Characteristic Classes in K-Theory Connective K-theory of *BG*

Robert Bruner

Department of Mathematics Wayne State University

Oberseminar Topologie Universität Münster 20 June 2011

Outline

- Symplectic Groups
- 4 Special Unitary Groups
- 5 Unitary Groups
- 6 Orthogonal Groups
- O Special Orthogonal Groups

All the representation rings we consider, except those of tori and 2-tori, come with a defining representation whose exterior powers generate the representation ring (except for SO(2n) which requires one additional generator).

We will denote these by $\lambda_i(k^n)$, with $k = \mathbf{R}$, \mathbf{C} , or \mathbf{H} if it is necessary to be completely precise, abbreviating this to λ_i^k or simply λ_i when possible without ambiguity. In particular, the defining representation is λ_1 .

$$RU(T^n) = \mathbf{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$$

Tori

where t_i is the one dimensional representation obtained by projecting onto the *i*-th factor. All simple representations but the trivial one are complex. The integral cohomology ring is

$$H^*BT^n = \mathbf{Z}[y_1,\ldots,y_n]$$

with $y_i = c_1(t_i)$.

Theorem

$$ku^*BT^n = ku^*[[y_1,\ldots,y_n]]$$

with $y_i = c_1^{ku}(t_i)$ and

$$ku_{T^n}^* = \mathsf{MRees}(\mathsf{RU}(T^n)) = ku^*[y_1, \overline{y}_1, \dots, y_n, \overline{y}_n]/(vy_i\overline{y}_i = y_i + \overline{y}_i)$$

with $\overline{y}_i = c_1^{ku}(t_i^{-1})$.

$$RU(Sp(n)) = \mathbf{Z}[\lambda_1, \ldots, \lambda_n]$$

The λ_{2i} are real and the λ_{2i+1} are quaternionic. In particular, they are all self conjugate. Note that $\lambda_1 = \mathbf{H}^n = \mathbf{C}^{2n}$, which is 2n dimensional, but its higher exterior powers $\lambda_{n+1}, \ldots, \lambda_{2n}$ can be expressed in terms of the first n.

The integral cohomology is

$$H^*BSp(n) = \mathbf{Z}[p_1, \ldots, p_n]$$

with $|p_i| = 4i$.

Restriction along $Sp(1)^n \longrightarrow Sp(n)$ will play much the same role for Sp(n) as restriction along $T(n) = U(1)^n \longrightarrow U(n)$ plays for U(n), so we start by considering $Sp(1)^n$.

$$RU(Sp(1)^n) = \mathbf{Z}[s_1,\ldots,s_n]$$

where s_i is the one dimensional symplectic representation obtained by projecting onto the *i*-th factor. Complexification factors as $Sp(1) \cong SU(2) \subset U(2)$ so we have $c_1^{ku}(s_i) = vc_2^{ku}(s_i)$ and

$$v^2 c_2^{ku}(s_i) = v c_1^{ku}(s_i) = c_2^R(s_i) = c_1^R(s_i) = 2 - s_i.$$

Thus, we have classes $z_i = c_2^{ku}(s_i) \in ku^4(BSp(1)^n)$ which satisfy

$$v^2 z_i = 2 - s_i.$$

We will see that z_i comes from ko^* . The integral cohomology ring is

$$H^*BSp(1)^n = \mathbf{Z}[z_1,\ldots,z_n]$$

with $z_i = p_1(s_i)$, the first Pontrjagin class of s_i .

Theorem

There are compatible generators z_i so that

•
$$ku^*BSp(1)^n = ku^*[[z_1, ..., z_n]]$$

• $ko^*BSp(1)^n = ko^*[[z_1, ..., z_n]]$
• $ku^*_{Sp(1)^n} = ku^*[z_1, ..., z_n] = MRees(RU(Sp(1)^n))$
• $ko^*_{Sp(1)^n} = ko^*[z_1, ..., z_n]$
In particular, $z_i^{ku} \in ku^4_{Sp(1)^n}$ and $z_i^{ko} \in ko^4_{Sp(1)^n}$ satisfy
• $v^2 z_i^{ku} = 2 - s_i \in ku^0_{Sp(1)^n} = RU(Sp(1)^n)$,
• $\alpha z_i^{ko} = 2(2 - s_i) \in ko^0_{Sp(1)^n} = RO(Sp(1)^n)$ and
• $\beta z_i^{ko} = 2 - s_i \in ko^{-4}_{Sp(1)^n} = RSp(Sp(1)^n)$.

Proof.

The Adams spectral sequence collapses at

$$\mathsf{E}_2^{*,*} = \mathsf{H}^*BSp(1)^n \otimes \mathsf{Ext}_{\mathcal{A}(1)}^{*,*}(\mathsf{F}_2,\mathsf{F}_2) \Longrightarrow \mathit{ko}^*BSP(1)^n$$

and similarly for E(1) and ku^* .

