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0. Acknowledgements and history
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@ John Greenlees, for application to the root invariant,

@ Tyler Lawson, for the dualizeDef code,

@ John Rognes, for numerous coding improvements, suggestions and
requests, and for collaboration in producing the database we just
posted,

@ Dan Isaksen, for asking me to talk, among other things,

@ Thanks are due to the NSF, the Trond Mohn foundation (formerly
Bergen Research foundation), the Simons Foundation, and the Knut
and Alice Wallenberg Foundation for support for various parts of the
work here.
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What ext is: the code

C code and Unix shell scripts to produce

@ minimal resolutions of modules M over a connected augmented
F-algebra A,

@ chain maps lifting cocycles, giving products, induced maps and some
Toda brackets,

@ chain map computing the cocommutative Hopf algebra
Sq° - Exti’lt — Exti’ft,

@ TeX code using TikZ for Adams style charts, designed to be
incorporated into your TeX documents,

@ TeX code for stem by stem summaries,

e new module definitions from old (tensor product, duals, skeleta and
coskeleta) with some common modules built in.

The code is compartmentalized, so that it is easy to add new algebras A.
Currently, only the Steenrod algebra and A(2) = (Sq', Sg°, Sg*) are

included.
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Resolutions

Given a module M over a connected augmented algebra A, ext produces a
minimal resolution

0 ML G & ¢
through a specified internal degree. By minimality,
Hom%(Cs, F2) = Homa(Cs, £'F2) = Exty" (M, Fy).

The module M is specified either by

@ a module definition file, which gives an F, basis and the action of the
S5q', or
@ a finite presentation 0 +— M +— Cy «— (7. If the presentation isn't

minimal, there will be a small d; to compute ‘by hand’ to finish
Ext3(M,F,) for s =0, 1.
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Chain maps

Given resolutions

0 M g ... & ¢

and
o d d d
0¢— N<2 Dy <~ Dy <2 ... <= Ds,

aclass x € Exts°’t°(M, N) can be represented as an A-homomorphism
x:Csqy —> XON.

From this data (specified in a map definition file), ext lifts x to a chain
map {Csq+s — 0D }s.
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Chain maps

@ The map definition file specifies sy, tg, M, N, x and the nonzero
images in N of the A-generators of C,.

@ Running newmap on that map definition file will create the necessary
files.

@ Running dolifts in the domain directory will compute the lift.

o If N =T and x = 54, dual to generator number g in C;, the
command cocycle will first create an appropriate map definition file
and then run newmap.

@ N.B.: the chain map is only computed in the range in which both
domain and codomain have already been computed.

@ ext contains a precomputed resolution of [F> over A through t = 120,
and a resolution of F, over A(2) through t = 300; this is usually all
you need.
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1. What it is
Chain maps, cont.

The chain map lifting x € Ext® (M, N) gives

o the product map ExtSt(N,Fy) = Extstot+t (M, F,) and
e Toda brackets (hj, sg, X).

M < C.0 =~ o< Cso <~ = Cso+s Cso+s+1
/ lxo lxs lxs+1
SON < Y0Py <— ... stop, ShD

]

Zt'HOFz <—Zt+t°Eo - Zt—i—tOEl

AO h;

zt+to+2']F2
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1. What it is

Chain maps, cont.

Toda brackets (hj, sy, x) = hju + vx where u: s;x ~ 0 and v : hjs; ~ 0.

M<—CG=< - =——Co=— -+ = Cqrs=— Cyysp1
\
/ lXO Xsl \\u jXS‘Fl
\
TN < E0Dy<— -

<~ Y Ds < Zto D5+1

\
ty \
2 N
N\

):t+toF2 <~ Yttt EO -~ Yttt =

AO h;

Zt+t0+2’ IFQ
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A canonical basis for Ext 4

@ The A-generators of C; are indexed on the non-negative integers in
non-decreasing order of internal degree.

@ Their duals sg, s1, ...form a well-defined canonical basis for Ext,
which we now describe.

@ In general, this depends on the linearly ordered basis of M, but for
M =5, is unique.

@ This gives a canonical basis for the cohomology of the Steenrod
algebra.

