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Abstract. This document is a description of the use of the software included

in ext and the changes made in this version. These include an important bug

fix, a couple more small bug fixes, a lot of small improvements, the deletion
of obsolete programs and documentation, and the provision of this new docu-

mentation which more accurately reflects the current state of the code. This

document should be read together with the document [8], written with John
Rognes.
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wrote the code that allows you to define a module by a module definition file instead
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2. Introduction and organization

I recommend that this document be read in conjunction with the paper [8] in
which John Rognes and I describe the use of this software to compute a minimal
resolution of F2 through (s, t) = (128, 200). Many of the details of the algorithms
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and data formats are not repeated here if they are given in detail there. An appendix
describes the format of each of the data files that are used. A second appendix
gives a sample run that a new user may wish to use to familiarize themselves with
the system. A user who is in a hurry may want to turn to that Appendix and
do the sample computation outlined there before reading this and the rest of the
documentation included here.

Let A denote the classical mod 2 Steenrod algebra over F2 and let A(2) denote
its subalgebra generated by Sq1, Sq2 and Sq4.

This software is designed to be used from the command line in a Unix/Linux
environment, including MacOSX. To start, download ext.1.9.5.tar.gz from the
author’s website. Create a directory, which I will call ext, in which to unpack
everything. (I use the names ext.1.9.5, ext.1.9.3, et cetera, for the directories
in which I install the software, to make clear which version is installed there.)

Then issue the commands

cd ext

tar xvf DIR/ext.1.9.5.tar.gz

cd A

./Install

cd ../A2

./Install

The shell script Install will compile various programs and place them where
they belong. Here, DIR should be the name of the directory containing the down-
loaded tar file.

The directory ext will then contain subdirectories A and A2 in which the work
involving A-modules and A(2)-modules, respectively, takes place. Each of these
will contain

• subdirectories src, obj, bin, template, and map template, in which the
source code, object files, and compiled code and shell scripts are located,
• commands Install and Clean which compile and install the code, and

which remove the compiled code, respectively,
• a command make all cocycles which will be described in section 6,
• a directory samples which contains samples of module definitions and of

chain map definitions, together with code to create or manipulate them, to
be described in section 4,
• commands newmodule, newmap, and cocycle which create modules and

chain maps, as described in sections 4 and 6,
• the text file MAXFILT whose contents are a single number which is the global

default for the maximum homological degree (filtration in the Adams spec-
tral sequence) through which the calculations are to run,
• the directory F2, which contains a precomputed resolution of F2 over A or
A(2), respectively, through internal degrees 119 and 240, respectively. This
latter allows users to calculate the action of ExtA(F2,F2) on ExtA(M,F2)
through this range, and serves as an example. The directory also contains
some charts and tables which the software can compute,
• a symbolic link from S0 to F2 in A, and
• the directory A2/C2, which contains a precomputed resolution of H∗C2 over
A(2) through internal degree 240, together with the Ext chart and some
chain maps described in Section 8.
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Of these, most users will need to interact primarily with the installation com-
mand Install (once for each of A and A2), and will repeatedly use the commands
newmodule, newmap, cocycle and make all cocycles. The tools in the directory
samples will be useful in creating module definition files, as described in section 4.

3. Notation for elements

Since we are computing minimal resolutions C∗ −→ M , we have a natural iso-
morphism

ExtsA(M,F2) ∼= HomA(Cs,F2).

We number the A-generators of Cs sequentially starting with 0, and write them
as s∗0, s∗1, . . . , generically denoted s∗g. This allows us to write the dual F2 basis
elements of ExtsA(M,F2) as s0, s1, . . . , sg, . . . . In plain text, rather than TEX, we
write s g* or s g, respectively.

A typical element of C2 might then be written

3

0 8 4 i(8)(2,2).

1 7 4 i(7)(4,1)(0,0,1).

3 1 1 i(1).

in the notation used by the programs described here. The first 3 indicates that this
denotes a sum of three terms, namely

(Sq8 + Sq(2,2))2∗0 + (Sq7 + Sq(4,1) + Sq(0,0,1))2∗1 + Sq12∗3.

Here, the Sq(r1,...,rk) are Milnor basis elements, dual to ξr11 · · · ξ
rk
k . Each line

following the 3 denotes a nonzero term in the sum in the format

g n d op

where g is the generator number, as in s g*, the integer n is the degree of the
Steenrod operation op, and d is the F2-dimension of the algebra in degree n. (Hav-
ing this logically redundant value d available allows the input routines to allocate
needed space without reference to the algebra over which we are working, and is a
nice reminder to the user as well). The operation op can be expressed as a Milnor
basis element, as above, or as a list of sequence numbers, as in

3

0 8 4 s0,2.

1 7 4 s0,1,3.

3 1 1 s0.

or as a bit string in hexadecimal, as in

3

0 8 4 xa0

1 7 4 xd0

3 1 1 x80

The sequence numbers are assigned to Milnor basis elements using grevlex,
graded reverse lexicographic, ordering as described in a bit more detail in [8].

These formats are denoted ‘x’ for hexadecimal, ‘s’ for sequence numbers, or
‘i’ for Milnor basis elements. There is a program convert described later which
will convert one format to another. There is another format designation ‘c’ for
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condensed, which uses the shortest notation, so that we could have an element
written

5

0 35 58 s0,5,24,36.

1 34 55 xc950bc00240000

2 32 47 x90a004000000

3 28 35 s0,4,26.

5 4 2 x80

for example.
The module definition format, described in Section 4, describes a module by

giving an F2 basis, with its elements numbered sequentially, starting with 0. In
order to use the same routines to read such elements, in contexts such as the
definition of a finitely presented module or a cocycle, we will write elements of this
F2-vector space as an element of the free A-module which augments to it. That is,
if generators 3, 4, 5, and 6 all lie in the same degree of a module M, so that 3+4+6

is a homogeneous element of M, we might write this as

3

3 0 1 i(0).

4 0 1 i(0).

6 0 1 i(0).

or

3

3 0 1 x80

4 0 1 x80

6 0 1 x80

either of which denotes

Sq0 3 + Sq0 4 + Sq0 6.

4. Creating modules

Each module over A or A(2) is assigned its own directory in A or A2, respectively.
Our examples will be overA, whose modules are kept in the directory A. The process
is entirely analogous, but takes place in A2, for modules over A(2).

Two kinds of modules can be treated by the system. These are modules which
are finite dimensional over F2, and modules which are finitely presented over A or
A(2).

4.1. Defining a finite module. Modules which are finite dimensional over F2 are
described by a moddef, or module definition file as follows. The header is

n
d0 d1 · · · dn−1

where n is the F2 dimension of the module, and d0 through dn−1 are the degrees,
in non-decreasing order, of a basis. (The utility sortDef will reorder the basis
elements so that their degrees are in non-decreasing order and rewrite the rest of
the module definition file accordingly.) The remainder of the module definition file
describes the action of the Sqi by lines of the form
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g i k g1 · · · gk
where g and g1, . . . , gk are generator numbers (0 to n−1), and this line means that
Sqi(g) = g1 + · · · + gk. For example, M1 = H∗C2, the cohomology of the cofiber
of 2 : S → S, has module definition file

2

0 1

0 1 1 1

while M2 = H∗Cη has module definition file

2

0 2

0 2 1 1

and M1 ⊗M1 = H∗C2× C2 has module definition file

4

0 1 1 2

0 1 2 1 2

0 2 1 3

1 1 1 3

2 1 1 3

The blank lines are not required; it is only necessary that the integers defining
the degrees and squaring operations be separated by white space, so that this last
module definition file could be

4

0 1 1 2 0 1 2 1 2 0 2 1 3 1 1 1

3 2 1 1 3

but this would make it hard for a human to interact with.
N.B.: All nonzero Sqi, i > 0, must be specified, even though the module is

completely determined by just the Sq2j

. If you enter just the Sq2j

, the program
newconsistency (described below) will help you find the remaining operations
which must be added.

The directory ext/A/samples contains the following utilities.