The equivariant cases then follow by the defining pullback squares

The periodic groups are as claimed because we can change generators from the s_i to the $z_i = (2 - s_i)/v^2$. This is MRees $(RU(Sp(1)^n))$: all irreducible representations are two dimensional, so $JU_{2n} = JU_{2n-1} = (JU_2)^n$.

Representation theoretic description

Write $z^{\langle i \rangle} = z_1^{i_1} \cdots z_n^{i_n}$ for any monomial in the z_1, \ldots, z_n with exponent sum $i_1 + \cdots + i_n = i$. Then

$$RO = \mathbf{Z}\langle z^{\langle 2i \rangle}, 2z^{\langle 2i+1 \rangle} | i \ge 0 \rangle$$

$$RSp = \mathbf{Z}\langle 2z^{\langle 2i \rangle}, z^{\langle 2i+1 \rangle} | i \ge 0 \rangle$$

$$JSp_{2k} = \mathbf{Z}\langle z^{\langle 2i \rangle}, 2z^{\langle 2i+1 \rangle} | i \ge k \rangle$$

$$JSp_{2k-1} = \mathbf{Z}\langle z^{\langle 2i-1 \rangle}, 2z^{\langle 2i \rangle} | i \ge k \rangle$$

$$JO \cdot JSp_{2k} = \mathbf{Z}\langle 2z^{\langle 2i+1 \rangle}, z^{\langle 2i+2 \rangle} | i \ge k \rangle$$

$$JO \cdot JSp_{2k-1} = \mathbf{Z}\langle 2z^{\langle 2i \rangle}, z^{\langle 2i+1 \rangle} | i \ge k \rangle$$

and

$$JU_{2k} = JU_{2k-1} = JU^k = \mathbf{Z} \langle z^{\langle i \rangle} \mid i \geq k \rangle$$

Then

$$\frac{RU}{RO} \supset \frac{JU_{4k-4}}{JSp_{2k-2}} = \frac{JU_{4k-2}}{JO \cdot JSp_{2k-2}} = \mathbf{F}_2 \langle z^{\langle 2i-1 \rangle} \mid i \ge k \rangle$$

$$\frac{RSp}{RU} \supset \frac{JSp_{2k-1}}{JU_{4k-2}} = \frac{JO \cdot JSp_{2k-3}}{JU_{4k-4}} = \mathbf{F}_2 \langle z^{\langle 2i-1 \rangle} \mid i \ge k \rangle$$

$$\frac{RU}{RSp} \supset \frac{JU_{4k-2}}{JSp_{2k-1}} = \frac{JU_{4k}}{JO \cdot JSp_{2k-1}} = \mathbf{F}_2 \langle z^{\langle 2i \rangle} \mid i \ge k \rangle$$

$$\frac{RO}{RU} \supset \frac{JSp_{2k}}{JU_{4k}} = \frac{JO \cdot JSp_{2k-2}}{JU_{4k-2}} = \mathbf{F}_2 \langle z^{\langle 2i \rangle} \mid i \ge k \rangle$$

Corollary

The coefficients of $Sp(1)^n$ -equivariant connective real K-theory are

$$ko_{i}^{Sp(1)^{n}} = \begin{cases} 0 & i = -8k + 7 \\ JU_{4k-3}/JO \cdot JSp_{2k-2} \subset RU/RO & i = -8k + 6 \\ JSp_{2k-1}/JU_{4k-3} \subset RSp/RU & i = -8k + 5 \\ JSp_{2k-1} \subset RSp & i = -8k + 4 \\ 0 & i = -8k + 3 \\ JU_{4k-2}/JSp_{2k-1} \subset RU/RSp & i = -8k + 2 \\ JSp_{2k}/JU_{4k} \subset RO/RU & i = -8k + 1 \\ JSp_{2k} \subset RO & i = -8k \end{cases}$$

Proof.

Collapse of the Adams spectral sequence implies each $z^{\langle i \rangle} = z_1^{i_1} \cdots z_n^{i_n}$ contributes a copy of ko_* shifted to start in $ko_{-4i}^{Sp(1)^n}$. Now, $\alpha z^{\langle i \rangle} \in ko_{-4i+4}^{Sp(1)^n}$ will map to $2z^{\langle i \rangle} \in RU(Sp(1)^n)$ since $\alpha \mapsto 2v^2$. Similar factors of 2 appear when mapping RU to RO or RSp here. Thus

Multiplication by β^k embeds these into the periodic part of $ko_*^{Sp(1)^n}$, determining, for example, that we will write $ko_{-8k+6}^{Sp(1)^n}$ as the quotient of something contained in RU by something in RSp.

