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Notation

All the representation rings we consider, except those of tori and 2-tori,
come with a defining representation whose exterior powers generate the
representation ring (except for SO(2n) which requires one additional
generator).

We will denote these by λi (k
n), with k = R, C, or H if it is necessary to

be completely precise, abbreviating this to λk
i or simply λi when possible

without ambiguity. In particular, the defining representation is λ1.
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Tori

RU(T n) = Z[t±1
1 , . . . , t±1

n ]

where ti is the one dimensional representation obtained by projecting onto
the i-th factor. All simple representations but the trivial one are complex.
The integral cohomology ring is

H∗BT n = Z[y1, . . . , yn]

with yi = c1(ti ).

Theorem

ku∗BT n = ku∗[[y1, . . . , yn]]

with yi = cku
1 (ti ) and

ku∗T n = MRees(RU(T n)) = ku∗[y1, y1 . . . , yn, yn]/(vyiy i = yi + y i )

with y i = cku
1 (t−1

i ).
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Symplectic Groups

RU(Sp(n)) = Z[λ1, . . . , λn]

The λ2i are real and the λ2i+1 are quaternionic. In particular, they are all
self conjugate. Note that λ1 = Hn = C2n, which is 2n dimensional, but its
higher exterior powers λn+1,. . .λ2n can be expressed in terms of the first n.

The integral cohomology is

H∗BSp(n) = Z[p1, . . . , pn]

with |pi | = 4i .

Restriction along Sp(1)n −→ Sp(n) will play much the same role for Sp(n)
as restriction along T (n) = U(1)n −→ U(n) plays for U(n), so we start by
considering Sp(1)n.
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Symplectic Groups

RU(Sp(1)n) = Z[s1, . . . , sn]

where si is the one dimensional symplectic representation obtained by
projecting onto the i-th factor. Complexification factors as
Sp(1) ∼= SU(2) ⊂ U(2) so we have cku

1 (si ) = vcku
2 (si ) and

v2cku
2 (si ) = vcku

1 (si ) = cR
2 (si ) = cR

1 (si ) = 2− si .

Thus, we have classes zi = cku
2 (si ) ∈ ku4(BSp(1)n) which satisfy

v2zi = 2− si .

We will see that zi comes from ko∗. The integral cohomology ring is

H∗BSp(1)n = Z[z1, . . . , zn]

with zi = p1(si ), the first Pontrjagin class of si .
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Symplectic Groups

Theorem

There are compatible generators zi so that

ku∗BSp(1)n = ku∗[[z1, . . . , zn]]

ko∗BSp(1)n = ko∗[[z1, . . . , zn]]

ku∗Sp(1)n = ku∗[z1, . . . , zn] = MRees(RU(Sp(1)n))

ko∗Sp(1)n = ko∗[z1, . . . , zn]

In particular, zku
i ∈ ku4

Sp(1)n and zko
i ∈ ko4

Sp(1)n satisfy

v2zku
i = 2− si ∈ ku0

Sp(1)n = RU(Sp(1)n),

αzko
i = 2(2− si ) ∈ ko0

Sp(1)n = RO(Sp(1)n) and

βzko
i = 2− si ∈ ko−4

Sp(1)n = RSp(Sp(1)n).
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Symplectic Groups

Proof.

The Adams spectral sequence collapses at

E ∗,∗
2 = H∗BSp(1)n ⊗ Ext∗,∗A(1)(F2,F2) =⇒ ko∗BSP(1)n

and similarly for E (1) and ku∗.

The equivariant cases then follow by the defining pullback squares

ku∗Sp(1)n
//

��

KU∗[z1, . . . , zn]

��
ku∗[[z1, . . . , zn]] // KU∗[[z1, . . . , zn]]

The periodic groups are as claimed because we can change generators from
the si to the zi = (2− si )/v2. This is MRees(RU(Sp(1)n)): all irreducible
representations are two dimensional, so JU2n = JU2n−1 = (JU2)

n.
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Symplectic Groups

Representation theoretic description

Write z〈i〉 = z i1
1 · · · z in

n for any monomial in the z1, . . . , zn with exponent
sum i1 + · · ·+ in = i . Then