• makeP, makeCP, and makeHP create module definition files for stunted real,
complex and quaternionic projective spaces.
• makeR leaves out the 0-cell of the stunted real projective space, which gives

the cohomology of the fiber of the Kahn-Priddy map when the bottom cell
is in a negative degree.
• consistency and newconsistency check that the specified Steenrod op-

erations are homogeneous and that the Adem relations are satisfied. The
program consistency gives only the first term of each Adem relation which
is violated, for a quick check, while newconsistency gives the full Adem
relations.
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• dualizeDef creates the module definition file for the Spanier-Whitehead
dual of a module.
• tensorDef creates the module definition file for the tensor product of two

modules.
• collapse and truncate create module definition files for the submodule

containing all classes above a specified degree and the corresponding quo-
tient module, respectively.
• quotient takes a more general quotient. There is no guarantee that the

result it produces actually defines an A-module, so has to be checked using
(new)consistency.
• sortDef will rearrange the basis elements of a module definition so that

their degrees are in non-decreasing order. It reports the permutation used.

In nearly all cases, the commands in this package give usage statements telling
you the parameters required if invoked with the wrong number of arguments. You
can use this to get more detail about any of them. For example,

ext/A/samples[1]: ./collapse

Usage: collapse <Def1> <bottom> <Def>

will produce a module definition file named <Def>

which defines the module obtained from <Def1> by

taking the submodule containing all elements of degree

greater than <bottom>, effectively collapsing to a point

the classes up to and including this dimension.

ext/A/samples[2]: ./quotient

Usage: quotient <Def1> <exclusions> <Def>

will produce a module definition file named <Def>

which defines the module obtained from <Def1> by

taking the quotient by all elements listed in

the file <exclusions>.

No attempt is made to check whether the result

is a valid module definition, so it should be

run through newconsistency.

ext/A/samples[3]: ./makeP

Usage: makeP <lo> <hi> [<file>]

writes a Def file for stunted projective space with cells

in dimensions <lo> to <hi> in <file> if specified, or Def

if no file is specified.

4.2. Installing a module. Once you have a module definition file, say M.def, you
prepare to calculate a minimal resolution for it by running the command newmodule

in the directory ext/A. This will



EXT.1.9.5 7

(1) create a directory M,
(2) create files Diff.0 through Diff.smax in M to hold the resolution as it is

computed,
(3) put links to the files in template into the module’s directory, ext/A/M/,
(4) copy M.def to ext/A/M/Def, the location in which the resolution programs

expect to find the definition of the module, and
(5) check the module definition for correctness.

If the file ext/A/MAXFILT exists, smax is set equal to its contents. As distributed,
this is set to 40. You should change it according to your needs, For example, if
you want a presentation of a finite module, you might replace 40 by 1. If the file
ext/A/MAXFILT does not exist, the command newmodule will ask what value smax

should be assigned.
For the following sample, assume that the definition is in ext/A/samples/M.def

and you are in ext/A/.

ext/A/[4]: ./newmodule M samples/M.def

Setting the maximum filtration to 40

Making initial Diff files

Linking to executables in template directory

Moving module definition

Checking the module definition for correctness.

If any errors were reported, fix the definition before trying

to compute the minimal resolution. Note that the

program newconsistency will provide complete Adem relations

to simplify the task of correcting the definition.

Here we see that no errors were reported by consistency, so it is now possible
to compute a minimal resolution, as in Section 5. Had there been errors in the
definition, they would be reported as follows.

ext/A[4]: ./newmodule M samples/M.def

Setting the maximum filtration to 40

Making initial Diff files

Linking to executables in template directory

Moving module definition

Checking the module definition for correctness.

Degree error: Sq(1)(0) contains 3, but deg(0) = 2 while deg(3) = 4

Adem rel (Sq(1)Sq(1) + ... )(gen 0) = 4 , not zero.

Adem rel (Sq(2)Sq(2) + ... )(gen 0) = 7 , not zero.

Adem rel (Sq(1)Sq(2) + ... )(gen 1) = 7 , not zero.

If any errors were reported, fix the definition before trying

to compute the minimal resolution. Note that the

program newconsistency will provide complete Adem relations

to simplify the task of correcting the definition.
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We see that the operation Sq1 on generator 0 is inhomogeneous, containing a
term of degree 4, rather than 3. We also see that several Adem relations were
violated. Nonetheless, the directory M was created and it is now possible to edit
the module definition file there. The program newconsistency will give the entire
Adem relation, rather than just its first term, for each Adem relation which is
violated.

ext/A[5]: cd M

ext/A[6]: ./newconsistency Def

Degree error: Sq(1)(0) contains 3, but deg(0) = 2 while deg(3) = 4

Adem rel (Sq(1)Sq(1) + ... )(gen 0) = 4 , not zero.

Sq(1)Sq(1) = 0.

Adem rel (Sq(2)Sq(2) + ... )(gen 0) = 7 , not zero.

Sq(2)Sq(2) + Sq(3)Sq(1) = 0.

Adem rel (Sq(1)Sq(2) + ... )(gen 1) = 7 , not zero.

Sq(1)Sq(2) + Sq(3)Sq(0) = 0.

You can then edit Def to fix the errors. If you do this, the erroneous file
ext/samples/M.def will still exist, so you may prefer to rm -r M, edit the file
ext/samples/M.def, and rerun newmodule. The directory samples contains a link
to the executables consistency and newconsistency to make it easier to correct
a module definition file there.

4.3. Defining a finitely presented module. Here are the steps to define a
finitely presented A-module.

(1) Create a module with the same connectivity using newmodule, as described
above.

(2) In the module directory, remove nextt and link it to nextt fp:

rm nextt

ln -s nextt_fp nextt

(3) Install the module’s generators in Diff.0 and the module’s relations in
Diff.1.

The easiest way to do the first step is to create a module definition file with 1
generator of degree n, where n is the connectivity. E.G., if the connectivity of the
finitely presented module is 5, you might say

ext/A[1]: cat > S5F2.def

1

5

ext/A[2]: ./newmodule FPM S5F2.def

Setting the maximum filtration to 40

Making initial Diff files

Linking to executables in template directory

Moving module definition

Checking the module definition for correctness.

If any errors were reported, fix the definition before trying

to compute the minimal resolution. Note that the
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program newconsistency will provide complete Adem relations

to simplify the task of correcting the definition.

ext/A[3]: head FPM/Diff.0

0 4

ext/A[4]: head FPM/Diff.40

0 4

Here, S5F2.def defines Σ5F2, which is one dimensional over F2 with its single
generator in degree 5.

The headers of the files Diff.s, s = 0, 40, show they initially contain 0 generators
and are complete through degree 4, as is appropriate before starting to compute
the resolution for a module whose connectivity is 5.

The last step, installing the presentation in Diff.0 and Diff.1 will be explained
by an example. See Section 3 for more details about the format of elements of a
free module, as in the files Diff.s.

Suppose our module is

H∗K(Z) =
A⊕ Σ3A((

Sq1

0

)
,

(
Sq2

0

)
,

(
Sq4

Sq1

)
,

(
Sq6

Sq(0,1)

))
The connectivity of this is 0, so we could use ./newcommand HKZ F2/Def to

create a module directory HKZ with the correct connectivity.
The file Diff.0 defining A⊕ Σ3A should be

2 999

0

1

0 0 1 i(0).

3

1

1 0 1 i(0).

This actually defines the homomorphism A⊕Σ3A −→ H∗K(Z) which takes the
free A generators of Diff.0 to distinct elements numbered 0 and 1. All that is
important here is the domain of this homomorphism, which is the free A-module
on generators of degrees 0 and 3.

The file Diff.1 defines the homomorphism

ΣA⊕ Σ2A⊕ Σ4A⊕ Σ6A −→ A⊕ Σ3A

which imposes the relations in H∗K(Z). It can be written

4 999

1

1

0 1 1 i(1).

2
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1

0 2 1 i(2).

4

2

0 4 2 i(4).

1 1 1 i(1).

6

2

0 6 3 i(6).

1 3 2 i(0,1).

The headers in these files show that Diff.0 and Diff.1 have 2 and 4 generators
over A, respectively. The degree, 999, through which they are considered complete
is simply a number large enough that it is effectively infinity. The images of the 4
elements in Diff.1 are the relations between the generators of H∗K(Z).

The version, nextt fp, of the internal command nextt, which was put in place
in step (2) above, will then compute Diff.2, Diff.3, . . . , resolving the kernel of
the map in Diff.1.

The text file START HERE included in this distribution has another example and
relevant details.

N.B., if your presentation is not minimal, the complex HomA(Diff.∗,F2) may
have nonzero differentials between homological degrees 0, 1 and 2. You will need
to compute its homology in these degrees to get ExtA(M,F2).

5. Resolving modules

Once you have created the directory for your module, as in the preceding section,
you can compute a minimal resolution through some finite internal degree, create
the usual Adams spectral sequence charts, and create a TEX file of the action by
the hi as follows. Assume we are in the module’s directory, ext/A/XYZ say, and
that the connectivity of XYZ is 16.

