ON THE POSTNIKOV TOWERS FOR REAL AND COMPLEX CONNECTIVE K-THEORY

ROBERT R. BRUNER

1. Introduction

The analysis of real connective K-theory is facilitated by the \(\eta cR \) cofiber sequence

\[
\Sigma k_o \underset{\eta}{\rightarrow} k_o \overset{c}{\rightarrow} k_u \overset{R}{\rightarrow} \Sigma^2 k_o
\]

relating real and complex K-theories [2]. Here we extend this relationship through the Postnikov towers, producing several useful \(ko \)-module maps in the process.

Theorem 1. The \(\eta cR \) sequence lifts to cofiber sequences relating the connective covers of \(ko \) and \(ku \) as follows:

\[
\begin{align*}
\Sigma k_o & \overset{\eta}{\rightarrow} k_o \overset{c}{\rightarrow} k_u \overset{R}{\rightarrow} \Sigma^2 k_o \\
\Sigma k_o & \overset{\eta_1}{\rightarrow} k_o(1) \overset{c_1}{\rightarrow} \Sigma k_u \overset{r_r}{\rightarrow} \Sigma^2 k_o \\
\Sigma k_o(1) & \overset{\eta_2}{\rightarrow} k_o(2) \overset{c_2}{\rightarrow} \Sigma^2 k_u \overset{r_r}{\rightarrow} \Sigma^2 k_o(1) \\
\Sigma k_o(2) & \overset{\eta_4}{\rightarrow} k_o(4) \overset{c_4}{\rightarrow} \Sigma^2 k_u \overset{r_r}{\rightarrow} \Sigma^2 k_o(2) \\
\Sigma k_o(4) & \overset{\eta_8}{\rightarrow} k_o(8) \overset{c_8}{\rightarrow} \Sigma^2 k_u \overset{r_r}{\rightarrow} \Sigma^2 k_o(4) \\
\Sigma k_o(8) & \overset{\eta_8}{\rightarrow} k_o(8) \overset{\Sigma^8 c}{\rightarrow} \Sigma^8 k_u \overset{\Sigma^8 R}{\rightarrow} \Sigma^8 k_o(8)
\end{align*}
\]

In the sequence above, \(c \) is complexification, \(r \) is realification, and \(\eta \) is multiplication by \(\eta \in k_o \). The map \(R \) is an extension of realification \(r \) over the Bott map: \(r = Rv \).

We will write \(X \langle n \rangle \rightarrow X \) for the \(n \)-connected cover of \(X \). By this we mean that \(\pi_i X \langle n \rangle = 0 \) for \(i < n \), while \(\pi_i X \langle n \rangle \rightarrow \pi_i X \) is an isomorphism for \(i \geq n \). It will be useful to record the maps induced in cohomology. All the modules and maps we will deal with are in the image of induction from \(A(1) \)-Mod,

\[A \otimes_{A(1)} - : A(1) \text{-Mod} \rightarrow A \text{-Mod}, \]

so we will record the results in \(A(1) \)-Mod, leaving it to the reader to tensor up.

The first lift, \(\eta_1 c_1 r \), was brought to my attention by Vic Snaith ([3]). The remaining lifts appeared at one point to be useful in Geoffrey Powell’s analysis of \(k_o^* BV_+ \) ([4]), but in the end were unnecessary there.

2000 Mathematics Subject Classification. Primary: 55N15, 55S45; Secondary: 55N20, 55P42, 55R40, 55S05i, 55S10.
2. Complex Periodicity

In the complex case, periodicity and the Postnikov tower amount to the same thing. If we write \(ku = \mathbb{Z}[v] \), with \(|v| = 2\), then the Postnikov covers of \(ku \) are simply given by multiplication by powers of \(v \).

\[
\begin{array}{c}
\Sigma^2 ku \\
\simeq \\
k u(2) \longrightarrow k u
\end{array}
\quad \text{and more generally}
\begin{array}{c}
\Sigma^{2i+2} ku \\
\simeq \\
k u(2i + 2) \longrightarrow k u(2i)
\end{array}
\]

