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All the representation rings we consider, except those of tori and 2-tori,
come with a defining representation whose exterior powers generate the
representation ring (except for SO(2n) which requires one additional
generator).

We will denote these by \;(k"), with k = R, C, or H if it is necessary to
be completely precise, abbreviating this to /\f-‘ or simply \; when possible
without ambiguity. In particular, the defining representation is Az.
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RU(T™ = Z[t,. .. t2!

where t; is the one dimensional representation obtained by projecting onto
the i-th factor. All simple representations but the trivial one are complex.
The integral cohomology ring is

H*BT" = Z[yi,. .., yn]
with y; = a ().
Theorem
ku*BT" = ku*([[y1, ..., ya]]
with y; = ckU(t;) and
kurn = MRees(RU(T")) = ku™[y1,¥1-- -, ¥n: Yal/(vyi¥i = yi + Vi)

with 7; = cfu(t7h).

1

v
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Symplectic Groups

RU(Sp(n)) = Z[A1, ..., An]

The Ay are real and the Apj;1 are quaternionic. In particular, they are all
self conjugate. Note that \; = H” = C?", which is 2n dimensional, but its
higher exterior powers A,py1,... A2, can be expressed in terms of the first n.

The integral cohomology is
H*BSp(n) = Z[py, ..., pn]
with |p,'| = 4.
Restriction along Sp(1)" — Sp(n) will play much the same role for Sp(n)

as restriction along T(n) = U(1)" — U(n) plays for U(n), so we start by
considering Sp(1)".
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Symplectic Groups

RU(Sp(1)") = Z[s1,- - -, 5n)

where s; is the one dimensional symplectic representation obtained by
projecting onto the i-th factor. Complexification factors as
Sp(1) = SU(2) C U(2) so we have ck(s;) = vcs¥(s;) and

V2K (s) = vel(si) = oK (s)) = cf(s)) =2 — s;.
Thus, we have classes z; = c§¥(s;) € ku*(BSp(1)™) which satisfy
vzz,- =2—s5.
We will see that z; comes from ko*. The integral cohomology ring is

H*BSp(1)" = Z[z1, . .., zj)

with z; = pi(s;), the first Pontrjagin class of s;.
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Symplectic Groups

Theorem

There are compatible generators z; so that
e ku*BSp(1)" = ku*[[z1, ..., zn]]
e ko*BSp(1)" = ko*[[z1, ..., zn]]
® Kkug,qyn = ku*[z1, ..., z5] = MRees(RU(Sp(1)"))
© Ko,y = ko*[z1, ..., zp]

In particular, zK € ku o(1)n and zf° € kot o(1)n Satisfy
o vz =2_3 ¢ kugp(l)n = RU(Sp(1)"),
° azf° =2(2~s;) € kog, 1), = RO(Sp(1)") and
@ Bzlo=2-5¢€ kog:(l),, = RSp(Sp(1)™).
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Proof.

The Adams spectral sequence collapses at
Ey;" = H*BSp(1)" @ Extzz‘l)(Fz, F,) = ko*BSP(1)"
and similarly for E(1) and ku*.

The equivariant cases then follow by the defining pullback squares

kugp(l)" KU*[Zl, . ,Z,,]

| |

ku*[[z1,. .., zp)] —= KU*[[z1, . - ., zp]]

The periodic groups are as claimed because we can change generators from
the s; to the z; = (2 — s;)/v2. This is MRees(RU(Sp(1)™)): all irreducible
representations are two dimensional, so JUz, = JUzp—1 = (JU2)". O

v
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Symplectic Groups

Representation theoretic description

Write z{) = z{l ...zl for any monomial in the zi,. .., z, with exponent
sumii+---+1i,=1i. Then

RO = Z(z1?) 222+1) | j > 0)
RSp = Z(2z20 21 | > 0)
JSp2k = Z(z0?) 2220 | i > k)
JISpak-1 = Z(Z%1 2220 | i > k)
JO - JSpay = Z(22P7D) 2212 | > Ky
JO - JSpay—1 = Z(2z?) 2'+1> | i> k)

and
JUsp = JUp_y = JUK =Z(z | i > k)
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Symplectic Groups

Then
RU JUsk—4
RO JISpak—2
RSp JSpok—1
RU JUgp—o
RU JUgp—o
RSp JISpok—1
RO JSpak
RU JUgi
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JO - JSpak—2
JO - JSpak—3