Then we compute the resolution from internal degree 16 to internal degree 80 by

./dims 16 80 &

We use the ampersand at the end to put the process in the background so that
we can issue other commands while it is running. On my current laptop, this took
1 minute and 54 seconds. When it has completed,

./report

will create files Shape and himults containing information about the F2-basis of the
resolution and the action of the hi on Ext. If you provide report with an argument,
as in ./report summary, it will write a brief text summary of the results in the
named file (summary here). In either case

./chart 0 20 0 60 Shape himults XYZ.tex XYZ

will then create a TEX file XYZ.tex containing the Adams spectral sequence chart,
with h0, h1 and h2 multiplications shown. Apply your favorite TEX processor to
this. (N.B.: for very large charts, the usual TEX processors may run out of memory.
In this case, lualatex is a good option.)
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If you wish to see the h3 multiplications as well, there is a variant command
charth3 which will include them as dotted lines.

The file produced by chart has a very small wrapper around a tikzpicture, which
you can easily edit and incorporate into other TEX documents.

If you wish to extend the resolution to degree 100, then run

./dims 81 100 &

wait until this has finished, and then

./report

./chart 0 20 0 80 Shape himults XYZ.tex XYZ

for example. If you had instead run

./dims 16 100 &

it would have taken a bit longer while it runs through degrees 16 to 80 again, but
this would not cause any harm. Since the resolution was already exact in internal
degrees up to 80, no changes would have been made in those degrees.

Note that if you do not rerun the command report after computing the addi-
tional degrees, the files Shape and himults would not be updated, so that the chart
produced would still stop at internal degree 80. Also note that the file himults

contains all the hi multiples reported in the form of lines

s g s0 g0 i

which mean that sg is a term in the product hi · s0g0 . For example, the lines

...

7 13 6 10 3

7 13 6 13 2

7 13 6 14 1

7 14 6 10 3

...

tell us that h3 · 610 = 713 + 714 and that h2 · 613 = h1 · 614 = 713 in the cohomology
of F2.

Here is an actual run.

~/ext/A/XYZ[314]: ./dims 16 80 &

[1] 87024

~/ext/A/XYZ[315]: date

Wed Aug 3 11:33:03 EDT 2022

~/ext/A/XYZ[316]: ls -lt | head

total 190192

-rw-r--r-- 1 rrb staff 0 Aug 3 11:34 OIm_4.76

-rw-r--r-- 1 rrb staff 313228 Aug 3 11:34 Ker_4.76

-rw-r--r-- 1 rrb staff 741604 Aug 3 11:34 Im_4.76

-rw-r--r-- 1 rrb staff 693640 Aug 3 11:34 OIm_3.76

-rw-r--r-- 1 rrb staff 25045 Aug 3 11:34 Diff.3

-rw-r--r-- 1 rrb staff 280413 Aug 3 11:34 Ker_3.76

-rw-r--r-- 1 rrb staff 683475 Aug 3 11:34 Im_3.76

-rw-r--r-- 1 rrb staff 329804 Aug 3 11:34 OIm_2.76

-rw-r--r-- 1 rrb staff 6282 Aug 3 11:34 Diff.2

~/ext/A/XYZ[317]: date
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Wed Aug 3 11:34:57 EDT 2022

[1] + Done ./dims 16 80

~/ext/A/XYZ[318]: ./report

Discarding summary

~/ext/A/XYZ[319]: ./chart 0 20 0 60 Shape himults XYZ.tex XYZ

~/ext/A/XYZ[320]: open XYZ.tex

~/ext/A/XYZ[321]: ./vsumm

Usage: vsumm <title>

Reads Shape, Maxt and lines and prints a stem by stem summary of

the resolution on stdout, in LaTex, using <title> as the title.

~/ext/A/XYZ[322]: ./vsumm XYZ > XYZhi.tex

~/ext/A/XYZ[323]: open XYZhi.tex

The first date command was issued immediately upon starting dims, and the
second as soon as I noticed that it seemed to have stopped. These are how I
made the estimate of 1 minute and 54 seconds. Since dims was running in the
background, I was able to issue the command date while it was running. I also
issued the command ls -lt | head in order to see how far it had gotten. The
presence of the files OIm 4.76, Ker 4.76 and Im 4.76 at the top of the list shows
that it was in the second half of working on bidegree (s, t) = (4, 76).

Finally, at the end, I used the command vsumm to create a TEX document con-
taining a stem-by-stem listing of the generators together with the hi products.

The commands open X.tex above should be replaced by pdflatex X.tex and
evince X.pdf or other commands which process TEX files and display the results.

5.1. Parallelization and an easy fix for an easy mistake. The command
./dims tlo thi runs ./nextt t for t from tlo to thi. The program ./nextt t

computes each bidegree (s,t) for s from 0 to MAXFILT. Before starting bidegree
(s,t), it checks that bidegrees (s-1,t) and (s,t-1) have been completed. If they
have not, the program sleeps a bit and checks again. If you inadvertently invoke
./dims tlo thi with tlo too large, the program will simply sit in such a loop
waiting for internal degreees up to tlo-1 to be completed. You can simply invoke
./dims tlower tlo-1 to compute the missing degrees.

This mistake is most likely to happen with modules with bottom cell in a negative
degree, when it is easy to ‘start’ by saying something like ./dims 0 60, forgetting
that you need to start in the bottom degree of the module, not always in degree 0.
A quick look at the start of Diff.0 or Def will be sufficient to remind you where
to start:

ext/A/testit[1]: cat Diff.0

0 -5

ext/A/testit[2]: ./dims -4 20 &

[1] 51251

...

ext/A/testit[5]: <CR>

[1] Done ./dims -4 20
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ext/A/testit[6]: cat Diff.0

1 20

-4

1

0 0 1 x80

We start by observing that the Diff.0 file was initially complete through dimension
-5 with no entries, so we should start computing the resolution in degree -4. After
dims -4 20 has finished, we see that Diff.0 is complete through t=20.

This feature allows for parallelization by running N processes, each of which
computes ./nextt i for one residue class modulo N. This makes good sense if you
have a machine with N processors. As an extreme version, you can simply run all
the nextt at once, letting the majority of them sleep until their turn arrives. For
example, after the above sequence we could use the following set of instructions (in
the tcsh shell):

ext/A/testit[7]: set t=21

ext/A/testit[8]: while ($t < 41)

while? ./nextt $t &

while? set t=‘expr 1 + $t‘

while? end

[1] 64132

[2] 64134

[3] 64137

[4] 64139

[5] 64143

[6] 64147

[7] 64150

[8] 64158

[9] 64166

[10] 64179

[11] 64195

[12] 64215

[13] 64229

[14] 64242

[15] 64255

[16] 64273

[17] 64286

[18] 64298

[19] 64310

[20] 64321

ext/A/testit[12]: jobs

[1] Done ./nextt 21

[2] + Running ./nextt 22

[3] Running ./nextt 23

[4] Running ./nextt 24

[5] Running ./nextt 25

[6] Running ./nextt 26
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[7] Running ./nextt 27

[8] Running ./nextt 28

[9] Running ./nextt 29

[10] Running ./nextt 30

[11] Running ./nextt 31

[12] Running ./nextt 32

[13] Running ./nextt 33

[14] Running ./nextt 34

[15] Running ./nextt 35

[16] Running ./nextt 36

[17] Running ./nextt 37

[18] Running ./nextt 38

[19] Running ./nextt 39

[20] - Running ./nextt 40

Caution: It is important not to start two processes which will try to write to
the same files at the same time. In the setup above, only nextt t will try to write
any of the Im, OIm or Ker files for internal degree t. Also, since nextt t waits
to compute bidegree (s,t) until bidegree (s,t-1) is completed, each of the non-
sleeping nextt processes will be working on a separate homological degree. Hence,
there will be no contention in writing to Diff.s. If, however, you were to start
two processes, both running nextt t for the same value of t, they could interact
destructively.

6. Creating chain maps and computing products

Consult the sections “Products” and “Chain Maps” in the document [8] included
here as ext/doc/CohomA2.pdf for additional discussion.

6.1. Map definition files. We compute products in Ext by composing chain
maps. Suppose that C∗ −→ M and D∗ −→ N are (partial) resolutions of the

modules M and N , and suppose that the classes [x] ∈ Exts0,t0A (N,P ) and [y] ∈
Exts1,t1A (M,N) are represented by cocycles

x : Ds0 −→ Σt0P and y : Cs1 −→ Σt1N.