RO = Z〈z〈2i〉, 2z〈2i+1〉 | i ≥ 0〉
RSp = Z〈2z〈2i〉, z〈2i+1〉 | i ≥ 0〉
JSp2k = Z〈z〈2i〉, 2z〈2i+1〉 | i ≥ k〉
JSp2k−1 = Z〈z〈2i−1〉, 2z〈2i〉 | i ≥ k〉
JO · JSp2k = Z〈2z〈2i+1〉, z〈2i+2〉 | i ≥ k〉
JO · JSp2k−1 = Z〈2z〈2i〉, z〈2i+1〉 | i ≥ k〉

and
JU2k = JU2k−1 = JUk = Z〈z〈i〉 | i ≥ k〉
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Symplectic Groups

Then

RU

RO
⊃ JU4k−4

JSp2k−2
=

JU4k−2

JO · JSp2k−2
= F2〈z〈2i−1〉 | i ≥ k〉

RSp

RU
⊃ JSp2k−1

JU4k−2
=

JO · JSp2k−3

JU4k−4
= F2〈z〈2i−1〉 | i ≥ k〉

RU

RSp
⊃ JU4k−2

JSp2k−1
=

JU4k

JO · JSp2k−1
= F2〈z〈2i〉 | i ≥ k〉

RO

RU
⊃ JSp2k

JU4k
=

JO · JSp2k−2

JU4k−2
= F2〈z〈2i〉 | i ≥ k〉
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Symplectic Groups

Corollary

The coefficients of Sp(1)n-equivariant connective real K-theory are

ko
Sp(1)n

i =



0 i = −8k + 7
JU4k−3/JO · JSp2k−2 ⊂ RU/RO i = −8k + 6

JSp2k−1/JU4k−3 ⊂ RSp/RU i = −8k + 5

JSp2k−1 ⊂ RSp i = −8k + 4

0 i = −8k + 3

JU4k−2/JSp2k−1 ⊂ RU/RSp i = −8k + 2

JSp2k/JU4k ⊂ RO/RU i = −8k + 1

JSp2k ⊂ RO i = −8k
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Symplectic Groups

Proof.

Collapse of the Adams spectral sequence implies each z〈i〉 = z i1
1 · · · z in

n

contributes a copy of ko∗ shifted to start in ko
Sp(1)n

−4i . Now,

αz〈i〉 ∈ ko
Sp(1)n

−4i+4 will map to 2z〈i〉 ∈ RU(Sp(1)n) since α 7→ 2v2. Similar
factors of 2 appear when mapping RU to RO or RSp here. Thus

ko−8k+6 = F2〈z〈2i−1〉 | i ≥ k〉
ko−8k+5 = F2〈z〈2i−1〉 | i ≥ k〉
ko−8k+4 = Z〈z〈2i−1〉, 2z〈2i〉 | i ≥ k〉
ko−8k+2 = F2〈z〈2i〉 | i ≥ k〉
ko−8k+1 = F2〈z〈2i〉 | i ≥ k〉
ko−8k = Z〈z〈2i〉, 2z〈2i+1〉 | i ≥ k〉

Multiplication by βk embeds these into the periodic part of ko
Sp(1)n

∗ ,

determining, for example, that we will write ko
Sp(1)n

−8k+6 as the quotient of
something contained in RU by something in RSp.
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Symplectic Groups

Pontrjagin classes

Definition

The kth representation theoretic Pontrjagin class of an n-dimensional
symplectic representation V : G −→ Sp(n) is

pR
k (V ) =

k∑
j=0

(−1)j2k−j

(
n − j

n − k

)
Λj(V )

Proposition

The restriction RU(Sp(n)) −→ RU(Sp(1)n) sends pR
k to

σk(2− s1, . . . , 2− sn). The representation pR
k is real if k is even, and

quaternionic if k is odd.

Accordingly, we shall generally consider pR
2i as an element of RO(G ) and

pR
2i+1 as an element of RSp(G ). Note, however, that representations which

are not irreducible can be both real and quaternionic.
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Symplectic Groups

Theorem

We have

ku∗BSp(n) = ku∗[[p1, . . . , pn]]

ko∗BSp(n) = ko∗[[p1, . . . , pn]]

ku∗Sp(n) = ku∗[p1, . . . , pn]

ko∗Sp(n) = ko∗[p1, . . . , pn].

In each case, pk restricts to σk(z1, . . . , zn).

In ku∗, v2kpku
k = pR

k ∈ ku0
Sp(n) = RU(Sp(n)).