JUsk—4
JUq

JO - JSpa—1
JO - JSpak—2

JUsp—2
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Symplectic Groups

Corollary

The coefficients of Sp(1)"-equivariant connective real K-theory are

ko$p(1)” —

(0
JUsx_3/JO - JSpox_> C RU/RO
JISpok—1/JUsk—3 C RSp/RU
JSpok_1 C RSp
0
JUsk—2/JSpok_1 C RU/RSp
JSpok/JUsk C RO/RU

J5p2k C RO

i =—-8k+7
i=—8k+6
i =—8k+5
i=—8k+4
i=—8k+3
i =—8k+2
i=-8k+1
i = —8k
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Proof.

Collapse of the Adams spectral sequence implies each z{) = z{l ez

p(l)

contributes a copy of ko, shifted to start in ko™’ . Now,

az') € ko 4(1_34 will map to 2z{) € RU(Sp(1)" ) since a — 2v2. Similar

factors of 2 appear when mapping RU to RO or RSp here. Thus

ko_gkre = Fo(z®=1 |i>k)

kO,8k+5 = F2< <2’ 1) ‘ IZ k>

ko_gisa = Z(z271) 22020 | > k)

kO,8k+2 = F2<Z<2i> ‘ 12 k>

kO,8k+1 = F2<Z<2i> ‘ I'Z k>

ko_gx = Z(z{?) 2721+ |} > k)
Multiplication by ¥ embeds these into the periodic part of kosP(l)
determining, for example, that we will write ko_';(kJ)r6 as the quotient of
something contained in RU by something in RSp. [

v
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Pontrjagin classes
Definition

The k™ representation theoretic Pontrjagin class of an n-dimensional
symplectic representation V : G — Sp(n) is

k

=S (-1y2 (PN )
Jj=0 B
Proposition
The restriction RU(Sp(n)) — RU(Sp(1)") sends pf to
ok(2 —s1,...,2 —s,). The representation pf is real if k is even, and

quaternionic if k is odd.

Accordingly, we shall generally consider pf,- as an element of RO(G) and
pX. 1 as an element of RSp(G). Note, however, that representations which
are not irreducible can be both real and quaternionic.
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Symplectic Groups

Theorem
We have

® ku*BSp(n) = ku*[[p1,- .., pn]|
® ko*BSp(n) = ko*[[p1, ..., pall
° kuSp(n) ku*[p1, ..., pn)
° kosp(n) ko*(p1, ..., Pn]-
In each case, py restricts to ox(zi,. .., 2n)-
In ku*, v?kpit = pf € kugp(n) = RU(Sp(n)).
In ko*, Bkpke = p& € kogp(n) = RO(Sp(n)) and
B P3R i1 = Pt € kod,(ny = JSp(Sp(n)).
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Symplectic Groups

Definition
Let V : G — Sp(n) be a symplectic representation For E = RU, ko,

KO, ku, KU or H, we define the Pontrjagin class pF(V) € EY to be
V*(p;). It is convenient to collect these into the total Pontrjag/n class

pe(V)=1+pr(V)+ps(V)+---+pr(V)

and to let p£(V) =0 if i > n.

Corollary

pe(V & W) =pE(V)pE(W)
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Lemma J

The restriction kug,;\, — ku%, maps z; to y;y;.

Write ¢;(V) = ¢;j(V) for the Chern classes of the complex conjugate of a
representation.

Theorem

The restriction maps k”*u(zn) 2, k”;,,(n) <, kufj(n) obey

Ck'_)z ( )kzlpki’_)zclcj

0<2i<k i+j=

Specializing to ordinary cohomology by setting v = 0 we obtain the usual
relations (up to sign):
i H_H
St = X = Y (c1yete
i+j=2n i+j=2n
E*(Czi_l) = 0, and E*(Cz,') = pj.
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Symplectic Groups

For Sp(4), for example,

cL— vp1 = ¢ +C1

o p1 v = &+ ¢+ Co

c3 — 2vpy —|—V3p3 — €3+ CC1+ c1Cr +C3

Cy — P2 —|-3V2p3 +V4p4 — €4+ C3C1 + Cr +ci1C3+ ¢
C5 — 3vps +4v3p4 — C4C1 + C3Cr + CC3 + C1Cy