Proposition 2. \(ku \longrightarrow H \mathbb{Z} \longrightarrow \Sigma^3 ku \) induces the short exact sequence

\[
\begin{array}{c}
A(1)/(Sq^1, Sq^3) \quad A(1)/(Sq^1) \quad \Sigma^3 A(1)/(Sq^1, Sq^3)
\end{array}
\]

3. Real Periodicity

In the real case, periodicity is broken into 4 steps. We write \(ko_* = \mathbb{Z}[\eta, \alpha, \beta]/(2\eta, \eta^3, \eta\alpha, \alpha^2 - 4\beta) \) with \(|\eta| = 1, |\alpha| = 4, \) and \(|\beta| = 8\).
The following Proposition is well known. It is a simple way to show that a spectrum whose cohomology is $A/\langle A(1) \rangle$ must have 2-local homotopy additively isomorphic to $\pi_* ko$.

Proposition 3. The maps induced in cohomology by the Postnikov tower for ko are as follows.

(1)

\[
\begin{array}{c}
ko \\
\rightarrow \\
H_\mathbb{Z} \\
\rightarrow \\
\Sigma ko(1)
\end{array}
\]

induces the short exact sequence

\[
\begin{array}{c}
F_2 \\
\leftarrow \\
\longrightarrow \\
\longrightarrow \\
\Sigma A(1)/(Sq^1) \\
\leftarrow \\
\longrightarrow \\
\Sigma^2 A(1)/(Sq^2)
\end{array}
\]

(2)

\[
\begin{array}{c}
ko(1) \\
\rightarrow \\
\Sigma HF_2 \\
\rightarrow \\
\Sigma ko(2)
\end{array}
\]

induces the short exact sequence

\[
\begin{array}{c}
\Sigma A(1)/(Sq^2) \\
\leftarrow \\
\longrightarrow \\
\longrightarrow \\
\Sigma A(1) \\
\leftarrow \\
\longrightarrow \\
\Sigma (Sq^2) \cong \Sigma^3 A(1)/(Sq^3)
\end{array}
\]
induces the short exact sequence
$\Sigma^2 A(1)/\langle Sq^3 \rangle \leftarrow \Sigma^2 A(1) \leftarrow \Sigma^2 (Sq^3) \cong \Sigma^5 A(1)/(Sq^1, Sq^2 Sq^3)$

induces the short exact sequence
$\Sigma^4 A(1)/(Sq^1, Sq^2 Sq^3) \leftarrow A(1)/(Sq^1) \leftarrow \Sigma^9 F_2$

4. Maps of Postnikov towers

First, we record the maps induced in cohomology by our starting point, the $\eta_c R$ sequence.

Proposition 4. $ko \xrightarrow{L} ku \xrightarrow{R} \Sigma^2 ko$ induces the short exact sequence
$A(1)/(Sq^1, Sq^2) \leftarrow A(1)/(Sq^1, Sq^3) \leftarrow \Sigma^2 A(1)/(Sq^1, Sq^2)$
We will now prove Theorem 1 in a series of steps. We start with the braid of cofibrations induced by the composite \(ko \xrightarrow{c} ku \xrightarrow{} HZ \).

\[\begin{array}{c}
\Sigma ko \\
\eta \\
\eta_1 \\
k_0(1) \\
\Sigma^2 ku \\
\Sigma ko \langle 1 \rangle \\
c_1 \\
ku \\
\Sigma ko \langle 2 \rangle \\
c_2 \\
\Sigma^4 ku \\
\Sigma ko \langle 1 \rangle \langle 1 \rangle \\
\end{array} \]

This gives the \(\eta_1 c_1 r \) sequence. To continue to the next step, we will need to know the maps induced in cohomology by this one.