Pontrjagin classes

Definition

The k^{th} representation theoretic *Pontrjagin class* of an *n*-dimensional symplectic representation $V : G \longrightarrow Sp(n)$ is

$$p_{k}^{R}(V) = \sum_{j=0}^{k} (-1)^{j} 2^{k-j} {\binom{n-j}{n-k}} \Lambda^{j}(V)$$

Proposition

The restriction $RU(Sp(n)) \longrightarrow RU(Sp(1)^n)$ sends p_k^R to $\sigma_k(2-s_1,\ldots,2-s_n)$. The representation p_k^R is real if k is even, and quaternionic if k is odd.

Accordingly, we shall generally consider p_{2i}^R as an element of RO(G) and p_{2i+1}^R as an element of RSp(G). Note, however, that representations which are not irreducible can be both real and quaternionic.

Theorem

We have

•
$$ku^*BSp(n) = ku^*[[p_1, ..., p_n]]$$

• $ko^*BSp(n) = ko^*[[p_1, ..., p_n]]$
• $ku^*_{Sp(n)} = ku^*[p_1, ..., p_n]$
• $ko^*_{Sp(n)} = ko^*[p_1, ..., p_n]$.
In each case, p_k restricts to $\sigma_k(z_1, ..., z_n)$.
In ku^* , $v^{2k}p^{ku}_k = p^R_k \in ku^0_{Sp(n)} = RU(Sp(n))$.
In ko^* , $\beta^k p^{ko}_{2k} = p^R_{2k} \in ko^0_{Sp(n)} = RO(Sp(n))$ and
 $\beta^k p^{ko}_{2k+1} = p^R_{2k+1} \in ko^4_{Sp(n)} = JSp(Sp(n))$.

Definition

Let $V : G \longrightarrow Sp(n)$ be a symplectic representation. For E = RU, ko, KO, ku, KU or H, we define the Pontrjagin class $p_i^E(V) \in E_G^{4i}$ to be $V^*(p_i)$. It is convenient to collect these into the total Pontrjagin class

$$p_{\bullet}^{E}(V) = 1 + p_{1}^{E}(V) + p_{2}^{E}(V) + \dots + p_{n}^{E}(V)$$

and to let $p_i^E(V) = 0$ if i > n.

Corollary

$$p^{E}_{\bullet}(V \oplus W) = p^{E}_{\bullet}(V)p^{E}_{\bullet}(W)$$

Lemma

The restriction
$$ku^*_{Sp(1)^n} \longrightarrow ku^*_{T(n)}$$
 maps z_i to $y_i \overline{y}_i$.

Write $\overline{c}_i(V) = c_i(\overline{V})$ for the Chern classes of the complex conjugate of a representation.

Theorem

The restriction maps
$$ku^*_{U(2n)} \xrightarrow{q^*} ku^*_{Sp(n)} \xrightarrow{\widetilde{c}^*} ku^*_{U(n)}$$
 obey

$$c_k \mapsto \sum_{0 \leq 2i \leq k} \binom{k-i}{i} v^{k-2i} p_{k-i} \mapsto \sum_{i+j=k} c_i \overline{c}_j.$$

Specializing to ordinary cohomology by setting v = 0 we obtain the usual relations (up to sign):

$$egin{aligned} q^*(p_n^H) &= \sum_{i+j=2n} c_i^H \overline{c}_j^H = \sum_{i+j=2n} (-1)^j c_i^H c_j^H, \ \widetilde{c}^*(c_{2i-1}) &= 0, \quad ext{and} \quad \widetilde{c}^*(c_{2i}) = p_i. \end{aligned}$$

For Sp(4), for example,

Symplectic Groups

It is more difficult to get good expressions for the images of the individual p_i . However, for i = 1, using the fact that v acts monomorphically on $ku_{U(n)}^*$ we have

$$p_1 \mapsto \frac{c_1 + \overline{c}_1}{v} = \sum_{k=2}^n (-v)^{k-2} \sum_{i+j=k} c_i \overline{c}_j$$
$$= c_2 + c_1 \overline{c}_1 + \overline{c}_2 - v \sum_{k=3}^n (-v)^{k-3} \sum_{i+j=k} c_i \overline{c}_j.$$

In cohomology, where v = 0 and $\overline{c}_i = (-1)^i c_i$, we have

$$p_1 \mapsto c_2 + c_1 \overline{c}_1 + \overline{c}_2 = 2c_2 - c_1^2$$

with our normalization of the p_i . Thus, if $c_1 = 0$, then $c_2 = p_1/2$.

Finally, we provide the following symplectic splitting principle.

Theorem

Let ξ be an Sp(n) bundle over X. Then there exists a map $f : Y \longrightarrow X$ such that $f^*\xi$ is a sum of symplectic line bundles and $f^* : H^*X \longrightarrow H^*Y$ is a monomorphism.