We'll describe the case M = FF5 here.
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The order
Totally order the terms Squ; of Cs+ by

Squ < SgR s
iff
Q@ g<g or
Q g =g’ and SqR < Sg&', where the Milnor basis elements SqR
given reverse lexicographic order: (r1, r,...) < (r{,r5,...) iff for
some k, re < r, and r; = r} for all i > k. (grevlex)
© Thus,

(n)<(n=3,1)<(n—6,2) <
< (n-7,0,1) < (n—10,1,1) < --- < (n—14,0,2) < (n—17,1,2) <
<(n-15,0,0,1) < (n—18,1,0,1) < --- < (n—22,0,1,1) <
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The order, cont.

@ Each nonzero element x € Cs; then has a leading term LT x, which is
the lowest term in x.

@ In the totally ordered basis {Squg} of a given bidegree (s, t), the
decomposable elements, those with deg(SqR) > 0, form an initial
segment which is followed by the A-generators s; of bidegree (s, t).

We can now inductively define our canonical basis as follows.
@ We start with the bases {05} for Cp and {} for C; with s > 0.

@ We may inductively assume given the basis for Cs in degrees less than
t, and for Cs_1 in degrees less than or equal to t.
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genimker

Step 1: Generating the image and kernel.

e Ims; will be a totally ordered list of pairs (x, dx) with the leading
terms of the dx in strictly increasing order. Kers ; will be a list of
terms x. Both are initially empty.

o Consider the terms Squ; in order. Let x = Squ; and compute
dx = Squ(Sg). Then, while dx # 0, if LT (dx) = LT(dy) for a pair
(y,dy) € Img ¢, replace x by x — y and dx by dx — dy. If not, add
(x, dx) to Ims ; and proceed to the next term. If, instead dx = 0, add
x to the end of the list Ker, ;.

@ Note that the leading term of dx will be increased each time we

replace dx by dx — dy until it either becomes 0 or has a leading term
not already found among the dy in Img ;.

Robert Bruner (WSU ) ext eCHT 15/52



addgen

Step 2: Adding new generators.

@ We may inductively assume given Kerg_q ;.

@ For each x € Kers_1 ¢, in order, let ¢ = x.

e While LT(x) = LT (dy) for some pair (y, dy) € Ims,, replace x by
x — dy.

o If this process terminates with LT(x) # 0, add a new generator s;
with d(s;) = c, then add a new pair (z, x) to Ims ¢, where z is the
difference of s; and those y whose images dy were subtracted from ¢
to get the final x with a new leading term.

o If the process terminates with x = 0, do nothing.
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Remark

@ We could choose, at this second step, to let d(s;) = x and add the
pair (sz,x) to Ims ;. The ext code prior to the year 2000 used that
algorithm.

@ Experience shows that the bases s, obtained from the algorithm
described here have products, especially the h; - s;, monomial far
more frequently than those produced by the old algorithm.

@ The Wayne State Research Report #37 (1997) used the older
algorithm. The first difference visible in Ext charts lies in bidegree
(9,94 23). In the new algorithm,

h183 = 94 and h084 = 95 .
In the older algorithm,

h183 =94 + 95 and ho84 = hg8s5 = 95.
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Old and new
Pre-2000 Current
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Old and new

@ The change alters the resolution much earlier, and can be seen by

doing hand calculations in low degrees.

o In the old algorithm, d(23) = Sq(®V - 13 + Sq¢? - 1}.

o In the new algorithm, d(2}) = Sq3 - 13 + Sq° - 13.
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2. A database of H*'*(.A)

The dataset

John Rognes and | have produced a dataset of our calculations of the
cohomology of the Steenrod algebra which we have placed in a public
repository for public use. It is available for download at the NIRD
Research Data Archive

https://archive.sigma2.no.

The goal is to have a stable reference which does not depend on personal
web pages or other changeable sources and to give it a DOI for citations or

references.
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https://archive.sigma2.no

2. A database of H*'*(.A)

The dataset, cont

Hence, please cite/refer to the dataset by its digital object identifier
DOI:10.11582/2021.00077, viz.

