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LG RGN ECVINMSEI=S  Representation Theory

Representation Rings

Restriction, induction and conjugation induce natural transformations
between the real, complex, and quaternionic representation rings:

RO rc=2
c r cr=14+r71 rT=r
RU <—— RU Tc=c rE=¢
¢ q cg=1+r71 qr =q

RSp gc =2
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LG RGN ECVINMSEI=S  Representation Theory

Representation Rings

For any compact Lie group, we may choose
@ irreducible real representations U;,
@ irreducible complex representations V;, and

@ irreducible quaternionic representations W

so that
o RU =Z(cU;) ® Z(V}, TV;) ® Z(c W)
e RO =2Z(U;)) ®Z(rV;) ® Z(rgWy)

/) @
o RSp = Z{qcU;) & Z{qV;) & Z{Wk)
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Gt e e
Equivariant K-theory

Evidently,
KU = RU(G)

and similarly for KO and KSp. The Atiyah-Segal Theorem asserts that the
map S «—— EG, induces completion at the augmentation ideal:

KU = RU(G) — KUZ(EG,) = KU°(BG)
and similarly for KO and KSp. Thus
KU°(BG) = RU(G),  KO°(BG) = RO(G),  KSp°(BG) = RSp(G),

They also show that [BG, U] = 0 = [BG, O] = [BG, Sp].
Write RO for RO, hereafter.
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(NiivplirSeeel Ve
Using representations of G on Clifford modules, Atiyah, Bott and Shapiro
give an elegant account of the Atiyah-Segal isomorphisms, showing:

Theorem

Q@ KU: = RU(G)[v,v71].

@ KO; = RO*(G)[B,B71] where

RO°(G) = RO(G)

(G) = RO(G)/RU(G)
(G) = RU(G)/RSp(G)
(G) =0

RO™*(G) = RSp(G)
(G) = RSp(G)/RU(G)
(G) = RU(G)/RO(G)
(6) = 0

Il

Il

1R

Il

Z{U;,rVj, reW,}
Fo{U;}
Fo{cU;} ® Z{Vj}

Z{qCUI'?q\/ja Wk}
Fo{ Wi}
Z{V;} @ F2{cW,}
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LU AN ECE WIS Bl Atiyah-Segal Theorem

Coefficients

The action of the coefficients,
KU* = Z[v,v ]

and . .
KO* — ["77 Oé, /37 ﬁ ]
(2777 7737 na, a2 - 4&)
with v € KU2, n e KO 1 ae KO*, and IEXS KO—8, coincide with
natural maps in representation theory.
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LU AN ECE WIS Bl Atiyah-Segal Theorem

For example, 1 induces the natural quotients
RO — RO/RU and RSp — RSp/RU
and the evident inclusions
RO/RU — RU/RSp and RSp/RU — RU/RO.

On the level of Clifford algebras, multiplication by 7 is complexification.
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LU AN ECE WIS Bl Atiyah-Segal Theorem

Similarly multiplication by « is quaternionification. Precisely, it is
@ gc: RO — RSp in degrees 0 mod 8
@ r¢: RSp — RO in degrees 4 mod 8
@ multiplication by 2,

Fo{cU;} @ Z{Vj} — Z{Vj} @ Fo{ecW;}

and
Z{(V;} @ F2{eWi} — Fa{cU;} @ Z{V;}

in degrees 2 mod 4,

@ and 0 in odd degrees.
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K-Theory of Classifying Spaces [aIelall &=fafefe el

There is a more elementary deduction of the values of the completed
theory, just from the spaces involved in Bott periodicity, together with the
isomorphisms [Atiyah?]

[BG,BO x Z] = RO(G),  [BG,BSp x Z] = RSp(G),

and
[BG,BU x Z] = RU(G),  [BG, U] =0.
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K-Theory of Classifying Spaces [aIelall &=fafefe el

Recall that Bott periodicity says that starting with BO x Z and repeatedly
taking loops gives
e O
e O/U
U/Sp
BSp x Z
Sp
Sp/U
U/O, and then
BO x Z again.
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K-Theory of Classifying Spaces [aIelall &=fafefe el

Theorem
The values of [BG, —| on the infinite loop spaces above are as follows:
Q [BG, 0] = RO(G)/RU(G)
@ [BG. 5p] = RSp(G)/RU(G)
@ [BG,U/Sp] =0
Q [BG,U/0]=0
@ [BG,0/U] = RU(G)/RSp(G)
@ (BG, 5p/U] = RU(G)/RO(G)
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K-Theory of Classifying Spaces [aIelall &=fafefe el

Proof.
[BG, 0] = /Rb(G)/@(G) by mapping BG into the fibration sequence

QU) —— Q(U/0) —= 0 — U.