Proposition 5. \(\Sigma ko \xrightarrow{\eta_1} ko(1) \xrightarrow{c_1} \Sigma^2 ku \) induces the short exact sequence

\[\Sigma F_2 \xrightarrow{\Sigma A(1)/Sq^2} \Sigma^2 A(1)/(Sq^1, Sq^3) \]

Proof. These are the only maps which can make the long exact sequence exact. \(\square \)

From this we observe that we have a commutative square

\[\begin{array}{c}
\Sigma ko \\
\eta \\
k_0(1) \\
\Sigma^2 ku \\
\Sigma ko \langle 1 \rangle \\
\end{array} \]

which induces the following map of cofiber sequences. The map induced in cohomology by \(\eta_1 \) implies that the left hand map \(\Sigma ko \longrightarrow \Sigma HZ \) is nontrivial. This implies that the fiber of \(c_2 \) is \(\Sigma ko(1) \), giving the next Postnikov lift of the \(\eta c R \) sequence.

\[\begin{array}{c}
\Sigma HZ \\
\Sigma ko \\
\eta_1 \\
k_0(1) \\
\Sigma ko \langle 2 \rangle \\
\end{array} \]

Again we need to record the maps induced in cohomology for use in the next step.
Proposition 6. \(\Sigma ko(1) \xrightarrow{\eta_2} ko(2) \xrightarrow{c_2} \Sigma^4 ku \) induces the short exact sequence
\[
\Sigma^2 A(1)/(Sq^2) \xleftarrow{\eta_2} \Sigma^2 A(1)/(Sq^3) \xleftarrow{c_2} \Sigma^4 A(1)/(Sq^1, Sq^3)
\]

Now consider the braid of cofibrations induced by the composite \(ko(4) \to ko(2) \to \Sigma^4 ku \).

Since \(\eta_2^* \) is nonzero in degree 2, the map \(\Sigma ko(1) \to \Sigma^2 HF_2 \) is nontrivial, and hence the fiber of \(c_4 \) is \(\Sigma ko(2) \). Again, we need to record the maps induced in cohomology, and again, they ‘roll’ one step to the left.

Proposition 7. \(\Sigma^3 ku \xrightarrow{r_2} \Sigma ko(2) \xrightarrow{\eta_4} ko(4) \) induces the short exact sequence
\[
\Sigma^3 A(1)/(Sq^1, Sq^3) \xleftarrow{r_2} \Sigma^3 A(1)/(Sq^3) \xleftarrow{\eta_4} \Sigma^4 A(1)/(Sq^1, Sq^2 Sq^3)
\]

Since \(\eta_4^* \) sends the generator to \(Sq^1 \), we get a map of cofiber sequences whose fiber gives the next lift, \(\eta_8 c_8 r_4 \).
Proposition 8. $\Sigma^5 ku \xrightarrow{r_4} \Sigma ko(4) \xrightarrow{\eta_8} ko(8)$ induces the short exact sequence

\[
\Sigma^5 \mathcal{A}(1)/(Sq^1, Sq^3) \xrightarrow{r_4} \Sigma^5 \mathcal{A}(1)/(Sq^1, Sq^2 Sq^3) \xleftarrow{\eta_8} \Sigma^8 F_2
\]

Finally, consider the braid of cofibrations induced by the composite $\Sigma ko(8) \to \Sigma ko(4) \xrightarrow{\eta_8} ko(8)$.

Since r_4^* is an isomorphism on H^5, the map $\Sigma^5 ku \to \Sigma^5 HZ$ must be the bottom cohomology generator, justifying the appearance of $\Sigma^8 ku$ and v in this braid.

The result is a cofiber sequence $\Sigma^9 ko \to \Sigma^8 ko \to \Sigma^8 ku$. The maps are ko-module maps by construction, and agree with the 8-fold suspensions of η, c and R in homotopy, by the maps $X(8) \to X$. The adjunction $F_{ko}(\Sigma^9 ko, \Sigma^8 ko) \simeq F(S^9, \Sigma^8 ko)$, shows that a ko-module map $\Sigma^9 ko \to \Sigma^8 ko$ is determined by its effect on homotopy. Therefore, the first map, and hence the other two, are the 8-fold suspensions of η, c and R. \square

References

Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA
E-mail address: rrb@math.wayne.edu