Then Σt1x ◦ ys0 is a cocycle representing the product xy, where {ys}s is a chain
map lifting y. The chain map with components Σt1xs ◦ys+s0 is a lift of this cocycle.

M C0
oo · · ·oo Cs1

y

}}

y0

��

oo · · ·oo Cs0+s1

ys0

��

oo · · ·oo Cs+s0+s1

ys+s0

��

oo

Σt1N Σt1D0
oo · · ·oo Σt1Ds0

Σt1x

zz

Σt1x0

��

oo · · ·oo Σt1Ds+s0

Σt1xs

��

oo

Σt0+t1P Σt0+t1E0
oo · · ·oo Σt0+t1Esoo

A cochain x : Cs −→ ΣtN is defined to the system by a map definition file of
the form

s t M N x k
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g1

j1

x1_1 0 1 x80

...

x1_j1 0 1 x80

...

gk

jk

xk_1 0 1 x80

...

xk_jk 0 1 x80

Here, M and N are the names of the directories containing the modules M and N
and their resolutions. The map name, x, will be the name of a subdirectory of the
domain M. The rest of the file tells the value of the cochain x on the k generators sg1
through sgk. If a generator sg is not listed, then x(sg) = 0. The values, x(gi) =

xi 1 + ... + xi ji are sums of the F2 generators numbered xi j in the module
definition file for N .

Once you have a map definition file, say x.def, in the main directory ext/A,
execute

./newmap x.def

This will create a directory named after the map in the domain directory, and
add the name of that map/directory to the file maps in that domain directory.

As a special case, if s g* is an A-module generator of internal degree t in the
resolution of M, the program cocycle will create the map definition file for the dual
cocycle sg : Cs → ΣtF2, then apply newmap to it. Thus, all you need to say is, in
ext/A,

./cocycle M s g

The command cocycle thus refers to this special case with values in F2, dual to
a single basis element found by the ext code. This is needed sufficiently often that
it is useful to have.

If you wish to compute the lifts of all cocycles, the command make all cocycles

will create a shell script makecocycle <mod>.sh which can be sourced to create all
cocycles. First make certain that the Shape file is up to date in your module. Say
the module name is M and you start in the directory ext/A. Then you should do
the following:

cd M

./report

cd ..

./make_all_cocycles M

source makecocycles_M.sh

rm makecocycles_M.sh

This will install a map directory for every cocycle sg in the resolution of M . The
program make all cocycles does not take account of cocycles which have already
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been created, but the calls to cocycle in the shell script makecocycles M.sh will
detect the presence of any preexisting cocycles, and will skip them.

N.B., a map definition file can define any cochain, but only cocycles can be lifted.
As a result, I often say cocycle when cochain would be more accurate. I have tried,
in this document, to be careful about this distinction. If you define a cochain which
is not a cocycle, you will get error messages saying that the lift cannot be computed.

6.2. Computing the chain map. Once maps have been installed using newmap

and/or cocycle,

cd M

./dolifts slo shi maps

./collect maps all

will compute lifts for all the cocycles listed in the file maps and collect the resulting
maps induced on Ext in the file named all.

See the sections titled “Products” and “Chain Maps” of [8] for more details. We
give one more set of examples here, consisting of the three chain maps which induce
the long exact sequence in Ext induced by the cofiber sequence

Cν
i−→ bo1

p−→ Σ6C2
e−→ ΣCν

In cohomology we have a short exact sequence, and a lift of e to the first stage
of an Adams resolution of Cν will induce the homomorphism of Adams spectral
sequences detecting e.

0

4

6

7

0

1

H∗Cν

H∗Cν

0

1

2

3

H∗bo1

C0

0

1

H∗Σ6C2

C1

e

i∗ p∗

We will name the three modules involved Cnu, bo1 and C2, respectively. The
modules C0 and C1 are the start of the resolution of H∗Cν (contained in the files
Cnu/Diff.0 and Cnu/Diff.1). The homomorphism e is the extension cocycle for
the short exact sequence (i∗, p∗). The chain map lifting it will give the boundary
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homomorphism

Exts,t(H∗C2,F2)
e∗ // Exts+1,t+6(H∗Cν,F2))

Exts,t+6(H∗Σ6C2,F2))
e∗ // Exts+1,t+6(H∗Cν,F2))

The map definition file for i∗ is

0 0 bo1 Cnu i 1

0

1

0 0 1 x80

since i∗ sends the unique generator of bo1/Diff.0 to generator 0 in the module
Cnu.

The map definition file for p∗ is

0 -6 C2 bo1 p 1

0

1

2 0 1 x80

since p∗ sends the unique generator of C2/Diff.0 to generator 2 in the module bo1.
The map definition file for e∗ is

1 6 Cnu C2 e 1

2

1

0 0 1 x80

since Cnu/Diff.1 shows that C1 = ΣA ⊕ Σ2A ⊕ Σ6A ⊕ Σ8A ⊕ · · · , and all the
generators go to 0 except for the degree 6 generator (generator number 2), which
goes to Sq6(0∗0) in Cnu/Diff.0, and hence to generator 2 in bo1. This lifts to
generator 0 in C2.

Suppose these three map definition files are named i.def, p.def, and e.def.
The following sequence of commands will compute the chain maps lifting these
cocycles through as much of the resolutions as has been computed thus far. (Note
that the command ./checkmap s in a map directory will report on any unmapped
generators in homological degrees up to s.) Assume that these map definition files
are located in ext/A and that you are currently in this directory.

./newmap i.def

./newmap p.def

./newmap e.def

cd bo1

./dolifts 0 40 maps

./collect maps all_i

cd ../C2

./dolifts 0 40 maps

./collect maps all_p

cd ../Cnu
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Figure 1. Exts,n+s
A (H∗Cν,F2), 0 ≤ n ≤ 16, 0 ≤ s ≤ 8

0 4 8 12 16
0

4

8

0

0 1 2 3 4

0 1 2 3 4 5 6 7

0 1 2 3 4
5 6

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3

0 1 2

Figure 2. Exts,n+s
A (H∗bo1,F2), 0 ≤ n ≤ 16, 0 ≤ s ≤ 8

./dolifts 0 40 maps

./collect maps all_e

The file bo1/all i contains

0 0 ( 0 0 Cnu) i

1 0 ( 1 0 Cnu) i

1 1 ( 1 1 Cnu) i

1 2 ( 1 3 Cnu) i

1 3 ( 1 4 Cnu) i
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0 4 8 12 16
0
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8

0
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0 1 2 3 4 5 6 7

0 1 2
3 4 5

0 1 2 3

0 1 2 3 4

0 1 2 3

0 1

0

Figure 3. Exts,n+s
A (H∗C2,F2), 0 ≤ n ≤ 16, 0 ≤ s ≤ 8

...

5 17 ( 5 21 Cnu) i

5 17 ( 5 22 Cnu) i

...

which shows that the homomorphism i∗ : Ext(H∗Cν,F2)) −→ Ext(H∗bo1,F2))
takes values i∗(00) = 00, i∗(10) = 10, i∗(11) = 11, i∗(13) = 12, and, since 12 in
Cnu is not listed, i∗(12) = 0. Further down, we see that i∗(521) = i∗(522) = 517,
which follows from the fact that the chain map induced by i sends 5 17* to 5 21*

+ 5 22* + decomposables. (This can be seen in ext/A/bo1/i/Map as the value
following the pair 5 17.)

The file Cnu/all e contains

1 2 ( 0 0 C2) e

2 2 ( 1 0 C2) e

2 3 ( 1 1 C2) e

2 5 ( 1 2 C2) e

2 7 ( 1 3 C2) e

2 12 ( 1 4 C2) e

2 17 ( 1 5 C2) e

2 23 ( 1 6 C2) e
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3 2 ( 2 0 C2) e

3 4 ( 2 1 C2) e

3 6 ( 2 3 C2) e

...

which shows that the homomorphism e∗ : Exts,t(H∗C2,F2)) −→ Exts+1,t+6(H∗Cν,F2))
takes values e∗(00) = 12, e∗(10) = 22, e∗(11) = 23, e∗(12) = 25, and, since 22 in C2

is not listed, e∗(22) = 0.
N.B., the information contained in the files produced by collect is the inde-

composable quotient of the chain map, and the induced homomorphism on Ext is
that induced on cocycles, i.e., on homomorphisms from the resolution to F2. This
dualization is left to the user, since it is easy, but should not be overlooked.