BUxZ—BOxZ

since [BG, U] = 0. O
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K-Theory of Classifying Spaces [aIelall &=fafefe el

Proof.
[BG, Sp] = @)(G)/@(G) by mapping BG into the fibration sequence

QU) ——= QU/Sp) —= Sp——= U.

BUxZ——BSpxZ

since [BG, U] = 0.
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K-Theory of Classifying Spaces [aIelall &=fafefe el

Proof.
[BG, U/Sp] = 0 by mapping BG into the fibration sequence

U— U/Sp— BSpxZ — BU x Z,
since C : I?ST)(G) — K’l\J(G) is a monomorphism.
[BG, U/O] = 0 by mapping BG into the fibration sequence
U— U/O— BOXxZ— BUXZ,

since ¢ : /RB(G) — él\J(G) is a monomorphism.
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K-Theory of Classifying Spaces [aIelall &=fafefe el

Proof.
[BG,0/U] = @(G)/ﬁS\p(G) by mapping BG into the fibration sequence

Q?(0/U) ——Q(U) ——Q(0) —=Q(0/U) —= U — 0.

BSpxZ— BU x Z o/U U/Sp

and using [BG, U/Sp] = 0.

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryGeneral Th Miinster 20 / 66



K-Theory of Classifying Spaces [aIelall &=fafefe el

Proof.

Finally, for Part (6) we see [BG, Sp/U] = @(G)/EB(G) by mapping BG
into the fibration sequence

Q%(Sp/U) — Q(U) —= Q(Sp) —= Q(Sp/U) —= U —— Sp.

BOxZ——BUxZ Sp/U u/o

and using [BG, U/0O] = 0.
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Connective K-Theory Bockstein Spectral Sequences

Coefficients

Taking connective covers gives

ku* = Z|v]
and 2
ot — [7.0.8]
(277’ 7735 neo, a2 - 4ﬁ)
These now relate cohomology and periodic K-theory:

-1
ko [ﬁ—i KO

HZ<—kuFTKU
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Connective K-Theory Bockstein Spectral Sequences

The cofiber sequence
Y2 ku - ku — HZ — Y3ku
results in a Bockstein spectral sequence
HZ*(X)[v] = ku*(X)

with first differential -
Qi:HZ — Y3HZ

Essentially the same as the Atiyah-Hirzebruch spectral sequence since
e S22y Y Y 2k Yk

is the Postnikov tower of ku.
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Connective K-Theory Bockstein Spectral Sequences

Similarly, the cofiber sequence
Tko L ko — ku 55 $2ko
results in a Bockstein spectral sequence
ku*(X)[n] = ko™ (X)

with first differential cR
@ closely related to 1 + 7 in the periodic theory,
e and to Sg? in cohomology.

Better, since 773 =0,
e it collapses: E* = E>

@ at E® it is concentrated on lines 0, 1 and 2.
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Connective K-Theory

The n-c-R sequence, its differential, and related operations

Y 2ku
ko —> ko ——> ku ——> 2k
lc
dl
Y 2ku

S 2
HF, —%- s21F,
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(@ISR  Adams Spectral Sequence

Since H*ku = A//E(1) and H*ko = A//A(1), we have Adams spectral
sequences

Ext>

£y (F2, H'BG) = ku™""*BG

and
Exti’tzl)(Fz, H*BG) = ko "**BG

(Associated graded cannot distinguish ku*BG from kuf;.)
"Accounting device’, destroys multiplicative information.