Ce — p3 +6 V2p4 — €4Co + C3C3 + CoCy

c7 — 4vpy +— ca4C3+ C3Cq

Cg — Ps — C4Cyq
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Symplectic Groups

It is more difficult to get good expressions for the images of the individual
pi. However, for i = 1, using the fact that v acts monomorphically on
kufj(n) we have

at+ca k—2 _
b TS S Y g
—C2—|—C1C1+C2—VZ( v) k 3 Z cicj.

i+j=k

In cohomology, where v = 0 and ¢; = (—1)'c;, we have
p1— G+ C1C1 + Co = 200 — C12

with our normalization of the p;. Thus, if c; =0, then ¢ = p1/2.
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Symplectic Groups

Finally, we provide the following symplectic splitting principle.

Theorem

Let & be an Sp(n) bundle over X. Then there exists a map f : Y — X
such that f*€ is a sum of symplectic line bundles and f* : H*X — H*Y
is a monomorphism.

Proof.

Let Y be the pullback
Y — BSp(1)"
P
X —= BSp(n)

along the classifying map of the bundle £&. The universal bundle over
BSp(n) splits as a sum of line bundles over BSp(1)", so f*¢ also splits in
this manner.

The Serre spectral sequence gives the cohomology statement. O

v
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Symplectic Groups

We can compute ko.BSp(n) by the collapsed local cohomology spectral
sequence because the adjoint representation is ko oriented, being a Spin
bundle, since wy; and wy are trivially 0, so that

H?(ko*(BSp(n)) = ko.(BSp(n)??) = £4mP(M) ko (BSp(n)).
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Special Unitary Groups

RU(SU(H)) = Z[)\]_, ceey )\,-,_1].

We have \j = \,_;, so the \; are all complex unless n = 2m, when A, is
real if m is even and quaternionic if m is odd. The integral cohomology is

H*BSU(n) = Z[c, . . ., cn)
with ¢; = ¢j(\1). The connective complex K-theory is easy to compute.

Theorem
ku*BSU(n) = ku*[[ca, ..., cn]] and

kUZU(n) = MRees(RU(SU(n))) = ku™*[ca, . .., cn].
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Special Unitary Groups

Proof.

Since H*BSU(n) is concentrated in even degrees, the Atiyah-Hirzebruch
spectral sequence implies ku*BSU(n) must be the complete ku* algebra
freely generated by ¢, ..., Cp.

In KU;U(H), we have

A= zi:(—l)f (: :f) of = Xi:(—l)j (Z :J,) vief.

and A\, = 1.

Hence, the ¢; = cj‘” generate, and ¢; — vep + -+ - + (—v)" "1, = 0. Thus
KU}U(n) is polynomial on any n — 1 of ¢y, ..., csy. In particular,

KU;U(H) = KU*[ca, ..., cnl. O

v
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Special Unitary Groups

Proof.
(Cont.) The pullback square

ku;U(n) KU*[CQ,...,Cn]

| |

ku*[[ca, ..., cn]] —= KU*[[c2, - . ., cnl]

shows that kugu(n) = ku*[ca, ..., Cn). O
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Unitary Groups

RU(U(I‘))) = Z[)‘lv SRR )‘na A;l]
The integral cohomology is
H*BU(n) = Z]cy, . . ., ¢

where ¢; = ¢j(A1). Again, the complex connective K-theory follows
immediately.

Theorem
ku*BU(n) = ku*[[c1, . .., cn]] and

k() = MRees(RU(U(n))) = ku*[ct, ... , e, A7)

where A = X\, =1 —vcy +v2c — -+ + (—v)"cp.

Proof.

The argument is nearly the same as for SU(n), except that KUZ‘/(n) is not
polynomial, but is instead KU*[cy, ..., c,, A7L]. Ol

v
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Unitary Groups

In cohomology, restriction along the inclusion SU(n) — U(n) is the
quotient which sends ¢; to 0. The proper way to think of this is that it is
taking the quotient by the Chern class of the determinant of the defining
representation. In K-theory, the map this induces is more interesting.

Theorem

The restriction homomorphism ku*U(n) — kugu(n) is the quotient

ku*[c1,. .., cn, A7) — ku*[co, . .., cn] which sends A to 1 and ¢; to

vep — v2e3 4 — (—v)" L, )
Proof.