In general, the value of the chain map on a given generator can only be computed
if the resolution of the codomain has been extended far enough to include its image.
(Occasionally, startmap can determine that the chain map can send a generator to
0 before this.) Before deciding that a class goes to 0, it may help to run checkmap

in the map’s directory, to be certain that its image is 0 rather than simply not
computed yet. It will appear in the Map file, and hence will not appear in the
output of checkmap, if it has been computed, even if its image is 0 (or simply
decomposable). The summary produced by collect conveys this fact by omission,
hence this caution.

6.3. Missing generators. There is a utility, missing, which reads the Shape file
and the all file and reports any sg which do not appear as the first entry of a line in
the all file. If the all file has been created from a list of cocycles s g, this is a rough
and ready way to find cocycles s g which are not in the Ext(F2,F2)-submodule of
Ext(M,F2) generated by those cocycles.

For example, in ext/A2/C2, suppose we have computed the chain map lifting 0 0

and that we wish to determine the ExtA(2)(F2,F2)-submodule of ExtA(2)(M,F2)
spanned by 0 0. We create a file ext/A2/C2/maps0 which contains just this one
chain map. Then, if we collect the action on ext/A2/C2/maps0 and check what is
missing, we see

ext/A2/C2[2]: ./collect maps0 all0

ext/A2/C2[3]: ./missing all0 | head

Missing generators:

1 1

2 1

2 3

3 0

3 2

4 2

5 1

5 3

From this, we see that 1 1, 2 1, 2 3, 3 0, . . . are not in the submodule of
ExtA(2)(C2,F2) generated by 0 0. If we add the first of these, 1 1, to maps0 to



EXT.1.9.5 21

0 4 8 12 16

0

4

8

0

0 1 2

0 1 2 3

0 1 2 3 4

0 1 2 3
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0

Figure 4. Exts,n+s
A(2) (H∗C2,F2), 0 ≤ n ≤ 16, 0 ≤ s ≤ 8

get maps1 with both maps in it, do the lifts for 1 1 if we haven’t already, and then
repeat the process above, we find

ext/A2/C2[4]: ./collect maps1 all1

ext/A2/C2[5]: ./missing all1 | head

Missing generators:

2 3

3 2

5 8

6 2

6 3

6 4

6 10

7 2

Evidently, adding 1 1 to our list of generators has now made 2 1 decomposable,
and a glance at the chart, Figure 4, for this module shows this is so. In addition,
3 0, 4 2, 5 1 and 5 3 are in the submodule generated by 0 0 and 1 1. The element
2 3 is the only filtration 2 generator still missing. If we now create maps2 by adding
2 3 to maps1, and do the lifts for 2 3, we find

ext/A2/C2[6]: ./collect maps2 all2

ext/A2/C2[7]: ./missing all2 | head

Missing generators:

3 2

5 8

6 3

6 10

7 2

7 10
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7 12

8 7

Continuing in this way, we find 13 indecomposables, so that ExtA(2)(C2,F2) is
generated as a module over ExtA(2)(F2,F2) by these 13 cocycles. With those 13 in
maps, we find

ext/A2/C2[22]: cat maps

0_0

1_1

2_3

3_2

5_8

6_3

6_10

7_10

7_12

8_7

8_12

8_14

10_12

ext/A2/C2[23]: ./collect maps allmaps

ext/A2/C2[24]: ./missing allmaps

No missing generators

This almost shows our list is complete. N.B., it is necessary to carefully check
bidegrees of dimension more than 1 over F2 to be certain that this is so. The quick
textual check done by missing would take a relation like 48 · 23 = 67 + 68, for
example, which would be shown in the file produced by collect as

6 7 ( 4 8 F2) 2_3

6 7 ( 5 11 F2) 1_1

6 7 ( 6 10 F2) 0_0

6 8 ( 1 1 F2) 5_8

6 8 ( 4 8 F2) 2_3

6 8 ( 6 10 F2) 0_0

and conclude that both 67 and 68 have been found. If the 48-multiple 67 + 68 were
the only product in this bidegree, then the sum would be decomposable, but each
individual term would be indecomposable. Here, the product 511 · 11 = 67 does
show that 67 and, hence, 68 are decomposable.

Using this process we are able to find finite presentations of ExtA(2)(M,F2) over
ExtA(2)(F2,F2) when M is finite. Over A this is only possible in a finite range of
degrees.

6.4. Parallelization. If multiple instances of the program dolifts are run at the
same time, they will interact destructively. Some of the processes may remove
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files that others still need, and worse, multiple processes may write to files simul-
taneously, producing meaningless results. A version of dolifts called pdolifts

handles the parallization to avoid these difficulties. It is invoked by

./pdolifts slo shi maps n

in order to do the lifts in n parallel processes. The code makes no attempt to
balance the load between these processes. It simply distributes the maps listed in
maps round-robin into n groups. Some balancing can be achieved by sorting the
maps file by homological and internal degree, or by the size of their current Map

file before invoking pdolifts, either from largest to smallest or from smallest to
largest. If the maps file was created by running make all cocycles, the maps file
will be sorted by homological, then internal degree.

7. Toda brackets

From the chain map lifting a cocycle x, it is possible to compute all brackets
of the form 〈hi, sg, x〉. This is discussed carefully in Section 10, “Toda brackets”
in [8]. (See also Section 14 there on the use of brackets to define operators in the
Adams spectral sequence.)

We will give one example here. The brackets ending in the cocycle i above can
be found in the file ext/A/bo1/i/brackets.sym, which begins

2_3 in < h2, 4, i >

2_4 in < h2, 5, i >

2_6 in < h3, 3, i >

2_6 in < h3, 4, i >

2_7 in < h4, 0, i >

2_7 in < h3, 5, i >

Since i : H∗bo1 −→ H∗Cν, the middle entry in each bracket is a cocycle sg in
Ext(H∗Cν,F2). The left hand hi is hi ∈ ExtA(F2,F2). We can determine s because
the homological degree of the bracket is 1 less than the sum of the homological
degrees of the terms. In these examples, we have 2 = 1 + s + 0 − 1, so that the
middle terms are 2g for the indicated g.

The lines indicate possible brackets: they are not necessarily defined. The first
one is not, since i∗(24) = 22 6= 0. The third bracket is not defined because h3 · 23 =
38 6= 0 in ExtA(H∗Cν,F2). The second bracket is defined, though, and we see that

24 = 〈h2, 25, i〉 ∈ Ext2,14
A (H∗bo1,F2), where 25 ∈ Ext2,10

A (H∗Cν,F2). There is no
indeterminacy: the image of i∗ and the image of multiplication by h2 are both 0 in
this bidegree. By Moss’ Theorem and the fact that there are no crossing differentials
here, this shows us that the unique nonzero homotopy class {24} ∈ π12(bo1) is the
bracket of the three maps

S11 ν−→ S8 ησ−→ Cν
i−→ bo1
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since 25 detects the homotopy class ησ on the bottom cell of Cν. That is, the
diagram

Σ8Cν

""

// S12

{24}

!!

S11

{24} ##

ν // S8 ησ
//

<<

""

Cν
i // bo1

Σ−1bo1
// Σ5C2

e

<<

commutes.

8. Precalculated contents

There is a trade-off between including precalculated resolutions and chain maps,
to save time, and the size of the distribution. The three resolutions included here
take up about 43 MB, the majority of the space required. Since calculations out to
internal degree 80 or 100 take only a few minutes on modern machines, including
any more seemed unnecessary.

8.1. F2 over A. The directory ext/A/F2 contains a resolution of F2 over A for
the range 0 ≤ s ≤ 60, 0 ≤ t ≤ 119. This is complete through the 80 stem. It
also contains chain maps for all 29 indecomposable cohomology classes in the range
0 ≤ s ≤ 4, 0 ≤ t ≤ 119. These 29 chain maps are listed in ext/A/F2/maps and
products with the corresponding cocycles can be found in ext/A/F2/all.

8.2. F2 over A(2). The directory ext/A2/F2 contains a resolution of F2 over A(2)
for the range 0 ≤ s ≤ 100, 0 ≤ t ≤ 240. This is effectively a complete calculation,
since ExtA(2)(F2,F2) is generated by classes within this range satisfying known
relations. See [6].