Robert R. Bruner and John Rognes, The cohomology of the mod 2
Steenrod algebra (2021), https://doi.org/10.11582/2021.00077.
[Dataset]. Norstore.

The DOI can also be used to access the dataset directly as

HTTPS://D0OI.0RG/10.11582/2021.00077.

Robert Bruner (WSU ) ext eCHT 22/52


HTTPS://DOI.ORG/10.11582/2021.00077

2. A database of H*'*(.A)

The dataset contents

Let A denote the classical mod 2 Steenrod algebra over 5.
The archive contains

@ a minimal resolution of F5 over A in internal degrees t < 184 and
cohomological degrees s < 128,

@ chain maps lifting each member in the resulting basis for
Ext’;"(F2,F>) in this range, and

© a chain map which gives the Hopf algebra squaring operation

Sqo : EXtiit(]Fg,Fz) — Exti"2t(F2,]F2).
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2. A database of H*'*(.A)

Contents, continued

In addition to this data, the archive contains

@ A document The cohomology of the mod 2 Steenrod algebra
(CohomA2.pdf),

version 1.9.3 of the ext package, used to produce this data,
a text file all.products containing all nonzero products,
a text file all.sq0 containing all nonzero Sq°(x),

text files P.txt, P2.txt and P4.txt giving the Adams periodicity
operators P, P2, and P*,

©© 00

©

a text file MM. txt giving a variant of Isaksen’s ‘Mahowald operator’
M(X) = <g27 h37X>'

@ an Adams chart Ext-A-F2-F2-0-184.pdf, and

© a stem by stem summary S-184.pdf.
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2. A database of H*'*(.A)

The chart
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2. A database of H*'*(.A)

The document

The included document ‘The cohomology of the mod 2 Steenrod algebra’
may be of independent interest and is available on arXiv as
arXiv:2109.13117.

It contains

@ a description of the data files defining the resolution and the chain
maps,

@ details on the operators P, P2, P* M and M/,

© a description of the algorithm, as above, defining our canonical basis,
and

© a concordance relating our canonical basis to previous notations.
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2. A database of H*:*(.A)
Operators P' and M

These are defined by
Q@ Px=(hs, hg,x>,
Q@ P%x = (hg, h8, x),
© P*x = (hs, h{® x) and
Q Mx = (g, h3,x).
Note that

O lIsaksen's Mahowald operator Mx = (g, h§, x) is not of the form that
it is immediately evident in our dataset,

@ its variant
M'(x) = (ho, h3g2, x)

is.
@ Both contain (hog2, h3, x), when defined.
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2. A database of H*'*(.A)

Operators P’ and M’, cont.

Chain maps allow us to calculate (h;, sg, x): recall

M<—CG=< - =——Co=— -+ = Cqrs=— Cyysp1
/ l/XO lxs jXS‘Fl

YN <—Y0Dy <— ~— 30D, <— 30D

=]

):t+toF2 <~ Yttt EO -~ Yttt =

AO h;

Zt+t0+2’ IFQ
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2. A database of H*'*(.A)

Operators P’ and M’, cont.

Proposition

If hi - (s0)g, =0 and (s0)g, - X = O then the Toda bracket (h;,(s0)g,, X)
contains the sum of all thqse sg such that the chain map lifting x, applied
to sy, contains a term 5q* - (so)%;-

In particular, it is entirely possible that
Q xs(s}) contains Sq* - (sp)%,. though

Q h,‘ : (So)go 75 0or (SO)go - X 7& 0.
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2. A database of H*'*(.A)

Operators P’ and M’, cont.

The files P.txt, P2.txt, P4.txt and MM. txt contain the data needed to
make these calculations. Each file starts with a short header describing the
operator and the file's organization, then has three sections:

(a) values of the brackets,

(b) nonzero products which obstruct existence of the bracket,
and

(c) nonzero products which give the indeterminacy.

In general, the indeterminacy in a bracket (a, b, ¢) is a(Ext) + (Ext)c.
However, the brackets P, P2, P* and M’ have indeterminacy a(Ext)
because (Ext)c is contained in a(Ext) in these cases.
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2. A database of H*'*(.A)

Brackets in general

@ Tangora (1970) writes Px for a cycle represented by (bg2)?x in the
May spectral sequence. This is justified by the differential
da(b3,) = hghs.