Typical use: show the Bott map acts monomorphically in a range beyond
the edge of periodicity, so that relations can be accurately detected in
periodic K-theory, which is determined by representation theory. Use the
Adams spectral sequence to verify that the implications of these relations
suffice.
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(@INESOR U  Postnikov Tower of ko

Since H*ko, H*HZ and H*H are all induced up from A(1), we can
compute the cohomology of the Postnikov sections of ko in .A(1)-Mod and

then tensor up to A.

ko HZ Y ko(1)
0 O<—0
\
1 |
/
2 O<——— 0
; ! :
\
4 | /'
5 o ¢}
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Connective K-Theory

ko(1) H Y ko(2)

oO— O
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Connective K-Theory

ko(2) Y2H Y ko(4)
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Connective K-Theory

ko(4) Y4HZ Tko(8)

O oo ~ [e)} ol L
o
o
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Connective K-Theory Postnikov Tower of ko

Corollary
The primary differentials in the Atiyah-Hirzebruch spectral sequences

HP(X, kog) = koP~9(X) and HP(X, KO,) = KOP~9(X) are:
2
o HP(X, kog;) 2 HPY2(X, kogis1) is HP(X,Z) 25 HPY2(X,Z/2),
o HP(X, k08i+1) A HP+2(X7 k03i+2) is
2
HP(X,Z/2) 2% HP2(X,Z/2),

3
o HP(X, kogiso) -2 HPY3(X, kogiva) is HP(X,Z/2) 2% HPH3(X, Z),
and

5
o HP(X, kogira) 5 HPY5(X, kogirg) is HP(X,Z) 2% HPH5(X, Z).
_l’_
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(@GO  Equivariant Connective K-Theory

The crude truncation ku = KUJ0, co) which we used in the non-equivariant
case will not produce an interesting result in the equivariant case.

In particular it will not have Euler classes, and would not be complex
orientable.

Solution: observe that any equivariant kug should sit in a commutative
square

kuG KUG

l l

F(EGy, kug) —== F(EGy.,inf$ ku) — F(EG,.,inf¢ KU)

and define kug to be the pullback.
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(@GO  Equivariant Connective K-Theory

Greenlees [JPAA 2004] showed this has good properties:
kug is a (strict) commutative ring G-spectrum.

If HC G then resf, kug = kuy.

kug is a split ring G-spectrum.

kuG[v_l] = KUg.

kug, is Noetherian.

kug is complex orientable.

kug — ku*BG is completion

© There is a local cohomology spectral sequence.
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(@GO  Equivariant Connective K-Theory

The same construction works in the real case.
We define kog to be the pullback.

kOG K OG

| l

F(EG,,inf$ ko) — F(EG,,inf$ KO)
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(@GO  Equivariant Connective K-Theory

Calculational consequence

The coefficient rings sit in pullback squares

ku; KUz ko KO
ku*(BG) —= KU*(BG) ko*(BG) —= KO*(BG)
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(@GO  Equivariant Connective K-Theory

More interesting, if G =G x (,, there is a G spectrum KR representing
G-equivariant periodic Real K-theory, in the sense of Atiyah.
There existAs a C-map KR — KRS which is a (Cr-equivalence, hence a

a—map infg2 KR — KR of a—spectra which is a Cy-equivalence, so that
F(EGy, KR) ~ F(EG,,infe KR)

as a—spectra.
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(@GO  Equivariant Connective K-Theory

We then define kR to be the pullback in a—spectra

kRg KR

| |

F(EG.,infS kR) —= F(EG,,infe KR)

where the lower left kR is the connective cover of the Cy-spectrum KR.

Theorem
As G-spectra, kRg ~ kug and (kRg)© ~ kog. J
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[@INEOR QU Chern Classes

There are compatible Chern classes in cohomology, in connective and
periodic K-theories, and in representation theory

v
cl Fauk c! i c!

H2(BU(n); Z) ~— ku? BU(n) —2= KOBU(n) <— R(U(n))

| N

H?(BT" Z) <—— ku? BT" —— KOBT" ~—— R(T")

which restrict to the symmetric polynomials in the Euler classes of the
natural line bundles on a maximal torus T" C U(n).
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[@INEOR QU Chern Classes

Chern classes in representation theory

Definition
Let n = dim(V). Then

cR(V) = Z( 1) (”_’)/\'(V)

Definition

The Chern (or 'gamma’) filtration of representation theory:

JU;(G) C R(G) is the ideal generated by all products ¢, (V1) --- ¢ (Vi)
with iqp + -« i > i.