Proof.

Let Y be the pullback

$$Y \longrightarrow BSp(1)^{n}$$

$$\downarrow^{f} \qquad \qquad \downarrow$$

$$X \longrightarrow BSp(n)$$

along the classifying map of the bundle ξ . The universal bundle over BSp(n) splits as a sum of line bundles over $BSp(1)^n$, so $f^*\xi$ also splits in this manner.

The Serre spectral sequence gives the cohomology statement.

We can compute $ko_*BSp(n)$ by the collapsed local cohomology spectral sequence because the adjoint representation is *ko* oriented, being a *Spin* bundle, since w_1 and w_2 are trivially 0, so that

$$H^n_J(ko^*(BSp(n)) = ko_*(BSp(n)^{ad}) = \Sigma^{\dim(Sp(n))}ko_*(BSp(n)).$$

$$RU(SU(n)) = \mathbf{Z}[\lambda_1, \ldots, \lambda_{n-1}].$$

We have $\overline{\lambda_i} = \lambda_{n-i}$, so the λ_i are all complex unless n = 2m, when λ_m is real if *m* is even and quaternionic if *m* is odd. The integral cohomology is

$$H^*BSU(n) = \mathbf{Z}[c_2,\ldots,c_n]$$

with $c_i = c_i(\lambda_1)$. The connective complex *K*-theory is easy to compute.

Theorem $ku^*BSU(n) = ku^*[[c_2, ..., c_n]]$ and $ku^*_{SU(n)} = MRees(RU(SU(n))) = ku^*[c_2, ..., c_n].$

Proof.

Since $H^*BSU(n)$ is concentrated in even degrees, the Atiyah-Hirzebruch spectral sequence implies $ku^*BSU(n)$ must be the complete ku^* algebra freely generated by c_2, \ldots, c_n .

In $KU^*_{SU(n)}$, we have

$$\lambda_{i} = \sum_{j=0}^{i} (-1)^{j} \binom{n-j}{n-i} c_{j}^{R} = \sum_{j=0}^{i} (-1)^{j} \binom{n-j}{n-i} v^{j} c_{j}^{ku}.$$

and $\lambda_n = 1$.

Hence, the $c_j = c_j^{ku}$ generate, and $c_1 - vc_2 + \cdots + (-v)^{n-1}c_n = 0$. Thus $KU^*_{SU(n)}$ is polynomial on any n-1 of c_1, \ldots, c_n . In particular, $KU^*_{SU(n)} = KU^*[c_2, \ldots, c_n]$.

Proof.

(Cont.) The pullback square

shows that $ku^*_{SU(n)} = ku^*[c_2, \ldots, c_n].$

$$RU(U(n)) = \mathbf{Z}[\lambda_1, \ldots, \lambda_n, \lambda_n^{-1}]$$

The integral cohomology is

$$H^*BU(n) = \mathbf{Z}[c_1,\ldots,c_n]$$

where $c_i = c_i(\lambda_1)$. Again, the complex connective K-theory follows immediately.

Theorem

 $ku^*BU(n) = ku^*[[c_1, ..., c_n]]$ and

$$ku^*_{U(n)} = \mathsf{MRees}(\mathsf{RU}(U(n))) = ku^*[c_1, \dots, c_n, \Delta^{-1}]$$

where $\Delta = \lambda_n = 1 - vc_1 + v^2c_2 - \cdots + (-v)^nc_n$.

Proof.

The argument is nearly the same as for SU(n), except that $KU^*_{U(n)}$ is not polynomial, but is instead $KU^*[c_1, \ldots, c_n, \Delta^{-1}]$.

In cohomology, restriction along the inclusion $SU(n) \longrightarrow U(n)$ is the quotient which sends c_1 to 0. The proper way to think of this is that it is taking the quotient by the Chern class of the determinant of the defining representation. In *K*-theory, the map this induces is more interesting.

Theorem

The restriction homomorphism $ku^*_{U(n)} \longrightarrow ku^*_{SU(n)}$ is the quotient $ku^*[c_1, \ldots, c_n, \Delta^{-1}] \longrightarrow ku^*[c_2, \ldots, c_n]$ which sends Δ to 1 and c_1 to $vc_2 - v^2c_3 + \cdots - (-v)^{n-1}c_n$.

Proof.

SU(n) is the kernel of the determinant $U(n) \longrightarrow U(1)$. The determinant sends $y = (1 - \lambda_1)/v \in ku_{U(1)}^2$ to $(1 - \lambda_n)/v = c_1 - vc_2 + v^2c_3 - \cdots$, so this must go to zero in $ku_{SU(n)}^*$. After dividing by this, we have an isomorphism, by the calculation of $ku_{SU(n)}^*$.