The only precalculated chain map with domain A2/F2 is the one induced by
projection onto the top cell of the Moore spectrum, C2→ S1. This induces the co-
cycle C2top : Diff.0→ F2 → Σ−1H∗C2. The map definition file A2/F2/C2top/Def

contains

0 -1 F2 C2 C2top 1

0

1

1 0 1 x80

The file C2topcell was produced by ./collect maps C2topcell. It deter-
mines the homomorphism ExtA(2)(H

∗C2,F2) → ExtA(2)(F2,F2) induced by this
projection map. (Here, maps contains only the one chain map, C2top).

8.3. C2 over A(2). The directory ext/A2/C2 contains a resolution of H∗C2 over
A(2) for the range 0 ≤ s ≤ 120, 0 ≤ t ≤ 240. This is effectively a complete calcu-
lation, since ExtA(2)(H

∗C2,F2) is generated by 13 classes, found in A2/C2/maps,
over the coefficient ring ExtA(2)(F2,F2). See [6]. Chain maps have been calculated
for each of these 13 cocycles, and the results collected in the file ext/A2/C2/all.
We see for example,
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5 2 ( 2 1 F2) 3_2

5 2 ( 4 2 F2) 1_1

5 2 ( 5 3 F2) 0_0

showing that 52 = h2
1 · 32 = h1c0 · 11 = h2w1 · 00 in ExtA(2)(H

∗C2,F2).

8.4. A long exact sequence. These data suffice to give the long exact sequence
in ExtA(2)(−,F2) induced by the cofiber sequence S → C2→ S1, since

(1) the inclusion of the bottom cell induces the cocycle 0 0,
(2) the projection onto the top cell induces the cocycle C2top,
(3) the boundary map is multiplication by h0, which we have calculated without

the need to compute a chain map.

8.5. Chain maps and edge effects. The chain map C2top nicely illustrates a
couple of issues involving chain maps related to the fact that we are only work-
ing with initial segments of resolutions. If we go to ext/A2/F2/C2top and run
./checkmap 40 we find

ext/A2/F2/C2top[1]: ./checkmap 40 | head

36 206

37 212

37 213

38 203

38 204

39 206

40 218

40 219

Each of these classes, 36206, et cetera, lies in degree t = 240 for F2, hence in
degree t = 241 for ΣF2. Since the resolution for H∗C2 has only been calculated
through t = 240, we cannot expect to determine the value of C2top on such classes.

However, looking at the chart for Ext36,240
A(2) (F2,F2), we see that it is two dimensional,

spanned by 36206 and 36207. Checkmap did not report that 36207 was missing, and
when we look at C2top/Map, we see that 36207 is mapped to 0. This is already
known, because, when the program ./startmap 36 calculated C2top(d(36 207)),
the result was 0, so that there was no need to run ./liftmap to see that the lift
C2top(36 207) can be chosen to be zero.

8.6. Editing the charts. The charts in each of these three directories have been
edited to include a dashed line showing the edge of the calculation. In addition, the
chart in ext/A2/C2 has been edited to show the 13 generators of ExtA(2)(H

∗C2,F2)
over ExtA(2)(F2,F2) as larger red dots. A few Adams differentials which follow
easily by naturality have been included in ext/A2/C2/himults. These are the 4
lines

3 3 5 2 0

4 4 7 1 0

6 3 8 1 0

7 3 9 2 0

at the end. If you rerun the program report, these lines will be lost. They are
included here to show how to add differentials to the TEX file produced by chart.
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9. Bug fixes and improvements

Here are the changes in ext.1.9.5 from the last released version, ext.1.9.3.

9.1. Bug in addgen.c. This bug does not affect anyone who uses the code as
distributed. However, if you modified the programs nextt and/or nextt fp to save
the OIm s.t files generated during the computation of a resolution, this bug would
affect chain maps into directories where this was done. It would be advisable to
run dmeqmd or ccmap to check the validity of such chain maps.

The bug occurs in the stage when new generators are added to the resolution
to make it exact. In each bidegree (s, t), we first compute d(a · s∗g) for each Milnor
basis element a and each existing generator s∗g, in order, as described in Section 7,
“A Canonical Basis”, of [8]. We row reduce these as we proceed, producing a list
of pairs (dxi, xi) such that the leading terms of the dxi are disjoint. Then, for
each c in our basis for the kernel in bidegree (s− 1, t), we row reduce c, producing
cred = c −

∑
αidxi, αi ∈ F2, so that either cred = 0 or cred has a leading term

disjoint from those of the dxi. In the latter case, we add a new generator s∗g in
bidegree s with d(s∗g) = c. We could instead set d(s∗g) = cred, but experience has
shown that the product structure is closer to monomial with d(s∗g) = c, and this has
been the algorithm in use since around 2000. The first difference in the bases chosen
for ExtA(F2,F2) by the two algorithms occurs in bidegree (s, t) = (9, 32). The older
algorithm (used in the 1997 document [3]) gave the basis 〈h1Pd0 + h2

0i, h
2
0i〉, while

the new algorithm gives 〈h1Pd0, h
2
0i〉.

With the old algorithm, we would then simply insert (cred, s
∗
g) into our list of

pairs (dxi, xi), at the position corresponding to the leading term of dxi, and proceed
to the next kernel basis element. With the new algorithm, we must instead insert
(cred, s

∗
g −

∑
αixi) = (c −

∑
αidxi, s

∗
g −

∑
αixi) into the list of pairs (dxi, xi).

Unfortunately, when the new algorithm was adopted, the incorrect pair (cred, s
∗
g)

was used. This is the fix in ext.1.9.5: we now insert the correct pair (cred, s
∗
g −∑

αixi) = (c−
∑
αidxi, s

∗
g −

∑
αixi) into the list of pairs (dxi, xi).

The bug did not affect the exactness of the resolution, but if this faulty OIm s.t

file, containing (cred, s
∗
g) was saved and later used to compute chain maps, they

could be in error, since d(s∗g) 6= cred.
If the scripts, as distributed, were used, then the faulty OIm s.t files would be

discarded without being used. The OIm s.t files which are created by the programs
which compute chain maps do not have the flaw described above, since they work
on bidegrees in which the resolution is already exact, so that new generators do not
need to be added.

In addition to carefully inspecting the new code in addgen.c, the program which
contained this error, to see that it is now doing the correct thing, I took account of
Donald Knuth’s adage

“Beware of bugs in the above code; I have only proved it correct,
not tried it.”

and compared the OIm s.t files produced by the new addgen.c and those produced
after the resolution has been computed, as when chain maps are being calculated.
They were identical, character by character, for t ≤ 100 in a resolution of F2. I
have also run extensive tests using dmeqmd or ccmap to verify that the chain maps
the program has computed really are chain maps.
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9.2. Bug in io.c. I changed io.c to use XOR rather than OR when reading ele-
ments formatted as type i. The use of OR was based on the expectation that the
terms in

i(r1,1, ..., r1,k1)(r2,1, ..., r2,k2)...(rn,1, ..., rn,kn).

would be distinct so that OR or XOR of the corresponding bits would produce the
same results. This is true of the ouput of routines in io.c, so makes no difference if
all files read by ext are generated by the ext code, but it might be false if a user
generates entries by hand or by another program. This fix makes, e.g.,

1

0 3 1 i(0,1)(0,1)(3).

produce the same result as

1

0 3 1 i(3).

rather than the same result as

1

0 3 1 i(0,1)(3).

Clearly this is better.

9.3. Bug in summarize.c. Previous versions left out h7 multiples.

9.4. Improvements.

(1) The program pdolifts has been added to parallelize the calculation of
chain maps. See Subsection 6.4.

(2) The program collect has incorporated John Rognes’ improved sorting of
the output. There is also a better usage statement when it is called without
arguments.

(3) There are numerous fixes to chart.c, many contributed by John Rognes,
which improve the tikz code and improve the appearance of the charts.
These are improvements to margins, clipping, and the spacing of labels.
Comments are added to the tikz code so that the code generating the dots is
labelled by their s g name, and and the code generating the lines is labelled
by their source and target names. This facilitates adding differentials or
other modifications to the tikz chart, since it allows searching for s g to
find the code involving sg. I also added charth3, which adds dotted lines
indicating h3-multiples.

(4) A utility ext/A2/induceup takes an A(2)-resolution of an A(2)-module M
in ext/A2/ and applies A ⊗A(2) − to get the induced up A-resolution of
A⊗A(2) M , which is placed in ext/A/.

Usage: induceup <A2-module> <A-module>

- takes an A2 resolution in <A2-module> and converts

it into an A-resolution in ../A/<A-module>. All

it does is to replace each A(2) by a copy of A,

leaving the differentials the same.