In ko∗, βkpko
2k = pR

2k ∈ ko0
Sp(n) = RO(Sp(n)) and

βkpko
2k+1 = pR

2k+1 ∈ ko4
Sp(n) = JSp(Sp(n)).
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Symplectic Groups

Definition

Let V : G −→ Sp(n) be a symplectic representation. For E = RU, ko,
KO, ku, KU or H, we define the Pontrjagin class pE

i (V ) ∈ E 4i
G to be

V ∗(pi ). It is convenient to collect these into the total Pontrjagin class

pE
• (V ) = 1 + pE

1 (V ) + pE
2 (V ) + · · ·+ pE

n (V )

and to let pE
i (V ) = 0 if i > n.

Corollary

pE
• (V ⊕W ) = pE

• (V )pE
• (W )
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Symplectic Groups

Lemma

The restriction ku∗Sp(1)n −→ ku∗T (n) maps zi to yiy i .

Write c i (V ) = ci (V ) for the Chern classes of the complex conjugate of a
representation.

Theorem

The restriction maps ku∗U(2n)

q∗−→ ku∗Sp(n)
ec∗−→ ku∗U(n) obey

ck 7→
∑

0≤2i≤k

(
k − i

i

)
vk−2ipk−i 7→

∑
i+j=k

cic j .

Specializing to ordinary cohomology by setting v = 0 we obtain the usual
relations (up to sign):

q∗(pH
n ) =

∑
i+j=2n

cH
i cH

j =
∑

i+j=2n

(−1)jcH
i cH

j ,

c̃∗(c2i−1) = 0, and c̃∗(c2i ) = pi .
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Symplectic Groups

For Sp(4), for example,

c1 7→ vp1 7→ c1 + c1

c2 7→ p1 +v2p2 7→ c2 + c1c1 + c2

c3 7→ 2vp2 +v3p3 7→ c3 + c2c1 + c1c2 + c3

c4 7→ p2 +3v2p3 +v4p4 7→ c4 + c3c1 + c2c2 + c1c3 + c4

c5 7→ 3vp3 +4v3p4 7→ c4c1 + c3c2 + c2c3 + c1c4

c6 7→ p3 +6v2p4 7→ c4c2 + c3c3 + c2c4

c7 7→ 4vp4 7→ c4c3 + c3c4

c8 7→ p4 7→ c4c4
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Symplectic Groups

It is more difficult to get good expressions for the images of the individual
pi . However, for i = 1, using the fact that v acts monomorphically on
ku∗U(n) we have

p1 7→
c1 + c1

v
=

n∑
k=2

(−v)k−2
∑

i+j=k

cic j

= c2 + c1c1 + c2 − v
n∑

k=3

(−v)k−3
∑

i+j=k

cic j .

In cohomology, where v = 0 and c i = (−1)ici , we have

p1 7→ c2 + c1c1 + c2 = 2c2 − c2
1

with our normalization of the pi . Thus, if c1 = 0, then c2 = p1/2.
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Symplectic Groups

Finally, we provide the following symplectic splitting principle.

Theorem

Let ξ be an Sp(n) bundle over X . Then there exists a map f : Y −→ X
such that f ∗ξ is a sum of symplectic line bundles and f ∗ : H∗X −→ H∗Y
is a monomorphism.

Proof.

Let Y be the pullback

Y //

f

��

BSp(1)n

��
X // BSp(n)

along the classifying map of the bundle ξ. The universal bundle over
BSp(n) splits as a sum of line bundles over BSp(1)n, so f ∗ξ also splits in
this manner.
The Serre spectral sequence gives the cohomology statement.
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Symplectic Groups

We can compute ko∗BSp(n) by the collapsed local cohomology spectral
sequence because the adjoint representation is ko oriented, being a Spin
bundle, since w1 and w2 are trivially 0, so that

Hn
J (ko∗(BSp(n)) = ko∗(BSp(n)ad) = Σdim(Sp(n))ko∗(BSp(n)).
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Special Unitary Groups

RU(SU(n)) = Z[λ1, . . . , λn−1].

We have λi = λn−i , so the λi are all complex unless n = 2m, when λm is
real if m is even and quaternionic if m is odd. The integral cohomology is

H∗BSU(n) = Z[c2, . . . , cn]

with ci = ci (λ1). The connective complex K -theory is easy to compute.