Unitary Groups

Consider the conjugate Chern classes $\overline{c}_i(V) = c_i(\overline{V})$.

Corollary

The restriction homomorphism $ku^*_{U(n)} \longrightarrow ku^*_{T(n)}$ sends \overline{c}_i to $\sigma_i(\overline{y}_1, \dots, \overline{y}_n)$. The \overline{c}_i also satisfy • $\Delta v^i \overline{c}_i = \sum_{j=0}^i (-1)^j {n-j \choose n-i} \lambda_{n-j}$ • $\Delta \overline{c}_i = \sum_{k=i}^n (-1)^k {k \choose i} v^{k-i} c_k$

The conjugate $\overline{\Delta} = \overline{\lambda}_n = 1 - v\overline{c}_1 + v^2\overline{c}_2 - \cdots \pm v^n\overline{c}_n$ satisfies $\Delta\overline{\Delta} = 1$. Collecting terms we find

Proposition

In $ku^*_{U(n)}$,

$$c_1 + \overline{c}_1 = -\sum_{k=2}^{2n} (-\nu)^{k-1} \sum_{i+j=k} c_i \overline{c}_j$$

$$RU(O(n)) = \mathbf{Z}[\lambda_1, \ldots, \lambda_n]/(\lambda_n^2 - 1, \lambda_i \lambda_n - \lambda_{n-i}).$$

These representations are all real, so that complexification and quaternionification are isomorphisms

$$RO(O(n)) \xrightarrow{\cong} RU(O(n)) \xrightarrow{\cong} RSp(O(n)).$$

The integral cohomology is complicated. The best approach is to give the mod 2 cohomology, and if integral issues matter, the cohomology localized away from 2. We have

$$H\mathbf{F}_2^*BO(n) = \mathbf{F}_2[w_1,\ldots,w_n]$$

where $w_i = w_i(\lambda_1)$.

Rewrite the representation ring in terms of Chern classes, as usual: let $c_i = c_i^K(\lambda_1) \in K_{O(n)}^{2i}$, so that

$$\lambda_i = \sum_{j=0}^i (-1)^j \binom{n-j}{n-i} v^j c_j.$$

Rather than replace λ_n by the top Chern class, c_n , we use the first Chern class of the determinant representation, $c = c_1^K(\lambda_n) \in K_{O(n)}^2$. This satisfies $vc = 1 - \lambda_n$, which is much more convenient than $v^n c_n = 1 - \lambda_1 + \cdots + (-1)^n \lambda_n$.

Proposition

$$KU^*_{O(2n+1)} = KU^*[c_1, \ldots, c_n, c]/(vc^2 - 2c)$$

and

$$KU^*_{O(2n)} = KU^*[c_1, \ldots, c_n, c]/(vc^2 - 2c, c\sum_{i=0}^n {\binom{2n-i}{n}(-v)^i c_i}$$

To compute $ku^*BO(n)$, we need to determine the E(1)-module structure of $H\mathbf{F}_2^*BO(n)$. We start with its stable type. Let ϵ be 0 or 1. First, the submodule

$$\mathbf{F}_{2}[w_{2}^{2}, w_{4}^{2}, \dots, w_{2n}^{2}] \longrightarrow H^{*}BO(2n+\epsilon)$$

is a trivial E(1)-submodule.

Second, the reduced homology of BO(1) is the ideal (w_1) in $\mathbf{F}_2[w_1]$, and as an E(1)-submodule,

$$(w_1) \otimes \mathbf{F}_2[w_2^2, w_4^2, \dots, w_{2n-2}^2] \longrightarrow H^*BO(2n-\epsilon)$$

is a direct sums of suspensions of (w_1) .

The sum of these two submodules exhausts the 'interesting' part of $H^*BO(n)$, in the sense that the complementary summand is E(1)-free.

Theorem

The inclusions

$$\mathbf{F}_{2}[w_{2}^{2},w_{4}^{2},\ldots,w_{2n}^{2}] \oplus (w_{1}) \otimes \mathbf{F}_{2}[w_{2}^{2},w_{4}^{2},\ldots,w_{2n-2}^{2}] \longrightarrow H^{*}BO(2n)$$

and

$$\mathbf{F}_{2}[w_{2}^{2}, w_{4}^{2}, \dots, w_{2n}^{2}] \oplus (w_{1}) \otimes \mathbf{F}_{2}[w_{2}^{2}, w_{4}^{2}, \dots, w_{2n}^{2}] \longrightarrow H^{*}BO(2n+1)$$

induce isomorphisms in Q_0 and Q_1 homology.

Corollary

As an $E[Q_0, Q_1]$ -module, $H^*BO(n)$ is the sum of trivial modules, suspensions of $H^*BO(1)$, and free modules.