This is multiplicative:

JU(G)JU(G) C JU;44(G)
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[@INEOR QU Chern Classes

The formula for the ¢, in terms of the A’ is the same as the formula for
the AX in terms of the ¢;

(V) = g—n"([] _ k) (V)

since this formula is the one that relates symmetric polynomials in
variables ti, ..., t, to symmmetric polynomials in 1 — t;,...,1 — t,, and
t — 1 —t is an involution.
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[@INEOR QU Chern Classes

Modified Rees ring

Given a ring R and a multiplicative filtration F ={R=F D F1 D ---}
the Modified Rees ring

MRees(R,F)={Y_ rit' | r_j € F for i > 0}
i=—N
The usual Rees ring construction uses F; = I’ for an ideal | C R.
If C is the Chern filtration of R(G) then
MRees(RU(G)) := MRees(RU(G),C)

is a very good aproximation to kug.
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utez ifis 12173 off ety
The Complex Case

Lemma
JU1(G) is the augmentation ideal JU(G), consisting of representations of
virtual dimension 0. )

Proof.
Since JU is generated by first Chern classes, cf(V) = dim(V) — V,

JU C JU;.
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Connective K-Theory Near the Edge of Periodicity

Proof.

(Cont.) Conversely, for k > 0,

so JUy C JU.

dim(c

R
k

(V)

dim é(_l)i<::/i>’\i(v)
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(@GO  Near the Edge of Periodicity

Lemma

JU, consists of representations of virtual dimension 0 and virtual
determinant 1.

For the defining representation of U(n),

det =A" = 1—-cf+---4+(-1)"cFk
= 1—ve("+---+(—Vv)"c;".

Since SU(n) is the fiber of det : U(n) — U(1),

ku*BSU(n) = ku*BU(n)/(cf(det)
= ku*[[e1,...,cn]]/((1—A")/v)

= ku[[cty .-, call/(c1 — vea + Vi3 — -4 (—v)"cy).

(‘Unnaturally’ isomorphic to ku*[[ca, ..., cal].)
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(@GO  Near the Edge of Periodicity

JU, is generated by products of Chern classes and by ¢;(V) for i > 2.

Let JU) be the ideal of virtual dimension 0, determinant 1 representations,
i.e., those whose classifing map lifts over BSU — BU — BU x Z.

For V — W € JU), let
0 = det(V) = det(W) and n=dim(V) =dim(W).

§ € R(G)*, so it suffices to show V51 — Wé~1 € Ju,.
So we may assume § = 1.
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(@GO  Near the Edge of Periodicity

Since V. — W = (n— W) — (n— V), it suffices to show

C]_(W) =n—W e JU,.

det(W) =1 so the representation W lifts to SU(n).

In ku* BSU(n),

a=ve— v+t v e,

and it follows that JUj C JUs.
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(@GO  Near the Edge of Periodicity

Conversely, we must show that any Chern class ¢,(V), k > 1, and any

product c1(V)ci(W), have dimension 0 and determinant 1. The first was

shown already. For the second, recall that
det(kV) = (det(V))¥  and  det(A/(V)) = (det(V))(-2)
for i > 0. Thus

det(ce(V)) = [](detAi(v))(D (o)

—

Il
MR

(det V)(CDGEI(ED)

|
.E»

I
—

This is det(V) raised to the power
k . K
fn—i\[/n—1 n—1 i(k—1\
;(_1) <n—k> (i—l) - <k—1> ;(_1) <i—1) =0
since k —1 > 0.
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(@GO  Near the Edge of Periodicity

Finally, if m = dim(V/) and n = dim(W). Then
dim(ci(V)a(W)) = dim((m — V)(n— W)) =0
and
det(m — V)(n — W)) = det(mn — nV — mW + VW) =1

since det(VW) = (det(V))"(det(W))™.
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Connective K-Theory Near the Edge of Periodicity

Theorem
kug — KU is a monomorphism in codegrees < 5 and

0 i<0 odd
RU(G) i<0  even
0 i=1
ku- =< JU(G) i=2
0 i=3
JU,(G) i=4
L 0 i=5

Proof.