Theorem

ku∗BSU(n) = ku∗[[c2, . . . , cn]] and

ku∗SU(n) = MRees(RU(SU(n))) = ku∗[c2, . . . , cn].
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Special Unitary Groups

Proof.

Since H∗BSU(n) is concentrated in even degrees, the Atiyah-Hirzebruch
spectral sequence implies ku∗BSU(n) must be the complete ku∗ algebra
freely generated by c2, . . . , cn.

In KU∗
SU(n), we have

λi =
i∑

j=0

(−1)j
(

n − j

n − i

)
cR
j =

i∑
j=0

(−1)j
(

n − j

n − i

)
v jcku

j .

and λn = 1.

Hence, the cj = cku
j generate, and c1 − vc2 + · · ·+ (−v)n−1cn = 0. Thus

KU∗
SU(n) is polynomial on any n − 1 of c1, . . . , cn. In particular,

KU∗
SU(n) = KU∗[c2, . . . , cn].
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Special Unitary Groups

Proof.

(Cont.) The pullback square

ku∗SU(n)
//

��

KU∗[c2, . . . , cn]

��
ku∗[[c2, . . . , cn]] // KU∗[[c2, . . . , cn]]

shows that ku∗SU(n) = ku∗[c2, . . . , cn].
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Unitary Groups

RU(U(n)) = Z[λ1, . . . , λn, λ
−1
n ]

The integral cohomology is

H∗BU(n) = Z[c1, . . . , cn]

where ci = ci (λ1). Again, the complex connective K -theory follows
immediately.

Theorem

ku∗BU(n) = ku∗[[c1, . . . , cn]] and

ku∗U(n) = MRees(RU(U(n))) = ku∗[c1, . . . , cn,∆
−1]

where ∆ = λn = 1− vc1 + v2c2 − · · ·+ (−v)ncn.

Proof.

The argument is nearly the same as for SU(n), except that KU∗
U(n) is not

polynomial, but is instead KU∗[c1, . . . , cn,∆
−1].

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryConnective K-theory of BG Münster 29 / 57



Unitary Groups

In cohomology, restriction along the inclusion SU(n) −→ U(n) is the
quotient which sends c1 to 0. The proper way to think of this is that it is
taking the quotient by the Chern class of the determinant of the defining
representation. In K -theory, the map this induces is more interesting.

Theorem

The restriction homomorphism ku∗U(n) −→ ku∗SU(n) is the quotient

ku∗[c1, . . . , cn,∆
−1] −→ ku∗[c2, . . . , cn] which sends ∆ to 1 and c1 to

vc2 − v2c3 + · · · − (−v)n−1cn.

Proof.

SU(n) is the kernel of the determinant U(n) −→ U(1). The determinant
sends y = (1− λ1)/v ∈ ku2

U(1) to (1− λn)/v = c1 − vc2 + v2c3 − · · · , so
this must go to zero in ku∗SU(n). After dividing by this, we have an
isomorphism, by the calculation of ku∗SU(n).
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Unitary Groups

Consider the conjugate Chern classes c i (V ) = ci (V ).

Corollary

The restriction homomorphism ku∗U(n) −→ ku∗T (n) sends c i to

σi (y1, . . . , yn). The c i also satisfy

∆v ic i =
∑i

j=0(−1)j
(n−j
n−i

)
λn−j

∆c i =
∑n

k=i (−1)k
(k

i

)
vk−ick

The conjugate ∆ = λn = 1− vc1 + v2c2 − · · · ± vncn satisfies ∆∆ = 1.
Collecting terms we find

Proposition

In ku∗U(n),

c1 + c1 = −
2n∑

k=2

(−v)k−1
∑

i+j=k

cic j
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Orthogonal Groups

RU(O(n)) = Z[λ1, . . . , λn]/(λ2
n − 1, λiλn − λn−i ).

These representations are all real, so that complexification and
quaternionification are isomorphisms

RO(O(n))
∼=−→ RU(O(n))

∼=−→ RSp(O(n)).

The integral cohomology is complicated. The best approach is to give the
mod 2 cohomology, and if integral issues matter, the cohomology localized
away from 2. We have

HF∗2BO(n) = F2[w1, . . . ,wn]

where wi = wi (λ1).
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Orthogonal Groups

Rewrite the representation ring in terms of Chern classes, as usual: let
ci = cK

i (λ1) ∈ K 2i
O(n), so that

λi =
i∑

j=0

(−1)j
(

n − j

n − i

)
v jcj .