It should be invoked in the directory A2, after

computing the A2 resolution of M.

NOTE: the Def file for the new module will not be an actual

Def file. Instead it will tell that it was induced up.
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(5) A utility, ext/A/bin/ccmap, checks that a chain map really is a chain map
by computing the difference dm − md. It isn’t perfect in dealing with
missing generators, so it is best to use checkmap first.

(6) Fixes to startmap and fstartmap to handle s1 == 0 better, add missing
cast to int, and (fstartmap.c) move fclose into the block with the accom-
panying fopen to get rid of an excess fclose error. (These fixes were in the
unreleased 1.9.4)

(7) liftmap (called by dolifts) is now a little bit more informative when
handling the s==0 case, to help in debugging malformed map/Def files.
Precisely, liftmap now prints the internal degrees of the generators of the
codomain when a chain map is being lifted from the module to the 0th
stage of its resolution (for sanity/error checking purposes). An obsolete
comment from pre moddef days has been removed.

(8) The new make all cocycles in ext/A and ext/A2 creates all cocycles of
the form s g for a specified module. See Section 6.

(9) The output of convert now has slightly better formatting: no blank spaces
at the ends of lines, and a reasonable number of blank lines between ele-
ments and blocks.

(10) There is a new utility prune.c for pruning Diff files and similar. It is not
included in Install, so if you want to use it you have to compile it yourself:
in ext/A say

gcc -o DIR/prune -Isrc obj/*.o src/prune.c

where DIR is the directory you want it to end up in.

9.5. Minor cleanup.

(1) util.c: fixed typos in comments.
(2) The program vsummarize has been removed because it is superceded by

vsumm. If for some reason it is wanted, it is still in ext.1.9.3 and earlier.
(3) The script seeres has been removed, since the optional output of report

has the same information in a more readable format. It is still available in
older versions if wanted.

10. Summary of programs

This section contains a list of the files a user might use in each of the directories.

ext/A or ext/A2:
• Install
• Clean
• newmodule
• MAXFILT
• newmap
• cocycle
• make all cocycles
• samples
• F2
• S0
• induceup (ext/A2 only)
• C2 (ext/A2 only)
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ext/A/samples:

• consistency
• newconsistency
• tensorDef
• dualizeDef
• quotient
• truncate
• collapse
• sortDef
• makeP
• makeCP
• makeHP
• makeR
• Qi

ext/A/M for a module M:
• Def
• consistency, newconsistency
• MAXFILT (optional)
• Diff.s, for s = 0, . . . , MAXFILT
• dims
• report
• chart, charth3
• vsumm
• convert
• dolifts
• collect
• missing
• extend dims
• Shape, himults, lines

ext/A/M/m for a chain map m defined on the resolution of M:
• checkmap
• ../../bin/ccmap

For a more complete listing of the programs see the file ext/doc/Organization.
There are still a few items not listed here or there which are useful in special
circumstances (adem, fixedmul, fstartmap, . . . ). Feel free to play with them to see
what they do.

Appendix A. File formats

In the following sections we describe the format of each of the data files used by
ext. Recall from Section 3 that elements of free modules are written as follows:

k

g1 n1 d1 op1

...

gk nk dk opk

This represents the sum of k terms, op1 * g1 + ... + opk * gk. Each gi

is an integer representing a basis element of the free module, numbered from 0 to
N-1, where N is the A-dimension (resp., A(2)-dimension) of the free module. Each
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opi is a Steenrod operation of degree ni, and the F2-dimension of the algebra (A
or A(2)) in degree ni is di.

The operations opi can be written in any of three formats.

internal: The letter ‘i’ followed by any number of Milnor basis elements
(r1,...,rj), followed by a period.

sequence numbers: The letter ‘s’ followed by the sequence numbers of the
Milnor basis elements in the sum, ordered by graded reverse lexicographic
order, numbered starting at 0, separated by commas and followed by a
period.

hexadecimal: The letter ‘x’ followed by a bit string in hexadecimal repre-
senting a whole number of bytes sufficient to hold the bitstring.

For example, the term (Sq9 + Sq(6,1) + Sq(2,0,1)) · g could be written as any of

g 9 5 i(9)(6,1)(2,0,1).

g 9 5 s0,1,4.

or

g 9 5 xc8

since grevlex ordering in degree 9 of A is

(9) < (6, 1) < (3, 2) < (0, 3) < (2, 0, 1).

A term Sqn · g could therefore be written

g n d i(n).

g n d s0.

or

g n d x80...0

where d is the F2-dimension of the degree n part of the algebra (A or A(2)) and the
hexadecimal number 80...0 has the smallest even number of hexadecimal digits
which contains d bits.

Several of the data files described in this appendix can be converted to any
of these formats by the program convert. It also accepts a format designation
‘c’, meaning ‘condensed’, which will write the element in the format using the
fewest characters. Each of these files has a header consisting of a certain number of
integers, followed by a sequence of blocks. Each block has a prefix consisting of some
number of integers, followed by some number of elements. The usage statement for
convert tells these sizes.

Usage: convert infile outfile hdr_size prefix_size block_size [type]

where type, if included, is one of c, n, x, s, i, or b (default = c)

Types are c=condensed, x=hex, s=sequence numbers, i=Milnor basis,

b=binary, n=numbered and Milnor basis.

Size parameters:

File type hdr_size prefix_size block_size

--------- -------- ----------- ----------

Diff.s 2 1 1

Map 0 2 1

OIm_s.t 1 4 2
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Im_s.t 1 2 2

Ker_s.t 1 2 1

For example, we might say

./convert Diff.2 hDiff.2 2 1 1 i

or

./convert Map hMap 0 2 1 i

to convert Diff.2 or Map to the ‘humanly readable’ files hDiff.2 or hMap respec-
tively.

To avoid duplication, in what follows, we will describe the files in ext/A/. The
information applies equally well to ext/A2/.

Let M stand for a module and let x and y stand for cocycles and associated chain
maps with domain M.

A.1. Module Definition file ext/A/M/Def. Modules which are finite dimensional
over F2 are described by a module definition file as follows. The header is

n
d0 d1 · · · dn−1

where n is the F2 dimension of the module, and d0 through dn−1 are the degrees,
in non-decreasing order, of elements of a basis. The utility sortDef will reorder
the basis elements to put them in non-decreasing order, and rewrite the rest of
the module definition file accordingly. The remainder of the module definition file
describes the action of the Sqi, i > 0, by lines of the form

g i k g1 · · · gk
where g and g1, . . . , gk are generator numbers (0 to n − 1), and this line means
that Sqi(g) = g1 + · · ·+ gk.

A.2. Differential file ext/A/M/Diff.s. The file Diff.s contains the generators
in homological degree s of the resolution together with the value of the differential
on them.

Each file Diff.s has a 20 character header. The first 10 characters contains
the number of elements in the file. The second 10 characters contains the internal
degree through which the resolution has been calculated in homological degree s.
The remainder of the file consists of blocks containing the degree of each generator
and its image under the differential. Precisely, if Diff.s contains

n D

d0

E0

d1

E1

...

d{n-1}

E{n-1}
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then the header tells us that, at this stage of the calculation, homological degree s

has A-basis s0, s1, . . . , sn−1, and this is complete in degrees up to and including
t = D. It says that the internal degree of si is di, and that d(si) is Ei. The elements
Ei are written in the format described in the introduction to this appendix.

A.3. Shape file ext/A/M/Shape. Produced by report, the Shape file consists of
integers separated by white space as follows.

M

n0 n1 ... nM

t00 t01 ... t0n0

t10 t11 ... t1n1

...

tM0 tM1 ... tMnM

These give

(1) the maximum homological degree (filtration) M,
(2) the A-dimension ns of ext/A/M/Diff.s, and
(3) the internal degree tsg of each basis element sg.

This information specifies exactly where the dots are located in the Adams chart.

A.4. hi multiples ext/A/M/himults. The initial version of this file is produced
by report, and shows which dots should be connected by lines representing hi-
multiples. The user can add entries, intended to represent differentials. The file
consists of a sequence of lines

s0 g0 s1 g1 i

If s0 > s1 this represents an hi from s1 g1 to s0 g0. The entries produced by
report all have this form.

If the user adds an entry with s0 < s1, this is treated as a differential from
s0 g0 to s1 g1. In these, the value of i is ignored.