SU(n) is the kernel of the determinant U(n) — U(1). The determinant
sends y = (1 — \1)/v € kulzj(l) to (L—X\,)/v=rc1—ver+vic3—---, s0
this must go to zero in kugu(n). After dividing by this, we have an
isomorphism, by the calculation of kugu(n). Ol

Robert Bruner (Wayne State University) Characteristic Classes in K-TheoryConnective Miinster 30 / 57



Consider the conjugate Chern classes ¢;(V) = ¢;(V).

Corollary

The restriction homomorphism ku;‘j(n) — k”ﬂ‘;'(n) sends ¢; to
0i(¥1,---,¥,)- The€; also satisfy

o Aviti =3I o(—1Y (07 A
o AT = Yp_i(~1)k(F) v

The conjugate A = X\, =1 — v&y + v?Co — - - - & V"G, satisfies AA = 1.
Collecting terms we find

Proposition
In kut,(n),

c1+¢1=— Z( vk L Z GG,

i+j=k

O
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Orthogonal Groups

RU(O(n)) = Z[A1, -, Aal/ (A2 = 1, Mihn — Ani).

These representations are all real, so that complexification and
quaternionification are isomorphisms

RO(O(n)) — RU(O(n)) — RSp(O(n)).

The integral cohomology is complicated. The best approach is to give the
mod 2 cohomology, and if integral issues matter, the cohomology localized
away from 2. We have

HF3BO(n) = Fa[wa, ..., wy)

where Wi = W,'()\l).
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Orthogonal Groups

Rewrite the representation ring in terms of Chern classes, as usual: let
ci=cf(\) e Ké( n) SO that

. jg;(—ly(j’,‘{) Jg

Rather than replace A, by the top Chern class, ¢,, we use the first Chern
class of the determinant representation, ¢ = cf{(\,) € Ké(n). This
satisfies vc¢ = 1 — A,, which is much more convenient than
vicp=1—=XA1 4+ (=1)"\,.

Proposition
KUpansz) = KUt oy ]/ (ve? = 2¢)

and

KUp 2 = KU [c1, . .. , Cny €] /(ve? — 2, CZ <2n— ) (—v)ic)

i=0

v
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Orthogonal Groups

To compute ku*BO(n), we need to determine the E(1)-module structure
of HF3BO(n). We start with its stable type. Let € be 0 or 1.
First, the submodule

Fo[ws, w2, ..., w2 ] — H*BO(2n+¢)

is a trivial E(1)-submodule.
Second, the reduced homology of BO(1) is the ideal (w1) in Fa2[ws], and
as an E(1)-submodule,

(Wl) @ F2[W227 W42-7 SRRE) W22n72] - H*BO(2I’I - 6)

is a direct sums of suspensions of (wy).
The sum of these two submodules exhausts the ‘interesting’ part of
H*BO(n), in the sense that the complementary summand is E(1)-free.
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Orthogonal Groups

Theorem
The inclusions

F2[W227 W427 ) W22n] 2] (Wl) ® F2[W227 W427 ) W22n—2] = H*BO(2I’1)
and
Folws, wi, ..., w3, @ (w1) @ Fa[wi, wi, ..., wi,] — H*BO(2n +1)

induce isomorphisms in Qy and Q1 homology.

Corollary

As an E[Qo, Q1]-module, H*BO(n) is the sum of trivial modules,
suspensions of H*BO(1), and free modules.

Proof.
The corollary follows by the result of Adams and Margolis, that Qp and @1
homology detects the stable isomorphism type of the module. O

v
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Orthogonal Groups

In principle, this describes H*BO(n) as an E(1)-module but finding a good
parametrization of the complementary E(1)-free submodule is non-trivial.
The A(1)-module structure is not as simple, as Sq® does not annihilate all
squares.

The w3 detect Pontrjagin classes p; of the defining representation and w?
in the (wq) summand detects the first Chern class of the determinant
representation.

Corollary

The Adams spectral sequence converging to ku*BO(n) collapses at E;,
and the natural homomorphism

ku*BO(n) — H*BO(n) & KU*BO(n)

is a monomorphism.
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Orthogonal Groups

Comments on the proof

The H(—, Q) isomorphism is straightforward, but the H(—, Q)
isomorphism requires a careful choice of generators.

Once the correct generators are identified, it turns out that the general

case is just a regraded version of H*BO(4) tensored with an E(1)-trivial
subalgebra.

