −W ∈ JU ′
2, let

δ = det(V ) = det(W ) and n = dim(V ) = dim(W ).

δ ∈ R(G )×, so it suffices to show V δ−1 −W δ−1 ∈ JU2.
So we may assume δ = 1.
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Connective K-Theory Near the Edge of Periodicity

Since V −W = (n −W )− (n − V ), it suffices to show

c1(W ) = n −W ∈ JU2.

det(W ) = 1 so the representation W lifts to SU(n).

In ku∗BSU(n),
c1 = vc2 − v2c3 + · · · ± vn−1cn

and it follows that JU ′
2 ⊂ JU2.
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Connective K-Theory Near the Edge of Periodicity

Conversely, we must show that any Chern class ck(V ), k > 1, and any
product c1(V )c1(W ), have dimension 0 and determinant 1. The first was

shown already. For the second, recall that

det(kV ) = (det(V ))k and det(Λi (V )) = (det(V ))(
n−1
i−1)

for i > 0. Thus

det(ck(V )) =
k∏

i=1

(det Λi (V ))((−1)i(n−i
n−k))

=
k∏

i=1

(det V )((−1)i(n−i
n−k)(

n−1
i−1))

This is det(V ) raised to the power

k∑
i=1

(−1)i
(

n − i

n − k

)(
n − 1

i − 1

)
=

(
n − 1

k − 1

) k∑
i=1

(−1)i
(

k − 1

i − 1

)
= 0,

since k − 1 > 0.
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Connective K-Theory Near the Edge of Periodicity

Finally, if m = dim(V ) and n = dim(W ). Then

dim(c1(V )c1(W )) = dim((m − V )(n −W )) = 0

and

det(m − V )(n −W )) = det(mn − nV −mW + VW ) = 1

since
det(VW ) = (det(V ))n(det(W ))m.

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryGeneral Theory Münster 55 / 66



Connective K-Theory Near the Edge of Periodicity

Theorem

ku∗G −→ KU∗
G is a monomorphism in codegrees ≤ 5 and

kui
G =



0 i ≤ 0 odd
RU(G ) i ≤ 0 even
0 i = 1
JU(G ) i = 2
0 i = 3
JU2(G ) i = 4
0 i = 5

Proof.

Compare the Atiyah-Hirzebruch spectral sequences

Hp(BG , kuq) +3

��

kup−q(BG )

��
Hp(BG ,KUq) +3 KUp−q(BG )
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Connective K-Theory Near the Edge of Periodicity

Proof.

(Cont.) The only differential which could affect the difference between
them is

d3 : H2(BG ,KU−2) −→ H5(BG ,KU0).

But every element of H2(BG ,KU−2) is a first Chern class, and these
survive by the universal example.

This gives ku5BG = 0 and shows that ku4BG is the kernel of the map
KU4

G −→ H2(BG ;Z)⊗ H0(BG ,Z) induced by the Postnikov section

BU × Z
B det×1−→ BU(1)× Z ' K (Z, 2)× K (Z, 0).

By the Lemma, this is exactly ĴU2(G ). The pullback diagram then gives
the uncompleted results.
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Connective K-Theory Near the Edge of Periodicity

Beyond this, complications set in.

Theorem

There are exact sequences

0 −→ H3BG
Q1−→ ku6BG

v−→ ku4BG = ĴU2(G )

−→ H4BG
Q1−→ ku7BG −→ 0

and

0 −→ H5BG
Q1−→ ku8BG

v−→ ku6BG −→ H6BG
Q1−→ ku9BG −→ · · ·

Proof.

Use Σ2ku
v−→ ku −→ HZ.
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The Real Case

Theorem

ko∗G −→ KO∗
G is a monomorphism in codegrees ≤ 7, and

ko i
G =



0 i = 1
JU(G )/JO(G ) ⊂ RU(G )/RO(G ) i = 2
JSp(G )/JU(G ) ⊂ RSp(G )/RU(G ) i = 3
JSp(G ) ⊂ RSp(G ) i = 4
0 i = 5
JU2(G )/JSp(G ) ⊂ RU(G )/RSp(G ) i = 6
JSpin(G )/JU2(G ) ⊂ RO(G )/RU(G ) i = 7
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Connective K-Theory Near the Edge of Periodicity

As in the complex case ko i
G −→ KO i

G is often a monomorphism for i = 8
or 9. There is an exact sequence

JSO
βw2−→ H3(BG ;Z) −→ ko8

G −→ KOG
−8 = RO(G )

and ko9
G = 0 iff the two maps

JSO
w2−→ H2(BG ;Z/2) and RSpin(G )

p1/2−→ H4(BG ;Z)

are monomorphisms.
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Connective K-Theory Near the Edge of Periodicity

The argument goes as in the real case, but the difference between the
Atiyah-Hirzebruch spectral sequences for ko∗BG and KO∗BG is more
complicated. The analysis is helped by the following.

Theorem

The first nine spaces in the spectrum ko and the Moore-Postnikov
factorization of ko −→ KO are

0 BO × Z −→ BO × Z

1 U/O −→ U/O

2 Sp/U −→ Sp/U

3 Sp −→ Sp

4 BSp −→ BSp × Z

5 SU/Sp −→ U/Sp

6 Spin/SU −→ SO/U −→ O/U

7 String −→ Spin −→ SO −→ O

8 BString −→ BSpin −→ BSO −→ BO −→ BO × Z
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Connective K-Theory Near the Edge of Periodicity

This is proved at the same time as we identify maps from BG into various
of these homogeneous spaces. Denote the connective covers of O by
SO = O〈1〉, Spin = O〈3〉, and String = O〈7〉. Then

Theorem

For the 0, 2, and 6-connected covers of O and associated homogeneous
spaces, we have:

1 Ω(SO/U) = U/Sp and [BG ,SO/U] = ĴU(G )/ĴSp(G )

2 Ω(Spin/SU) = SU/Sp and [BG ,Spin/SU] = ĴU2(G )/ĴSp(G )

3 ΩSO = O/U and [BG ,SO] = ĴO(G )/ĴU(G )

4 ΩSpin = SO/U and [BG ,Spin] = ĴSO(G )/ĴU(G )

5 ΩString = Spin/SU and [BG ,String ] = ĴSpin(G )/ĴU2(G )
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Connective K-Theory Near the Edge of Periodicity

The most interesting of these is String . The relevant diagram in this case
is

Σ2HZ // Σ2HZ/2
β // Σ3HZ

BU

OO

// BSO

w2

OO

// Spin

OO

BSU

OO

// BSpin //

OO

String

OO

The latter fibre sequence shows that Ω(String) = Spin/SU and that

[BG ,String ] is ĴSpin(G )/ĴU2(G ), since [BG ,B2SU] = [BG ,U〈5〉] = 0.

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryGeneral Theory Münster 63 / 66



Connective K-Theory Near the Edge of Periodicity

To get the fiber sequence in the middle row of the previous diagram,
consider:

ΣHZ/2 ΣHZ/2

BU // BO

w1

OO

// SO

Ωw2

OO

BU // BSO

OO

// Spin

OO

The latter fibre sequence shows that [BG ,Spin] = ĴSO(G )/ĴU(G ) since,
again, [BG ,B2U] = [BG ,SU] = 0.
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End of Part One
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