@ However, this accounts for only part of the definition of a Massey
product or Toda bracket.

@ If a, b and x satisfy ab = bx = xa = 0, the Jacobi identity says
0€(a,b,x)+ (b,x,a)+ (x,a,b).

If A, U and V satisfy d(A) = ab, d(U) = bx and d(V) = xa = ax,
then

» Ax+aU € (a, b, x),

» Ua+ bV € (b,x,a) and

» Ax+ bV € (b,a,x) = (x,a,b).

© Approximating the bracket (a, b, x) by Ax, in those cases where Ax is

a cycle, fails to distinguish between (a, b, x) and (b, a, x) = (x, a, b).
These differ by (b, x, a) = (a, x, b).

Robert Bruner (WSU ) ext eCHT 31/52



2. A database of H*'*(.A)

Brackets in general, cont.

@ This can lead to greater indeterminacy and to anomalies like
Tangora's observation (Note 3, p. 48) that
» hsi is annihilated by h3, but
» P(hsi), if defined to be (bo2)?hsi, has h3 - (bo2)?hsi # 0.
» In fact, consulting P.txt we see that P(hsi) = P(82) = 0 with zero
indeterminacy.
© By using only the precisely defined brackets we

> get the advantages of their good formal behavior, and
> limit the indeterminacy.
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2. A database of H*:*(.A)
Other brackets

Two other operators may be of use. They are

@ the complex Bott periodicity operator
Vl(X) = <h07 h17X> 3

and

@ the mod 2 'Bott periodicity operator’

v{(x) = (hy, hg, x) .

© In the universal example, the Adams spectral sequence for
(S Up el Uy, €2),
» vi(0p) is an hy-annihilated class which supports an infinite hp-tower,
while
» v{(0g) is an hg-annihilated class which supports h?-multiplication.
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vi and v{
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2. A database of H*'*(.A)

Concordance

We present the relation between
© our sg basis,

@ names based on Tangora's calculation of the E,, term of the May
spectral sequence in 1970, and

© Chen's Lambda algebra computation of Ext® for s <5 in 2011.
In the process,

@ we make a natural extension to traditional notation using Sq°, and
@ adopt Isaksen's use of the Mahowald operator.
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2. A database of H*"*(A)

Indeterminacy

@ May spectral sequence names are inherently indeterminate; we are
explicit about this.

@ We relate Chen's Lambda algebra names to our s, by use of relations
known in each description. Some of this requires Chen's unpublished
description of the decomposable classes in Ext® from 2012.

@ A natural homomorphism A — Hom(C,,F2), or equivalently, an
action A ® C, — > would be useful.

© We define fy = Sq'(co) and y = Sq?(fy). This eliminates the
indeterminacy in May spectral sequence or Toda bracket definitions.
Nassau, Tilson and | have calculated these using Nassau's method
(arXiv:1909.03117v3).
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3. Role in calculating ExtA(Z)(H*X. Fy)

EXtA(Q) (FQ ; Fg)

@ Shimada and Iwai showed that, in Henriques' notation,

Ext 4(2)(F2, F2) = Fa[ho, h1, ha, co, do, €0, v, 3,7, 0, g, wi, wa] /I

where | = (hoh]_, hghg — h‘;’, h1h2, .

..) is an ideal generated by 54
relations.

@ Rognes and RRB found that analyzing the Adams spectral sequence

EXtA(z)(Fz, ]F2) = M tmf

was facilitated by working over the subalgebra Ry = Fa[g, w1, wa].
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3. Role in calculating ExtA(z)(H*X. Fa)

Adams spectral sequence

@ The Ex-term is a sum of cyclic Ry-modules with annihilator ideals (0),
(g) or (g2). The sum is finite except for four ho-towers. The
differential dy is Ry-linear, where Ry = (g, wy, W22]

@ The Es-term is a sum of cyclic Ri-modules and three non-cyclic
summands, each with two generators. The differential d3 is R»-linear,
where Ry = g, wi, wi].