A.5. Map Definition file ext/A/M/x/Def. Suppose that

· · · → C2 → C1 →M → 0

is the minimal resolution of M calculated by ext. A cochain x : Cs −→ ΣtN is
defined to the system by a map definition file of the form

s t M N x k

g1

j1

x1_1 0 1 x80

...

x1_j1 0 1 x80

...

gk

jk

xk_1 0 1 x80

...
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xk_jk 0 1 x80

Here, M and N are the names of the directories containing the modules M and N
and their resolutions. The map name, x, will be the name of a subdirectory of the
domain M. The rest of the file tells the value of the cocycle x on the k generators
sg1 through sgk. If a generator sg is not listed, then x(s∗g) = 0. The values, x(gi)
= xi 1 + ... + xi ji are sums of the F2 generators numbered xi 1, . . . , xi ji

in the module definition file for N .
These elements of N ,

j

x1 0 1 x80

...

xj 0 1 x80

are written as elements in the image of the section N → A⊗N given by the unit
F2 → A and are to be interpreted as the elements of N obtained from them by
applying the action µ : A⊗N → N or the augmentation ε⊗ 1 : A⊗N → N .

A.6. Map file ext/A/M/x/Map. The map file consists of blocks

s g

E

which mean that x(s∗g) = E. The element E is written in the format described in
the introduction to this appendix. If E = 0 this can be shortened to

s g 0

The blocks do not have to be in any particular order.

A.7. List of maps ext/A/M/maps. This is a text file containing the names of
directories holding chain maps with domain M. The programs newmap and cocycle

add the chain maps they create to the default file maps. To focus attention on
specific maps, you can create other lists of chain maps, naming them (nearly)
anything you like, and use those as the arguments to dolifts and collect.

The default, and recommended, format is one chain map per line, but all that
matters is that the map names are separated by white space. Order does not
matter.

A.8. Products and induced maps, ext/A/M/all. Suppose that C∗ −→M is a
resolution of the module M , that D∗ −→ N is a resolution of the module N , and
suppose that y : Cs1 −→ Σt1N is a cocycle whose lift to a chain map has been
computed in ext/A/M/y/. Running the command

./collect maps1 all1

in ext/A/M/ (assuming that y is listed in the file ext/A/M/maps1) will create a file
named all1 containing entries of the form

s g ( s0 g0 N) y

Here s = s0 + s1, and this line in all1 says that ys0(s∗g) = s0
∗
g0 + · · · .

M C0
oo · · ·oo Cs1

y

}}

y0

��

oo · · ·oo Cs0+s1

ys0

��

oo s∗g_

��

Σt1N Σt1D0
oo · · ·oo Σt1Ds0

oo s0
∗
g0 + · · ·
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Dually, this says that

y∗ : Exts0,t0(N,F2) −→ Exts0+s1,t0+t1(M,F2)

satisfies y∗(s0g0) = sg + · · · . If y = s1g1 , this says that s0g0 · s1g1 = sg + · · · .

A.9. Brackets ext/A/M/x/brackets.sym. When dolifts finishes computing the
part of the chain map lifting a cocycle x : Cs1 → Σt1N that it has been asked to
compute, it extracts a file ext/A/M/x/brackets.sym from which deductions about
Toda brackets can be made. The entries have the form

s_g in < hi, g0, x >

meaning that the bracket 〈hi, s0g0 , x〉, if defined, contains an element sg + · · · ∈
Ext(M,F2). Here, s = s0 + s1. More precisely, the bracket, if defined, contains an
element which is the sum of all such sg.

A.10. Image file ext/A/M/Im s.t. You will not need to look at these image files
unles you are getting deep into the weeds. The discussion of the algorithm in
the Section “A Canonical Basis” in [8] gives useful detail for understanding the
following brief description. The file Im s.t is created by either genimker s t or
genim s t.

An Im file has a 10 character header containing either 0, indicating that it is still
being created, or 1, meaning that it is complete. This is followed by blocks of the
form

g k

DX

X

where DX and X are elements with d(X) = DX. The pair (DX, X) was found by row
reducing d(opk · sg) until its leading term was distinct from all the leading terms
seen before this. Here, opk is the kth Milnor basis element in grevlex ordering of
the degree in question. Hence, the DX in Im s.t form a basis for the image of the
differential d : Cs,t → Cs−1,t in the resolution of the module under consideration
and the X are their lifts to Cs,t.

A.11. Kernel file ext/A/M/Ker s.t. The file Ker s.t is created by genimker at
the same time as Im s.t, and contains those terms such that d(opk ·sg) row reduced
to 0, so that the corresponding X form a basis for the kernel of d : Cs,t → Cs−1,t.

The format is similar. There is a 10 character header indicating “in progress”
(0) or “complete” (1), followed by blocks

g k

X

A.12. Ordered image file ext/A/M/OIm s.t. This is created by addgen s t dur-
ing calculation of the resolution, or later by orderim when it is needed in order to
compute lifts of chain maps. In the former case, it consists of the terms in Im s.t

together with additional terms created by adding new generators to Cs,t to make
the image equal to the kernel. In the latter case, it is simply a variant of Im s.t,
since the new generators have already been added. It has no header, and consists
of blocks
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lg lk g k

DX

X

in which the entries g, k, DX and X are the same as corresponding entries in Im s.t,
while lg and lk are the leading generator and leading operation, respectively, in
DX. The file is ordered: a block with prefix lg1 lk1 g1 k1 comes before a block
with prefix lg2 lk2 g2 k2 iff lg1 < lg2 or lg1 == lg2 and lk1 < lk2.

Appendix B. A sample run

The following instructions will install the system into a direcctory 195test,
calculate enough of the resolution to create Figure 1, and calculate enough chain
maps that every class in that chart is an ExtA(F2,F2)-multiple of at least one
of them. A new user is encouraged to execute these commands and examine the
results along the way, as a quick introduction to the use of this code. From start
to finish, the calculation in this Appendix took about 6 minutes on my laptop.
Naturally, if you stop to look at the results along the way, your elapsed time will
be commensurately greater.

B.1. Installing the program. Create a directory, untar the program into it and
run the Install script. (Start in a directory containing ext.1.9.5.tar.)

mkdir 195test

cd 195test

tar xf ../ext.1.9.5.tar

cd A2

./Install

cd ../A

./Install

B.2. Installing and resolving the cofiber of ν. Create the module Cnu and
compute the resolution through internal degree 24, to include all of Figure 1. Create
the TEX file and pdf chart. (You should be in the directory 195test/A now.)

./newmodule Cnu samples/Cnu.def

cd Cnu

./dims 0 24 &

./report

./chart 0 8 0 16 Shape himults Cnu.tex Cnu

pdflatex Cnu.tex

open Cnu.pdf

B.3. Create a generating set of chain maps. Create cocycles, and use missing
to find cocycles that are not ExtA(F2,F2)-multiples of earlier cocycles, in order to
get a generating set. (You should be in the directory 195test/A/Cnu now.)

cd ..

./cocycle Cnu 0 0

cd Cnu

./dolifts 0 40 maps

./collect maps all

cat all

./missing all | head
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cd ..

./cocycle Cnu 1 2

./cocycle Cnu 1 4

cd Cnu

./dolifts 0 39 maps

rm all

./collect maps all

./missing all | head

cd ..

./cocycle Cnu 2 3

./cocycle Cnu 3 1

./cocycle Cnu 3 6

cd Cnu

./dolifts 0 38 maps

rm all

./collect maps all

./missing all | head

cd ..

./cocycle Cnu 5 4

./cocycle Cnu 6 5

cd Cnu

./dolifts 0 35 maps

rm all

./collect maps all

./missing all | head

This last call to missing should result in the message

No missing generators

Note that calls to dolifts above take account of the homological degree of the
maps being lifted. For example, when lifting 5 4 and 6 5, we run

./dolifts 0 35

since 5 4 would require homological degrees above 40 to map into homological
degrees above 35.

B.4. Conclusions. The last call to missing will show that the 8 cocycles we com-
puted suffice to generate ExtA(H∗Cν,F2) as an ExtA(F2,F2)-module in the range
we have calculated. Examination of the file all reveals relations not evident in the
chart. For example, we find

3 8 ( 1 3 F2) 2_3

3 8 ( 2 2 F2) 1_4

3 8 ( 3 5 F2) 0_0

showing that 38 = h3 · 23 = h0h2 · 14 = h0h
2
3 · 00. Similarly,

4 5 ( 1 1 F2) 3_6

4 5 ( 3 3 F2) 1_2

shows that 45 = h1 · 36 = c0 · 12.
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