Proof.

The corollary follows by the result of Adams and Margolis, that Q_0 and Q_1 homology detects the stable isomorphism type of the module.

In principle, this describes $H^*BO(n)$ as an E(1)-module but finding a good parametrization of the complementary E(1)-free submodule is non-trivial. The $\mathcal{A}(1)$ -module structure is not as simple, as Sq^2 does not annihilate all squares.

The w_{2i}^2 detect Pontrjagin classes p_i of the defining representation and w_1^2 in the (w_1) summand detects the first Chern class of the determinant representation.

Corollary

The Adams spectral sequence converging to $ku^*BO(n)$ collapses at E_2 , and the natural homomorphism

$$ku^*BO(n) \longrightarrow H^*BO(n) \oplus KU^*BO(n)$$

is a monomorphism.

Comments on the proof

The $H(-, Q_0)$ isomorphism is straightforward, but the $H(-, Q_1)$ isomorphism requires a careful choice of generators.

Once the correct generators are identified, it turns out that the general case is just a regraded version of $H^*BO(4)$ tensored with an E(1)-trivial subalgebra.

See the book with Greenlees for details.

O(1)

Recall that $ku^*_{O(1)} = ku^*[c]/(vc^2-2c)$ by the pullback square

The Bockstein spectral sequence then gives

Theorem

There are unique elements $p_0 \in ko_{O(1)}^0$ and $p_1 \in ko_{O(1)}^4$ with complexifications $c(p_0) = vc$ and $c(p_1) = c^2$. The ring

$$ko_{O(1)}^{*} = \frac{ko^{*}[p_{0}, p_{1}]}{(\eta p_{1}, \alpha p_{1} - 4p_{0}, \beta p_{1} - \alpha p_{0}, p_{0}p_{1} - 2p_{1}, p_{0}^{2} - 2p_{0})}$$

In terms of representation theory, this can be written as follows.

Corollary

O(1)-equivariant connective real K-theory has coefficient ring

$$ko_{O(1)}^{i} = \begin{cases} RSp & i = -8k - 4 \le 0\\ RO/2 & i = -8k - 2 \le 0\\ RO/2 & i = -8k - 1 \le 0\\ RO & i = -8k \le 0\\ JSp_{k} = JSp^{k} & i = 4k > 0\\ 0 & \text{otherwise} \end{cases}$$

To justify the notation p_i :

Theorem

The restriction
$$ku^*_{Sp(1)} \longrightarrow ku^*_{O(1)}$$
 is:

 $z = p_1(\lambda_1) \mapsto p_1, \qquad \alpha z \mapsto 4p_0, \qquad \text{and} \qquad \beta z \mapsto \alpha p_0,$

Proof.

That z maps to p_1 is evident by comparison with ku^* . The rest follows by the relations in $ko^*_{O(1)}$.

Thus, p_1 really is the first Pontrjagin class of the quaternionic representation induced up from the defining representation of O(1), while p_0 is a genuinely real class. We call it p_0 because of the relations which tie it to p_1 .

O(2)

Corollary

$$\begin{array}{lll} \mathcal{K}U^*_{O(2)} &=& \mathcal{K}U^*[c,c_1]/(vc^2-2c,c(2-vc_1))\\ &=& \mathcal{K}U^*[c,c_2]/(vc^2-2c,cc_2) \end{array}$$

Proof.

The calculation

$$v^{2}c_{2} = 1 - \lambda_{1} + \lambda_{2}$$

= 1 - (2 - vc_{1}) + (1 - vc)
= v(c_{1} - c)

shows that $c_1 = c + vc_2$. Then the relation $0 = c(2 - vc_1)$ becomes $v^2cc_2 = 0$ since c(2 - vc) = 0.

The connective *K*-theory is similar but somewhat larger.

Theorem

$$ku_{O(2)}^* = ku^*[c, c_2]/(vc^2 - 2c, 2cc_2, vcc_2)$$

Proof.

Decomposing $H^*BO(2)$ as an $E[Q_0, Q_1]$ -module shows that c and c_2 are algebra generators for $ku^*BO(2)$. The monomorphism into $H^*BO(2) \oplus KU^*BO(2)$ then shows the relations are complete. The pullback square then gives us $ku^*_{O(2)}$.