See the book with Greenlees for details.
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o(1)

Recall that kug, ;) = ku*[c]/(vc? — 2c) by the pullback square

kuo() KUp 1y = KU*[c]/(vc? - 2¢)

| |

ku*BO(1) = ku*[[c]]/(ve? — 2c) — KU*BO(1) = KU*[[c]]/(vc?® — 2c)

The Bockstein spectral sequence then gives

Theorem

There are unique elements py € kog(l) and p1 € ko4o(1) with
complexifications c(po) = vc and c(p1) = c?. The ring

ko*[po, p1]
np1,p1 — 4po, Bp1 — po, Pop1 — 2p1, P — 2Po)

koo = ¢

v
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Orthogonal Groups

In terms of representation theory, this can be written as follows.

Corollary

O(1)-equivariant connective real K-theory has coefficient ring
RSp i=—-8k—4<0
RO/2 i=-8k—2<0

foh - — RO/2 i=—-8k—-1<0
%1 =\ RO i=-8k<0

JSpi = JSpX i=4k>0
0 otherwise

To justify the notation p;:

Theorem

The restriction kug o(1) ku*o(l) is:

z=pi(AM) = p1, az—4p, and Bz ap,
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Orthogonal Groups

Proof.
That z maps to p; is evident by comparison with ku*. The rest follows by
the relations in kog(l). O

Thus, pp really is the first Pontrjagin class of the quaternionic
representation induced up from the defining representation of O(1), while
po is a genuinely real class. We call it pp because of the relations which tie

it to p:.
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Orthogonal Groups

0(2)
Corollary
KUpp = KU'[c, al/(ve? = 2¢, ¢(2 — ver))
= KU*[C7 (:2]/(VC2 — 2c, CC2)
Proof.
The calculation
V2, = 1—A+ A
= 1-(2-va)+(1-ve)
= v(c—0)

shows that ¢; = ¢ + vcp. Then the relation 0 = ¢(2 — vc;) becomes

v2ccy = 0 since ¢(2 — vc) = 0. O

v
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Orthogonal Groups

The connective K-theory is similar but somewhat larger.

Theorem

kugyay = ku*[c, 2]/ (ve? — 2¢,2ccy, vec)

Proof.

Decomposing H*BO(2) as an E[Qo, Q1]-module shows that ¢ and ¢, are
algebra generators for ku*BO(2). The monomorphism into

H*BO(2) & KU*BO(2) then shows the relations are complete. The
pullback square then gives us kug(z). [
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Orthogonal Groups

The Bockstein spectral sequence then gives

Theorem
KOp 5y = KO*[po, r0]/(P§ — 2po. poro) and

k08(2) = kO*[po, p1, P2, fo, r17S]/I

where | is the ideal generated by the relations

npr=0 ap1=4py Bp1 = ap P P s

nn=0 an=4rn [Bn =an po|2p0 2p1 O 0 0
5 n| 0 0 Bp ap 7°p

pop2 =0 pip2=s n|l 0 0 ap 4p O
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Orthogonal Groups

po and ry are 1 — det and the Euler class of the defining representation,
respectively.

p1 and ry are their images in JSp = ko*. This explains the similarity of the
action of ko™ on them.

The class p; refines the square of the Euler class in the sense that
r2 =4p,, ror1 = apy and g = Bpa.

The class s is a square root of the product pipo = s2.

The relation s = n?ry is hidden in the Bockstein spectral sequence.
Representation theory (i.e., the.map into K06(2)) and the Adams spectral
sequence each work to recover it.
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Orthogonal Groups

The images of the natural maps from kog@) to k“*0(2)' KOB(2) and
HF3BO(2) are as follows:

Koy | ki | KOy | H*BO(2)
Po vc Po 0

p1 @ | afpo wi

no | @ || W

I v ro 0

n 20 aB1n 0

s cco |87t | wiws
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0(3)

Corollary
KUps) = KU*[c, a1]/(ve? — 2¢)

Proposition

KOB(3 = KO*[po, qo]/(p3 — 2po) where py and qo have complexifications
vc and vcy respectively. The restriction KOZ(3) — KOB(Z) sends pgy to pg
and qg to pg + ro.

v

The Chern classes no longer suffice to generate ku*o(n) for n > 2. Let

60 :H — YHZ and 51 - HZ — Y3ku be the boundary maps in the
cofiber sequences for 2 : HZ — HZ and v : ¥2ku — ku. They are lifts
of the Milnor primitives Qg qnd Q.
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Orthogonal Groups

Definition
Let g2 = Q1Qo(w2) € ku®BO(3) and g3 = Q1 Qo(ws) € ku” BO(3).