Rather than replace λn by the top Chern class, cn, we use the first Chern
class of the determinant representation, c = cK

1 (λn) ∈ K 2
O(n). This

satisfies vc = 1− λn, which is much more convenient than
vncn = 1− λ1 + · · ·+ (−1)nλn.

Proposition

KU∗
O(2n+1) = KU∗[c1, . . . , cn, c]/(vc2 − 2c)

and

KU∗
O(2n) = KU∗[c1, . . . , cn, c]/(vc2 − 2c , c

n∑
i=0

(
2n − i

n

)
(−v)ici )
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Orthogonal Groups

To compute ku∗BO(n), we need to determine the E (1)-module structure
of HF∗2BO(n). We start with its stable type. Let ε be 0 or 1.
First, the submodule

F2[w
2
2 ,w2

4 , . . . ,w2
2n] −→ H∗BO(2n + ε)

is a trivial E (1)-submodule.
Second, the reduced homology of BO(1) is the ideal (w1) in F2[w1], and
as an E (1)-submodule,

(w1)⊗ F2[w
2
2 ,w2

4 , . . . ,w2
2n−2] −→ H∗BO(2n − ε)

is a direct sums of suspensions of (w1).
The sum of these two submodules exhausts the ‘interesting’ part of
H∗BO(n), in the sense that the complementary summand is E (1)-free.
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Orthogonal Groups

Theorem

The inclusions

F2[w
2
2 ,w2

4 , . . . ,w2
2n]⊕ (w1)⊗ F2[w

2
2 ,w2

4 , . . . ,w2
2n−2] −→ H∗BO(2n)

and

F2[w
2
2 ,w2

4 , . . . ,w2
2n]⊕ (w1)⊗ F2[w

2
2 ,w2

4 , . . . ,w2
2n] −→ H∗BO(2n + 1)

induce isomorphisms in Q0 and Q1 homology.

Corollary

As an E [Q0,Q1]-module, H∗BO(n) is the sum of trivial modules,
suspensions of H∗BO(1), and free modules.

Proof.

The corollary follows by the result of Adams and Margolis, that Q0 and Q1

homology detects the stable isomorphism type of the module.
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Orthogonal Groups

In principle, this describes H∗BO(n) as an E (1)-module but finding a good
parametrization of the complementary E (1)-free submodule is non-trivial.
The A(1)-module structure is not as simple, as Sq2 does not annihilate all
squares.
The w2

2i detect Pontrjagin classes pi of the defining representation and w2
1

in the (w1) summand detects the first Chern class of the determinant
representation.

Corollary

The Adams spectral sequence converging to ku∗BO(n) collapses at E2,
and the natural homomorphism

ku∗BO(n) −→ H∗BO(n)⊕ KU∗BO(n)

is a monomorphism.
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Orthogonal Groups

Comments on the proof

The H(−,Q0) isomorphism is straightforward, but the H(−,Q1)
isomorphism requires a careful choice of generators.

Once the correct generators are identified, it turns out that the general
case is just a regraded version of H∗BO(4) tensored with an E (1)-trivial
subalgebra.

See the book with Greenlees for details.
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Orthogonal Groups

O(1)

Recall that ku∗O(1) = ku∗[c]/(vc2 − 2c) by the pullback square

ku∗O(1)
//

��

KU∗
O(1) = KU∗[c]/(vc2 − 2c)

��
ku∗BO(1) = ku∗[[c]]/(vc2 − 2c) // KU∗BO(1) = KU∗[[c]]/(vc2 − 2c)

The Bockstein spectral sequence then gives

Theorem

There are unique elements p0 ∈ ko0
O(1) and p1 ∈ ko4

O(1) with

complexifications c(p0) = vc and c(p1) = c2. The ring

ko∗O(1) =
ko∗[p0, p1]

(ηp1, αp1 − 4p0, βp1 − αp0, p0p1 − 2p1, p2
0 − 2p0)
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In terms of representation theory, this can be written as follows.

Corollary

O(1)-equivariant connective real K-theory has coefficient ring

ko i
O(1) =



RSp i = −8k − 4 ≤ 0
RO/2 i = −8k − 2 ≤ 0
RO/2 i = −8k − 1 ≤ 0
RO i = −8k ≤ 0
JSpk = JSpk i = 4k > 0
0 otherwise

To justify the notation pi :

Theorem

The restriction ku∗Sp(1) −→ ku∗O(1) is:

z = p1(λ1) 7→ p1, αz 7→ 4p0, and βz 7→ αp0,
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Proof.

