

An Infinite Family in \$\pi_\ast S^0\$ Derived from Mahowald's \$\eta_j\$ Family Author(s): Robert R. Bruner Reviewed work(s): Source: Proceedings of the American Mathematical Society, Vol. 82, No. 4 (Aug., 1981), pp. 637-639 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2043786</u> Accessed: 16/11/2012 12:03

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

AN INFINITE FAMILY IN π_*S^0 DERIVED FROM MAHOWALD'S η_i FAMILY

ROBERT R. BRUNER

ABSTRACT. Combining the relationship due to D. S. Kahn between \bigcup_i operations in homotopy and Steenrod operations in the E_2 term of the Adams spectral sequence with Mahowald's result that h_1h_j is a permanent cycle for j > 4, we show that $h_2h_j^2$ is also a permanent cycle for j > 5. This gives another infinite family of nonzero elements in the stable homotopy of spheres. Properties of the \bigcup_i homotopy operations further imply that these elements generate Z_2 direct summands.

Our objective is to prove the following theorem.

THEOREM. For $j \ge 5$, $h_2 h_j^2$ is a permanent cycle in the mod 2 Adams spectral sequence of S^0 . It detects a Z_2 direct summand of $\pi_n S^0$, $n = 1 + 2^{j+1}$.

The author would like to acknowledge the partial support of the National Science Foundation.

Starting from Mahowald's result, that h_1h_j is a permanent cycle for all $j \ge 4$ [5], the proof is an easy application of the \bigcup_i homotopy operations. We begin by defining them.

Let D_2X be the quadratic construction on X. That is, if X is a space and ()⁺ denotes addition of a disjoint basepoint +, then $D_2X = ((S^{\infty})^+ \wedge X \wedge X)/Z_2$, where Z_2 acts by sending (r, x_1, x_2) to $(-r, x_2, x_1)$ and $(+, x_1, x_2)$ to $(+, x_2, x_1)$. If X is a spectrum then the construction of D_2X is more complicated. Details will be given in [2]. If $\Sigma^{\infty}X$ is the suspension spectrum of a space X then we have a natural isomorphism $D_2\Sigma^{\infty}X \cong \Sigma^{\infty}D_2X$ [2]. We will write as if we were using the spectrum construction for convenience (referring to π_iS^0 rather than $\pi_{i+n}S^n$, n large, for example), but the space level results of [3] suffice.

If $\alpha \in \pi_m D_2 S^n$ then α induces a homotopy operation $\alpha^* \colon \pi_n S^0 \to \pi_m S^0$ (where S^i is the *i*-sphere spectrum) as follows. For $x \in \pi_n S^0$, we let $\alpha^*(x)$ be the composite

$$S^{m} \xrightarrow{\alpha} D_{2} S^{n} \xrightarrow{D_{2} x} D_{2} S^{0} \xrightarrow{\xi} S^{0}$$

where $\xi = \Sigma^{\infty} \xi_1$: $D_2 S^0 \cong \Sigma^{\infty} (BZ_2)^+ \to \Sigma^{\infty} (S^0) = S^0$ is the map of spectra induced by the unique nontrivial map of based spaces $\xi_1: (BZ_2)^+ \to S^0$.

We point out in passing that α^* is not a homomorphism. In fact, $\alpha^*(x + y) = \alpha^*(x) + \tau(\alpha)xy + \alpha^*(y)$ where $\tau: D_2S^n \to S^{2n}$ is a spectrum level transfer map. The theory of these homotopy operations will be developed in [2].

Received by the editors December 19, 1979 and, in revised form, October 15, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55E45; Secondary 55E35.

Key words and phrases. Stable homotopy of spheres, homotopy operation, Adams spectral sequence. © 1981 American Mathematical Society

^{0002-9939/81/0000-0375/\$01.75}

R. R. BRUNER

It is well known that $D_2 S^n \cong \Sigma^n P_n$ where $P_n = RP^{\infty}/RP^{n-1}$ [3]. Let us also write $P_n^{n+i} = RP^{n+i}/RP^{n-1}$. Obstruction theory implies that if $S^0 = X_0 \leftarrow X_1 \leftarrow X_2 \leftarrow \cdots$ is an Adams resolution for ordinary mod 2 homology, and if $x \in \pi_n S^0$ is represented by a map $S^n \to X_s$, then $\xi D_2 x$ induces a commutative diagram

$$D_2 S^n = \Sigma^n P_n \supset \Sigma^n P_n^{n+s} \supset \Sigma^n P_n^{n+s-1} \quad \cdots \quad \supset \quad \Sigma^n P_n^{n+1} \quad \supset \quad \Sigma P_n^n = S^{2n}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^0 = X_0 \quad \leftarrow \quad X_s \quad \leftarrow \quad X_{s+1} \quad \cdots \quad \leftarrow \quad X_{2s-1} \quad \leftarrow \quad X_{2s}$$

