ON THE POSTNIKOV TOWERS FOR REAL AND COMPLEX CONNECTIVE K-THEORY

ROBERT R. BRUNER

1. INTRODUCTION

The analysis of real connective K-theory is facilitated by the ' ηcR ' cofiber sequence

$$\Sigma ko \xrightarrow{\eta} ko \xrightarrow{c} ku \xrightarrow{R} \Sigma^2 ko$$

relating real and complex K-theories [2]. Here we extend this relationship through the Postnikov towers, producing several useful ko-module maps in the process.

Theorem 1. The ηcR sequence lifts to cofiber sequences relating the connective covers of ko and ku as follows:

In the sequence above, c is complexification, r is realification, and η is multiplication by $\eta \in ko_1$. The map R is an extension of realification r over the Bott map: r = Rv.

We will write $X\langle n \rangle \longrightarrow X$ for the *n*-connected cover of X. By this we mean that $\pi_i X \langle n \rangle = 0$ for i < n, while $\pi_i X \langle n \rangle \longrightarrow \pi_i X$ is an isomorphism for $i \ge n$. It will be useful to record the maps induced in cohomology. All the modules and maps we will deal with are in the image of induction from $\mathcal{A}(1)$ -Mod,

$$\mathcal{A} \otimes_{\mathcal{A}(1)} - : \mathcal{A}(1) \operatorname{-Mod} \longrightarrow \mathcal{A} \operatorname{-Mod}_{\mathcal{A}}$$

so we will record the results in $\mathcal{A}(1)$ -Mod, leaving it to the reader to tensor up.

The first lift, $\eta_1 c_1 r$, was brought to my attention by Vic Snaith ([3]). The remaining lifts appeared at one point to be useful in Geoffrey Powell's analysis of $ko^* BV_+$ ([4]), but in the end were unnecessary there.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 55N15, 55S45; Secondary: 55N20, 55P42, 55R40, 55S05i, 55S10.

2. Complex Periodicity

In the complex case, periodicity and the Postnikov tower amount to the same thing. If we write $ku_* = \mathbf{Z}[v]$, with |v| = 2, then the Postnikov covers of ku are simply given by multiplication by powers of v.

Proposition 2. $ku \longrightarrow H\mathbf{Z} \longrightarrow \Sigma^3 ku$ induces the short exact sequence

3. Real Periodicity

In the real case, periodicity is broken into 4 steps. We write $ko_* = \mathbf{Z}[\eta, \alpha, \beta]/(2\eta, \eta^3, \eta\alpha, \alpha^2 - 4\beta)$ with $|\eta| = 1, |\alpha| = 4$, and $|\beta| = 8$.

The following Proposition is well known. It is a simple way to show that a spectrum whose cohomology is $\mathcal{A}/\!\!/\mathcal{A}(1)$ must have 2-local homotopy additively isomorphic to $\pi_* ko$.

Proposition 3. The maps induced in cohomology by the Postnikov tower for ko are as follows.

(1)

 $ko \longrightarrow H\mathbf{Z} \longrightarrow \Sigma ko\langle 1 \rangle$

induces the short exact sequence

(2)

induces the short exact sequence

First, we record the maps induced in cohomology by our starting point, the ηcR sequence.

(3)

We will now prove Theorem 1 in a series of steps. We start with the braid of cofibrations induced by the composite $ko \xrightarrow{c} ku \longrightarrow H\mathbf{Z}$.

This gives the $\eta_1 c_1 r$ sequence. To continue to the next step, we will need to know the maps induced in cohomology by this one.

Proposition 5. $\Sigma ko \xrightarrow{\eta_1} ko\langle 1 \rangle \xrightarrow{c_1} \Sigma^2 ku$ induces the short exact sequence

From this we observe that we have a commutative square

$$\begin{array}{c} \Sigma H \mathbf{F}_2 \xrightarrow{Sq^1} \Sigma^2 H \mathbf{Z} \\ \uparrow & \uparrow \\ ko\langle 1 \rangle \xrightarrow{c_1} \Sigma^2 k u \end{array}$$

which induces the following map of cofiber sequences. The map induced in cohomology by η_1 implies that the left hand map $\Sigma ko \longrightarrow \Sigma H \mathbf{Z}$ is nontrivial. This implies that the fiber of c_2 is $\Sigma ko \langle 1 \rangle$, giving the next Postnikov lift of the ηcR sequence.