That z maps to p1 is evident by comparison with ku∗. The rest follows by
the relations in ko∗O(1).

Thus, p1 really is the first Pontrjagin class of the quaternionic
representation induced up from the defining representation of O(1), while
p0 is a genuinely real class. We call it p0 because of the relations which tie
it to p1.
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O(2)

Corollary

KU∗
O(2) = KU∗[c , c1]/(vc2 − 2c , c(2− vc1))

= KU∗[c , c2]/(vc2 − 2c , cc2)

Proof.

The calculation

v2c2 = 1− λ1 + λ2

= 1− (2− vc1) + (1− vc)

= v(c1 − c)

shows that c1 = c + vc2. Then the relation 0 = c(2− vc1) becomes
v2cc2 = 0 since c(2− vc) = 0.
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The connective K -theory is similar but somewhat larger.

Theorem

ku∗O(2) = ku∗[c , c2]/(vc2 − 2c , 2cc2, vcc2)

Proof.

Decomposing H∗BO(2) as an E [Q0,Q1]-module shows that c and c2 are
algebra generators for ku∗BO(2). The monomorphism into
H∗BO(2)⊕ KU∗BO(2) then shows the relations are complete. The
pullback square then gives us ku∗O(2).

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryConnective K-theory of BG Münster 43 / 57



Orthogonal Groups

The Bockstein spectral sequence then gives

Theorem

KO∗
O(2) = KO∗[p0, r0]/(p2

0 − 2p0, p0r0) and

ko∗O(2) = ko∗[p0, p1, p2, r0, r1, s]/I

where I is the ideal generated by the relations

ηp1 = 0 αp1 = 4p0 βp1 = αp0

ηr1 = 0 αr1 = 4r0 βr1 = αr0
ηs = 0 αs = 0 βs = η2r0

p0p2 = 0 p1p2 = s2

p0 p1 r0 r1 s

p0 2p0 2p1 0 0 0
p1 2p1 p2

1 0 0 p1s
r0 0 0 βp2 αp2 η2p2

r1 0 0 αp2 4p2 0
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p0 and r0 are 1− det and the Euler class of the defining representation,
respectively.

p1 and r1 are their images in JSp = ko4. This explains the similarity of the
action of ko∗ on them.

The class p2 refines the square of the Euler class in the sense that
r2
1 = 4p2, r0r1 = αp2 and r2

0 = βp2.

The class s is a square root of the product p1p2 = s2.

The relation βs = η2r0 is hidden in the Bockstein spectral sequence.
Representation theory (i.e., the map into KO∗

O(2)) and the Adams spectral
sequence each work to recover it.
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Orthogonal Groups

The images of the natural maps from ko∗O(2) to ku∗O(2), KO∗
O(2) and

HF∗2BO(2) are as follows:

ko∗O(2) ku∗O(2) KO∗
O(2) H∗BO(2)

p0 vc p0 0

p1 c2 αβ−1p0 w4
1

p2 c2
2 β−1r2

0 w4
2

r0 v2c2 r0 0

r1 2c2 αβ−1r0 0

s cc2 η2β−1r0 w2
1 w2

2
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O(3)

Corollary

KU∗
O(3) = KU∗[c , c1]/(vc2 − 2c)

Proposition

KO∗
O(3) = KO∗[p0, q0]/(p2

0 − 2p0) where p0 and q0 have complexifications
vc and vc1 respectively. The restriction KO∗

O(3) −→ KO∗
O(2) sends p0 to p0

and q0 to p0 + r0.

The Chern classes no longer suffice to generate ku∗O(n) for n > 2. Let

Q0 : H −→ ΣHZ and Q1 : HZ −→ Σ3ku be the boundary maps in the
cofiber sequences for 2 : HZ −→ HZ and v : Σ2ku −→ ku. They are lifts
of the Milnor primitives Q0 qnd Q1.
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Orthogonal Groups

Definition

Let q2 = Q1Q0(w2) ∈ ku6BO(3) and q3 = Q1Q0(w3) ∈ ku7BO(3).