The Bockstein spectral sequence then gives

Theorem

$$\mathcal{KO}^*_{\mathcal{O}(2)} = \mathcal{KO}^*[p_0, r_0]/(p_0^2 - 2p_0, p_0r_0)$$
 and

$$ko^*_{O(2)} = ko^*[p_0, p_1, p_2, r_0, r_1, s]/I$$

where I is the ideal generated by the relations

$\eta p_1 = 0$	$\alpha p_1 = 4p_0$	$\beta p_1 = \alpha p_0$		<i>p</i> 0	p_1	<i>r</i> ₀	r_1	S
$\eta r_1 = 0$	$\alpha r_1 = 4r_0$	$\beta r_1 = \alpha r_0$	p_0	2 <i>p</i> ₀	$2p_1$	0	0	0
$\eta s = 0$	$\alpha s = 0$	$\beta s = \eta^2 r_0$	p_1	2 <i>p</i> 1	p_{1}^{2}	0	0	p_1s
	2		<i>r</i> ₀	0	0	βp_2	αp_2	$\eta^2 p_2$
$p_0 p_2 = 0$	$p_1 p_2 = s^2$		r_1	0	0	αp_2	4 <i>p</i> ₂	0

 p_0 and r_0 are $1 - \det$ and the Euler class of the defining representation, respectively.

 p_1 and r_1 are their images in $JSp = ko^4$. This explains the similarity of the action of ko^* on them.

The class p_2 refines the square of the Euler class in the sense that $r_1^2 = 4p_2$, $r_0r_1 = \alpha p_2$ and $r_0^2 = \beta p_2$.

The class s is a square root of the product $p_1p_2 = s^2$.

The relation $\beta s = \eta^2 r_0$ is hidden in the Bockstein spectral sequence. Representation theory (i.e., the map into $KO^*_{O(2)}$) and the Adams spectral sequence each work to recover it. The images of the natural maps from $ko^*_{O(2)}$ to $ku^*_{O(2)}$, $KO^*_{O(2)}$ and $HF_2^*BO(2)$ are as follows:

ko* _{O(2)}	$ku_{O(2)}^*$	КО ₀₍₂₎	H*BO(2)
<i>p</i> ₀	VC	<i>p</i> 0	0
p_1	c^2	$lphaeta^{-1}p_0$	w_1^4
<i>p</i> ₂	c_{2}^{2}	$\beta^{-1}r_0^2$	w ₂ ⁴
<i>r</i> ₀	$v^2 c_2$	<i>r</i> 0	0
<i>r</i> ₁	2 <i>c</i> ₂	$lpha eta^{-1} r_0$	0
5	<i>сс</i> ₂	$\eta^2 \beta^{-1} r_0$	$w_1^2 w_2^2$

O(3)

Corollary

$$KU^*_{O(3)} = KU^*[c, c_1]/(vc^2 - 2c)$$

Proposition

 $KO^*_{O(3)} = KO^*[p_0, q_0]/(p_0^2 - 2p_0)$ where p_0 and q_0 have complexifications vc and vc_1 respectively. The restriction $KO^*_{O(3)} \longrightarrow KO^*_{O(2)}$ sends p_0 to p_0 and q_0 to $p_0 + r_0$.

The Chern classes no longer suffice to generate $ku_{O(n)}^*$ for n > 2. Let $\overline{Q}_0: H \longrightarrow \Sigma H \mathbb{Z}$ and $\overline{Q}_1: H \mathbb{Z} \longrightarrow \Sigma^3 ku$ be the boundary maps in the cofiber sequences for $2: H \mathbb{Z} \longrightarrow H \mathbb{Z}$ and $v: \Sigma^2 ku \longrightarrow ku$. They are lifts of the Milnor primitives Q_0 qnd Q_1 .

Definition

Let
$$q_2 = \overline{Q}_1 \overline{Q}_0(w_2) \in ku^6 BO(3)$$
 and $q_3 = \overline{Q}_1 \overline{Q}_0(w_3) \in ku^7 BO(3)$.

Proposition

The classes q_2 and q_3 are nonzero classes annihilated by (2, v). The class q_3 is independent of c, c_2 , and c_3 , while $q_2 = cc_2 - 3c_3$. These are the only nonzero 2 or v-torsion classes in $ku^6BO(3)$ and $ku^7BO(3)$.

Theorem

 $ku^*BO(3) = ku^*[c, c_2, c_3, q_3]/R$, where R is an ideal containing $(vc^2 - 2c, 2(cc_2 - 3c_3), v(cc_2 - 3c_3), 2q_3, vq_3, vcc_3 - 2c_3)$.

O(n) for larger n

The free summands in $H^*BO(n)$ begin to get more complicated at n = 4. Let us write w_S for the product $\prod_{i \in S} w_i$.