Compare the Atiyah-Hirzebruch spectral sequences

HP(BG, kug) ——= kuP~9(BG)

l |

HP(BG, KUg) — KUP—9(BG)

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryGeneral Th Miinster

56 / 66



Connective K-Theory Near the Edge of Periodicity

Proof.
(Cont.) The only differential which could affect the difference between
them is

ds : H3(BG, KU_) — H*(BG, KUj).

But every element of H?(BG, KU_3) is a first Chern class, and these
survive by the universal example.

This gives ku®BG = 0 and shows that ku*BG is the kernel of the map
KU{ — H?(BG; Z) ® H°(BG, Z) induced by the Postnikov section

BU x Z P25 BU(1) x Z ~ K(Z,2) x K(Z,0).

By the Lemma, this is exactly jl\Jg(G). The pullback diagram then gives
the uncompleted results.

Ol

v
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(@GO  Near the Edge of Periodicity

Beyond this, complications set in.

Theorem
There are exact sequences

0 — H3BG 2 kuPBG —Y ku*BG = JU(G)

L H*BG 2 kiBG — 0

and
Q Q
0 — H°BG — ku®BG —* ku®BG — H°BG —% ku’BG — --- [ |
Proof.
Use 2ku —— ku — HZ. O
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ez idhe (Elzp of Martslsiy
The Real Case

Theorem

ko — KO is a monomorphism in codegrees < 7, and

0 i=1

JU(G)/JO(G) C RU(G)/RO(G) i=2

JSp(G)/JU(G) C RSp(G)/RU(G) i=3

ko = { JSp(G) C RSp(G) i=4

0 i=5

JUx(G)/JSp(G) C RU(G)/RSp(G) i=6
 JSpin(G)/JUx(G) C RO(G)/RU(G) i=7
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(@GO  Near the Edge of Periodicity

As in the complex case koé; — KO& is often a monomorphism for i = 8
or 9. There is an exact sequence

S0 P2 H3(BG; Z) — ko — KOS, = RO(G)
and ko% = 0 iff the two maps

JSO 2. H2(BG;Z/2) and RSpin(G) 2 H*(BG: Z)

are monomorphisms.
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Connective K-Theory Near the Edge of Periodicity

The argument goes as in the real case, but the difference between the
Atiyah-Hirzebruch spectral sequences for ko*BG and KO*BG is more
complicated. The analysis is helped by the following.

Theorem

The first nine spaces in the spectrum ko and the Moore-Postnikov
factorization of ko — KO are

0 BOxZ— BOxZ

Uu/0— U/0

Sp/U — Sp/U

Sp— Sp

BSp — BSp x Z

SU/Sp— U/Sp

Spin/SU — SO/U — O/U

String — Spin — SO — O

BString — BSpin — BSO — BO — BO x Z

0 N O 1B W N
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Connective K-Theory Near the Edge of Periodicity

This is proved at the same time as we identify maps from BG into various
of these homogeneous spaces. Denote the connective covers of O by
SO = O(1), Spin = 0O(3), and String = O(7). Then

Theorem

For the 0, 2, and 6-connected covers of O and associated homogeneous
spaces, we have:

O Q(SO/U) = U/Sp and [BG, SO/ U] = JU(G)/JSp(G)

@ Q(Spin/SU) = SU/Sp and [BG, Spin/SU] = JU»(G)/JISp(G)
@ QSO = 0/U and [BG,SO] = JO(G)/JU(G)

© QSpin = SO/U and [BG, Spin] = JSO(G)/JU(G)

@ QString = Spin/SU and [BG, String] = @(G)/jl\lg(G)
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(@GO  Near the Edge of Periodicity

The most interesting of these is String. The relevant diagram in this case
is

s2HZ —=2HZ/2 L~ v3pz7

o]

BU — BSO — Spin

T

BSU —— BSpin ——— String

The latter fibre sequence shows that Q(String) = Spin/SU and that
[BG, String] is JSpin(G)/JU2(G), since [BG, B>SU] = [BG, U(5)] = 0.
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(@GO  Near the Edge of Periodicity

To get the fiber sequence in the middle row of the previous diagram,
consider:
YHZ/2 ——=YHZ/?2

n

BU BO SO
BU BSO Spin

The latter fibre sequence shows that [BG, Spin] = JS/\O(G)/jU(G) since,
again, [BG, B?U] = [BG, SU] = 0.
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Connective K-Theory

End of Part One
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Connective K-Theory
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