Proposition

The classes q2 and q3 are nonzero classes annihilated by (2, v). The class
q3 is independent of c, c2, and c3, while q2 = cc2 − 3c3. These are the
only nonzero 2 or v-torsion classes in ku6BO(3) and ku7BO(3).

Theorem

ku∗BO(3) = ku∗[c , c2, c3, q3]/R, where R is an ideal containing
(vc2 − 2c , 2(cc2 − 3c3), v(cc2 − 3c3), 2q3, vq3, vcc3 − 2c3).
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O(n) for larger n
The free summands in H∗BO(n) begin to get more complicated at n = 4.
Let us write wS for the product

∏
i∈S wi .

Proposition

Maximal E (1)-free summands of H∗BO(n) are:

n = 4
F2[w

2
1 ,w2

2 ,w2
3 ,w2

4 ]〈w2,w3,w4,w234〉
⊕F2[w

2
1 ,w2

2 ,w2
4 ]〈w24〉

n = 5
F2[w

2
1 ,w2

2 ,w2
3 ,w2

4 ,w2
5 ]〈w2,w3,w4,w5,w234,w235,w245,w345〉

⊕F2[w
2
1 ,w2

2 ,w2
4 ,w2

5 ]〈w24,w34〉
n = 6

F2[w
2
1 ,w2

2 ,w2
3 ,w2

4 ,w2
5 ,w2

6 ]〈w2,w3,w4,w5,w6,w26,w234,w235,w245,w345〉
⊕F2[w

2
1 ,w2

2 ,w2
3 ,w2

4 ,w2
5 ,w2

6 ]〈w236,w246,w256,w346,w456,w23456〉
⊕F2[w

2
1 ,w2

2 ,w2
4 ,w2

5 ,w2
6 ]〈w24,w34,w2456〉

⊕F2[w
2
1 ,w2

2 ,w2
4 ,w2

6 ]〈w46〉
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Remark

Each wS generating a free E (1) will give rise to a (2, v)-annihilated class
Q1Q0(wS) ∈ ku∗BO(n).
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RU(SO(2n + 1)) = Z[λ1, . . . , λn]

with λn+i = λn+1−i and

RU(SO(2n)) = Z[λ1, . . . , λn−1, λ
+
n , λ−n ]/R

with λn+i = λn−i and λn = λ+
n + λ−n . The ideal R is generated by one

relation

(λ+
n +

∑
i

λn−2i )(λ
−
n +

∑
i

λn−2i ) = (
∑

λn−1−2i )
2

All the λi are real. RU(SO(2n)) is free over RU(SO(2n + 1)) on {1, λ+
n }.
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H∗BSO(n) = F2[w2, . . . ,wn] where wi = wi (λ1).
We have already examined SO(2) = T (1) and found (writing c1 rather
than y1 here)

ku∗SO(2) = ku∗[c1, c1]/(vc1c1 = c1 + c1)

and
ku∗BSO(2) = ku∗[[c1]].

The maps induced in ku∗ by the fibre sequence SO(2)
i−→ O(2)

det−→ O(1)
are

Proposition

det∗(c) = c, while i∗(c) = 0, i∗(c2) = c1c1 and
i∗(c1) = i∗(c + vc2) = c1 + c1.
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SO(3)

RU(SO(3)) = Z[λ1] with λ2 = λ1 and λ3 = 1.

Proposition

KU∗
SO(3) = KU∗[c2]

Proof.

The Chern classes of the defining representation of SO(3) satisfy c1 = vc2,
c3 = 0 and v2c2 = vc1 = 3− λ1.

Theorem

ku∗SO(3) = ku∗[c2, c3]/(2c3, vc3).

The first Chern class, c1 = vc2. The restriction ku∗O(3) −→ ku∗SO(3) sends c
and q3 to 0, and sends each ci to ci .
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Proof.

The Adams spectral sequence again collapses and gives us a
monomorphism into the sum of mod 2 cohomology and periodic K-theory.
This makes it easy to show ku∗BSO(3) = ku∗[[c2, c3]]/(2c3, vc3). The
pullback square then gives ku∗SO(3) = ku∗[c2, c3]/(2c3, vc3).

In general, we expect c1 = vc2 − v2c3, since this is true in SU(n), but here
v2c3 = 0.
The restriction from O(3) is computed by using the monomorphism to
periodic K -theory plus mod 2 cohomology. Note that q2 = cc2 − 3c3

restricts to c3.
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Thank you
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