$$\begin{split} \Sigma H \mathbf{Z} &\longrightarrow \Sigma H \mathbf{F}_{2} \xrightarrow{Sq^{1}} \Sigma^{2} H \mathbf{Z} \longrightarrow \Sigma^{2} H \mathbf{Z} \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \Sigma ko \xrightarrow{\eta_{1}} ko\langle 1 \rangle \xrightarrow{c_{1}} \Sigma^{2} ku \xrightarrow{r} \Sigma^{2} ko \\ \uparrow & \uparrow & \uparrow \\ \Sigma ko\langle 1 \rangle \xrightarrow{\eta_{2}} ko\langle 2 \rangle \xrightarrow{c_{2}} \Sigma^{4} ku \xrightarrow{r_{1}} \Sigma^{2} ko\langle 1 \rangle \end{split}$$

Again we need to record the maps induced in cohomology for use in the next step.

Proposition 6. $\Sigma ko\langle 1 \rangle \xrightarrow{\eta_2} ko\langle 2 \rangle \xrightarrow{c_2} \Sigma^4 ku$ induces the short exact sequence

Now consider the braid of cofibrations induced by the composite $ko\langle 4 \rangle \longrightarrow ko\langle 2 \rangle \longrightarrow \Sigma^4 ku$.

Since η_2^* is nonzero in degree 2, the map $\Sigma ko\langle 1 \rangle \longrightarrow \Sigma^2 H \mathbf{F}_2$ is nontrivial, and hence the fiber of c_4 is $\Sigma ko\langle 2 \rangle$. Again, we need to record the maps induced in cohomology, and again, they 'roll' one step to the left.

Proposition 7. $\Sigma^3 ku \xrightarrow{r_2} \Sigma ko\langle 2 \rangle \xrightarrow{\eta_4} ko\langle 4 \rangle$ induces the short exact sequence

Since η_4^* sends the generator to Sq^1 , we get a map of cofiber sequences whose fiber gives the next lift, $\eta_8 c_8 r_4$.

Proposition 8. $\Sigma^5 ku \xrightarrow{r_4} \Sigma ko\langle 4 \rangle \xrightarrow{\eta_8} ko\langle 8 \rangle$ induces the short exact sequence

Finally, consider the braid of cofibrations induced by the composite $\Sigma ko\langle 8 \rangle \longrightarrow \Sigma ko\langle 4 \rangle \xrightarrow{\eta_8} ko\langle 8 \rangle$.

Since r_4^* is an isomorphism on H^5 , the map $\Sigma^5 ku \longrightarrow \Sigma^5 H\mathbf{Z}$ must be the bottom cohomology generator, justifying the appearance of $\Sigma^8 ku$ and v in this braid.

The result is a cofiber sequence $\Sigma^9 ko \longrightarrow \Sigma^8 ko \longrightarrow \Sigma^8 ku$. The maps are ko-module maps by construction, and agree with the 8-fold suspensions of η , c and R in homotopy, by the maps $X\langle 8 \rangle \longrightarrow X$. The adjunction $F_{ko}(\Sigma^9 ko, \Sigma^8 ko) \simeq F(S^9, \Sigma^8 ko)$, shows that a ko-module map $\Sigma^9 ko \longrightarrow \Sigma^8 ko$ is determined by its effect on homotopy. Therefore, the first map, and hence the other two, are the 8-fold suspensions of η , c and R. \Box

References

- R. R. Bruner, J. P. C. Greenlees, "The connective K-theory of finite groups", Mem. Amer. Math. Soc. 165 (2003), no. 785.
- [2] R. R. Bruner, J. P. C. Greenlees, "The connective real K-theory of finite groups", Math. Surveys and Monographs 169, 2010.

- [3] Robert Bruner, Khaira Mira, Laura Stanley, Victor Snaith, "Ossa's Theorem via the Kunneth formula", arXiv:1008.0166.
- [4] Geoffrey Powell, "On connective KO-theory of elementary abelian 2-groups", arXiv:1207.6883.

Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA $E\text{-}mail\ address:\ \texttt{rrb@math.wayne.edu}$