Proposition

```
Maximal E(1)-free summands of H^*BO(n) are:
```

```
n = 4
                                                   \mathbf{F}_{2}[w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, w_{4}^{2}]\langle w_{2}, w_{3}, w_{4}, w_{234}\rangle
                                                   \oplus \mathbf{F}_2[w_1^2, w_2^2, w_4^2]\langle w_{24}\rangle
n=5
                                                   \mathbf{F}_{2}[w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, w_{4}^{2}, w_{5}^{2}]\langle w_{2}, w_{3}, w_{4}, w_{5}, w_{234}, w_{235}, w_{245}, w_{345} \rangle
                                                   \oplus \mathbf{F}_{2}[w_{1}^{2}, w_{2}^{2}, w_{4}^{2}, w_{5}^{2}]\langle w_{24}, w_{34}\rangle
n = 6
                                                   \mathbf{F}_{2}[w_{1}^{2}, w_{2}^{2}, w_{3}^{2}, w_{4}^{2}, w_{5}^{2}, w_{6}^{2}]\langle w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{26}, w_{234}, w_{235}, w_{6}, w_{
                                                   \oplus F<sub>2</sub>[w_1^2, w_2^2, w_3^2, w_4^2, w_5^2, w_6^2]\langle w_{236}, w_{246}, w_{256}, w_{346}, w_{456}, w_{23456}
                                                   \oplus \mathbf{F}_{2}[w_{1}^{2}, w_{2}^{2}, w_{4}^{2}, w_{5}^{2}, w_{6}^{2}]\langle w_{24}, w_{34}, w_{2456}\rangle
                                                   \oplus \mathbf{F}_{2}[w_{1}^{2}, w_{2}^{2}, w_{4}^{2}, w_{6}^{2}]\langle w_{46} \rangle
```

Remark

Each w_S generating a free E(1) will give rise to a (2, v)-annihilated class $\overline{Q}_1 \overline{Q}_0(w_S) \in ku^* BO(n)$.

$$RU(SO(2n+1)) = {\sf Z}[\lambda_1,\ldots,\lambda_n]$$
 with $\lambda_{n+i} = \lambda_{n+1-i}$ and

$$RU(SO(2n)) = \mathbf{Z}[\lambda_1, \dots, \lambda_{n-1}, \lambda_n^+, \lambda_n^-]/R$$

with $\lambda_{n+i} = \lambda_{n-i}$ and $\lambda_n = \lambda_n^+ + \lambda_n^-$. The ideal *R* is generated by one relation

$$(\lambda_n^+ + \sum_i \lambda_{n-2i})(\lambda_n^- + \sum_i \lambda_{n-2i}) = (\sum_i \lambda_{n-1-2i})^2$$

All the λ_i are real. RU(SO(2n)) is free over RU(SO(2n+1)) on $\{1, \lambda_n^+\}$.

 $H^*BSO(n) = \mathbf{F}_2[w_2, \dots, w_n]$ where $w_i = w_i(\lambda_1)$. We have already examined SO(2) = T(1) and found (writing c_1 rather than y_1 here)

$$ku_{SO(2)}^* = ku^*[c_1,\overline{c}_1]/(vc_1\overline{c}_1 = c_1 + \overline{c}_1)$$

and

$$ku^*BSO(2) = ku^*[[c_1]].$$

The maps induced in ku^* by the fibre sequence $SO(2) \xrightarrow{i} O(2) \xrightarrow{det} O(1)$ are

Proposition

det^{*}(c) = c, while
$$i^*(c) = 0$$
, $i^*(c_2) = c_1 \overline{c}_1$ and $i^*(c_1) = i^*(c + vc_2) = c_1 + \overline{c}_1$.

SO(3)

$$RU(SO(3)) = \mathbf{Z}[\lambda_1]$$
 with $\lambda_2 = \lambda_1$ and $\lambda_3 = 1$.

Proposition

 $KU^*_{SO(3)} = KU^*[c_2]$

Proof.

The Chern classes of the defining representation of SO(3) satisfy $c_1 = vc_2$, $c_3 = 0$ and $v^2c_2 = vc_1 = 3 - \lambda_1$.

Theorem

$$ku_{SO(3)}^* = ku^*[c_2, c_3]/(2c_3, vc_3).$$

The first Chern class, $c_1 = vc_2$. The restriction $ku^*_{O(3)} \longrightarrow ku^*_{SO(3)}$ sends c and q_3 to 0, and sends each c_i to c_i .

Proof.

The Adams spectral sequence again collapses and gives us a monomorphism into the sum of mod 2 cohomology and periodic K-theory. This makes it easy to show $ku^*BSO(3) = ku^*[[c_2, c_3]]/(2c_3, vc_3)$. The pullback square then gives $ku^*_{SO(3)} = ku^*[c_2, c_3]/(2c_3, vc_3)$.

In general, we expect $c_1 = vc_2 - v^2c_3$, since this is true in SU(n), but here $v^2c_3 = 0$.

The restriction from O(3) is computed by using the monomorphism to periodic *K*-theory plus mod 2 cohomology. Note that $q_2 = cc_2 - 3c_3$ restricts to c_3 .

Thank you