Algebraic and Geometric Connecting Homomorphisms in the Adams Spectral Sequence

R. Bruner

Let E be a commutative ring spectrum such that E_*E is flat over π_*E and such that, for any spectra X and Y, $[X,Y\wedge E]\cong \operatorname{Hom}_{E_*E}(E_*X,E_*Y \otimes E_*E)$ (see, e.g., [1, §13 and §16]).

If $A \rightarrow B \rightarrow C$ is a cofiber sequence such that (1) is short exact

$$0 \rightarrow E_*A \rightarrow E_*B \rightarrow E_*C \rightarrow 0$$

then there is an algebraically defined connecting homomorphism

$$\theta: \operatorname{Ext}_{E_*E}^{s,t}(M, E_*C) \rightarrow \operatorname{Ext}_{E_*E}^{s+1,t}(M, E_*A)$$

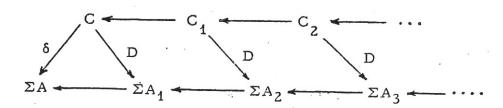
for any E_*E comodule M. When $M=E_*X$, these Ext groups are E_2 terms of Adams spectral sequences and we may ask:

- (a) Does 8 commute with differentials in the Adams spectral sequence?
- (b) Does ϑ converge to the homomorphism $\delta_*: [X, C] \to [X, \Sigma A]$ induced by the geometric connecting map $\delta: C \to \Sigma A$?

It is possible to answer (b) without answering (a) (see [2, Theorem 1.7]). We show here that δ induces θ in the most natural possible way, answering (a) and (b) affirmatively.

The canonical Adams resolution of a spectrum Y with respect to E is defined by requiring that $Y_{i+1} \rightarrow Y_i \rightarrow Y_i \wedge E$ be a cofibration for each $i \geq 0$.

Lemma: The connecting map $\delta: C \to \Sigma A$ induces a map D of Adams resolutions with a shift of filtration:



Proof. Since $E_*(\delta) = 0$, our assumptions on E imply that $C \to \Sigma A \to \Sigma A \wedge E$ is nullhomotopic. The existence of D now follows just as in the proof that a map of spectra induces a map of Adams resolutions.

Let $E_r^{**}(X,Y)$ be the E_r term of the Adams spectral sequence for $[X,Y]^E$ and let $F^s[X,Y] = Im([X,Y_s] \rightarrow [X,Y])$ (so that $E_{\infty}^{s*} = F^s/F^{s+1}$).

By composing with D we obtain a map of exact couples and hence a map of Adams spectral sequences $\{D_r\}:\{E_r^{s,t}(X,C)\}\to\{E_r^{s+1,t}(X,A)\}$. By the lemma, $\delta_*F^s[X,C]\subset F^{s+1}[X,A]$ and therefore the ordinary associated graded homomorphism $E^0(\delta_*):E_\infty^{s*}(X,C)\to E_\infty^{s*}(X,A)$ is zero. Because of the filtration shift, δ_* induces a homomorphism $E_\infty^{s,t}(X,C)\to E_\infty^{s+1,t}(X,A)$ and this is clearly D_∞ , the homomorphism induced by composition with D. It follows that in order to answer (a) and (b) affirmatively we need only show that D_2 is the connecting homomorphism for Ext.

Proposition. The connecting homomorphism

$$\operatorname{Ext}_{\operatorname{E}_{*}\operatorname{E}}^{s,t}(\operatorname{E}_{*}\operatorname{X},\operatorname{E}_{*}\operatorname{C}) \rightarrow \operatorname{Ext}_{\operatorname{E}_{*}\operatorname{E}}^{s+1,t}(\operatorname{E}_{*}\operatorname{X},\operatorname{E}_{*}\operatorname{A})$$

induced by the short exact sequence (1) preserves all differentials and converges to $\boldsymbol{\delta}_{\star}$.

<u>Proof.</u> Interpreting Ext as equivalence classes of exact sequences, the connecting homomorphism is Yoneda composite with (1). On the other hand, the homomorphism induced by D is the homomorphism induced by $D_*: E_*C \to E_*\Sigma A_1$ followed by Yoneda composite with $E_*A \to E_*(A \land E) \to E_*\Sigma A_1$. This is obvious from the following diagram if one keeps in mind both definitions of Ext:

(i) cocycles modulo coboundaries, (ii) equivalence classes of exact sequences.

$$0 \rightarrow E_*C \rightarrow E_*(C \land E) \rightarrow E_*(\Sigma C_1 \land E) \rightarrow \cdots$$

$$D_* \downarrow \qquad D_* \downarrow \qquad D_* \downarrow$$

$$0 \rightarrow E_*A \rightarrow E_*(A \land E) \rightarrow E_*\Sigma A_1 \rightarrow E_*(\Sigma A_1 \land E) \rightarrow E_*(\Sigma^2 A_2 \land E) \rightarrow \cdots$$

Thus we need only show that there exists a commutative diagram

$$0 \rightarrow E_*A \rightarrow E_*B \rightarrow E_*C \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow^{D_*}$$

$$0 \rightarrow E_*A \rightarrow E_*(A \land E) \rightarrow E_*\Sigma A_4 \rightarrow 0$$

The existence of such a diagram follows immediately from the map of cofiber sequences induced by D

- [1] J.F.Adams. Stable Homotopy and Generalized Homology. Univ. Chicago Lect. Notes in Math. 1974
- [2] Johnson, Miller, Wilson, Zahler. Boundary Homomorphisms in the Generalized Adams Spectral Sequence and the Nontriviality of Infinitely Many γ in Stable Homotopy. Proc. of the Conf. on Homotopy Theory, Northwestern Univ., 1974, Notas de Matematica y Simposia, Sociedad Matematica Mexicana.