Proposition

The classes g2 and g3 are nonzero classes annihilated by (2,v). The class
g3 is independent of ¢, ¢, and c3, while go = ccp — 3c3. These are the
only nonzero 2 or v-torsion classes in ku? BO(3) and ku” BO(3).

Theorem
ku*BO(3) = ku*[c, ¢z, c3, q3]/ R, where R is an ideal containing
(ve? — 2¢,2(ccr — 3c3), v(cer — 3¢3), 2g3, vas, vees — 2¢3).
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Orthogonal Groups

O(n) for larger n

The free summands in H*BO(n) begin to get more complicated at n = 4.

Let us write ws for the product [];.s w;.

Proposition

Maximal E(1)-free summands of H*BO(n) are:
n=4

FZ[W127 W22, W327 W42]<W27 W3, Wa, Wo34)
®F2[W12’ W22’ W3]<W24>

2 2 2 2 2
F2[W1 y Wy, W3, Wy, W5]<W2, W3, W4, W5, W234, W235, W245, W345)

@FZ[W]?a W225 WE’ W52]<W24a W34>

2

2 2 2 2 .2

F2[W1 y Wy W3, Wy, Wy, W6]<W27 W3, Wa, W5, We, W26, W234, W235,
2 2 92 2 2

®F2[W1, Wy, W3, Wy, W5, W6]<W2367 W246, W256, W346, W456, W234

69':2[W12a W227 ij W52, W62]<W247 W34, Wo456)
69F2[W127 W227 WE? W62]<W46>
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Orthogonal Groups

Remark

Each ws generating a free E(1) will give rise to a (2, v)-annihilated class
Q1Qo(ws) € ku*BO(n).
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Special Orthogonal Groups

RU(SO(2n +1)) = Z[A1,. .., An]

with )\,,+,' = )\n+1,,' and
RU(SO(2n)) = Z[A1,..., An-1, A7, AL 1/R

with Apyj = XA, and A\, = AT + X . The ideal R is generated by one
relation

5+ An2)(n + D) An2i) = O Anm1-2i)

All the \; are real. RU(S0(2n)) is free over RU(SO(2n+ 1)) on {1, \}'}.
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Special Orthogonal Groups

H*BSO(n) = Fa[wa, ..., w,] where w; = w;(Aq1).
We have already examined SO(2) = T(1) and found (writing ¢; rather
than y; here)

kuso(y = ku*[cr, c1]/(vacr = a +¢1)

and
ku*BSO(2) = ku*[[c1]]-
The maps induced in ku* by the fibre sequence SO(2) SR 0(2) get, Oo(1)
are
Proposition
det*(c) = ¢, while i*(c) =0, i*(c2) = c1€1 and
i*(Cl) = i*(C + VC2) =c +C1.
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S0(3)
RU(SO(3)) = Z[)\l] with > = A1 and A3 = 1.

Proposition
KUso(3) = KU [c]

Proof.

The Chern classes of the defining representation of SO(3) satisfy ¢; = ve,
a3 =0and v2c = veg =3 — ). DJ
Theorem

ku;o(3) = ku*[Cg, C3]/(2C3, VC3),

The first Chern class, ¢c; = vcp. The restriction ku*o(3) — ku§0(3) sends ¢
and q3 to 0, and sends each ¢; to c;.

v
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Special Orthogonal Groups

Proof.

The Adams spectral sequence again collapses and gives us a
monomorphism into the sum of mod 2 cohomology and periodic K-theory.
This makes it easy to show ku*BSO(3) = ku*[[c2, c3]]/(2¢3, ve3). The
pullback square then gives kugq3) = ku*[c2, c3]/(2¢3, ves). O

In general, we expect ¢; = vep — v2cs, since this is true in SU(n), but here
V2C3 =0.

The restriction from O(3) is computed by using the monomorphism to
periodic K-theory plus mod 2 cohomology. Note that g» = cco — 3¢3
restricts to c3.
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Thank you
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