© The E4-term is a sum of cyclic R;-modules and four non-cyclic
summands, each with two generators. The differential dj is again
R>-linear.

@ The Es = E,-term is a sum of cyclic Ry-modules and three
non-cyclic summands, each with two generators.
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3. Role in calculating ExtA(Z)(H*X. Fy)

Adams spectral sequence for C2, Cn and Cv

@ We apply a similar strategy to the Adams spectral sequence for
tmf,(C2), tmf.(Cn) and tmf,(Cv).
@ Write My for the two cell A(2)-module with Sq2* nontrivial.

© We have a long exact sequence

. e
(Mo, Fp) =15 ExtSio 2 26 o)

. |
b Bt s Bt gHs

A(2) A(2)
and hence,
@ a short exact sequence

st

0 — Cok hy — Ext¥ify,

(M2k,]F2) — Ker hk —0
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3. Role in calculating ExtA(z)(H*X. Fa)

Adams spectral sequence for C2, Cn and Cv, cont.

© From the Ro-module description of Ext 4(2), we write Cok hy and
Ker h, as Ry-modules.

@ Using ext to compute chain maps inducing i and j, we can choose
(good) lifts X for the Rp-module generators x of Ker hy, solving
J(x) = x.

@ Using ext to compute chain maps, we can compute the Rg-action on
our lifts X, and thereby resolve the extension questions in the short
exact sequence above.

@ This gives EXti{Ez)(Mzkaz) as an Rp-module.
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3. Role in calculating ExtA(z)(H*X. Fy)

Adams spectral sequence for C2, Cn and Cv, cont.

@ From this we can compute E3 as an Rj-module, and E4 and Es = E
as Ry-modules. (In fact E4 = E for Cn.)

@ Although a Grobner basis for E; = Ext 4(2) was quite useful, writing
the E3, E4 and Es terms as P/I, so that we could use Grdbner basis
methods, was not. Using ext to compute in our canonical sz basis
turns out to be easier and more effective.

@ The same strategy works to compute tmf, of the four cell complex
v n 2

X = S T T
0 4 6 7
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4. Small samples

A cofiber sequence

Let M be the cohomology of X:

Sq* Sq? Sqt

® /_\o—o

degree: 0 4 6 7
gen #:. 0 1 2 3

This sits in a short exact sequence

0— M -5 M5 M, — 0.

We will show how to create
@ the module definition file for M,
@ the map definition files for i and j, and

© the 1-cocycle e defining the extension.
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4. Small samples

The obvious entries in the module definition file for M are

4
0467

N = O
=N

1
1
1

w N -

We will use the ext code to see what else is required.
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4. Small samples

The cocycles defining i and j are
(with minimal resolutions M <— C, and M; <— D)

M~<~— G M Do
Jl }///// il ,//////
My Y oM
with module definition files
oOooMME j1 0O-6 M1 Mili1
0 0
1 1
0 0 1 x80 2 0 1 x80

Robert Bruner (WSU ) ext eCHT
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4. Small samples

The extension cocyle e € Ext}‘{6(M4, M) is the E, representative of the
connecting map ¥°C2 — ¥ Cv in

Cv— X —3YC2 —~3Cv

and sits in a diagram

0——YoM, M M, 0
I
E E; Eo My 0

with d(1%) = Sq03, d(17) = Sq203, d(13) = Sq°0;, .. ..

Then e(1%) is the degree 6 class in ¥°M;, and
e sends all other generators of E; to 0.
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4. Small samples

The resulting map file for e is then

16M4 Ml el

2
1
0 01 x80

These three chain maps then compute for us the long exact sequence
ExtS(My) —2> Ext™H (M) — ExtSt6(My) —%5 Ext=H1t(My)

(Retire to the terminal window.)
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Summary

@ ext is fast.
@ ext gives access to products, brackets and induced maps.

@ ext has created an extensive database of calculations relevant to the
homotopy groups of spheres.

o ext is useful even in situations, like Ext 4(2)(M,F2), where machine
calculation isn’t strictly needed.

@ ext can quickly give useful low dimensional calculations.

@ ext isn't all that user friendly.
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Summary

Thank you.
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