[3, Proposition 4.2]. These maps send the characteristic maps of the top cells of each $\sum^n P_n^{n+i}$, $c_i \in \pi_{2n+i}(\sum^n P_n^{n+i}, \sum^n P_n^{n+i-1})$, to familiar algebraic constructions on the representative of x, $\bar{x} \in E_2^{s,n+s} = \operatorname{Ext}_A^{s,n+s}(Z_2, Z_2)$, where A is the mod 2 Steenrod algebra. Precisely, we have the following theorem.

THEOREM [3, THEOREM 4.4]. The image of c_i in $E_2 = \text{Ext}^{2s-i,2n+2s}$ is $\overline{x} \cup_i \overline{x}$.

Several different notations have been used for $\overline{x} \cup_i \overline{x}$. We prefer to write $\operatorname{Sq}_i \overline{x}$ for $\overline{x} \cup_i \overline{x}$ and reserve \cup_i for use in homotopy. The squaring operations here are those which apply to the cohomology $\operatorname{Ext}_A(M, N)$ of comodules M and N over a commutative Hopf algebra A (or, dually, modules M and N over a cocommutative Hopf algebra A) [4, §5], [6, §11]. In particular, if $\overline{x} \in \operatorname{Ext}^{s,n+s}$ then there are elements $\operatorname{Sq}_i \overline{x} \in \operatorname{Ext}^{2s-i,2n+2s}$ for $0 \le i \le s$, and $\operatorname{Sq}_0 \overline{x} = \overline{x}^2$.

It is apparent then that the differentials on $\operatorname{Sq}_i \overline{x}$ are the successive lifts of the composite $S^{2n+i-1} \to \Sigma^n P_n^{n+i-1} \to X_{2s-i+1}$ of the *n*-fold suspension of the attaching map of the n + i cell of P_n and the map induced by $\xi D_2 x$. In particular, when the attaching map is nullhomotopic, $\operatorname{Sq}_i \overline{x}$ is a permanent cycle. In addition, c_i can then be lifted to an element of $\pi_{2n+i} \Sigma^n P_n^{n+i}$ which defines a homotopy operation that we call $\bigcup_i : \pi_n \to \pi_{2n+i}$. Clearly $\bigcup_i (x)$ is detected by $\operatorname{Sq}_i \overline{x}$.

We are now ready to prove the theorem. Let x be Mahowald's η_j , detected by h_1h_j . Then s = 2 and $n = 2^j$. Computing Steenrod operations in H^*P_n shows that $\sum^n P_n^{n+2} = S^{2n} \vee (S^{2n+1} \cup_2 e^{2n+2})$. Thus $\bigcup_0(\eta_j) = \eta_j^2$ and $\bigcup_1(\eta_j)$ are defined but $\bigcup_2(\eta_j)$ is not. The attaching map of the 2n + 2 cell shows that $2 \bigcup_1(\eta_j) = 0$. The corresponding elements in the mod 2 Adams spectral sequence are

$$Sq_0(h_1h_j) = h_1^2h_j^2,$$

$$Sq_1(h_1h_j) = h_1^2h_{j+1} + h_2h_j^2, \text{ and}$$

$$Sq_2(h_1h_j) = h_2h_{j+1}.$$

This is immediate from the Cartan formula and the formulas $Sq_0(h_j) = h_j^2$ and $Sq_1(h_j) = h_{j+1}$ [1, p. 36 and Theorem 2.5.1]. Therefore $h_1^2h_j^2$ and $h_1^2h_{j+1} + h_2h_j^2$ are permanent cycles while $d_2(h_2h_{j+1}) = h_0h_2h_j^2$. (This differential is also immediate from the Hopf invariant one differential $d_2h_j = h_0h_j^2$. The Hopf invariant one differential is in turn an immediate consequence of the above formulas and the fact that if m is odd then $P_m^{m+1} = S^m \cup_2 e^{m+1}$.) Since $h_1^2h_{j+1}$ is a permanent cycle detecting $\eta\eta_{j+1}$, $h_2h_j^2$ is a permanent cycle detecting $\tau_j = \bigcup_1(\eta_j) - \eta\eta_{j+1}$. It is known that $h_2h_j^2 \neq 0$ if j > 4 [1, Theorem 2.5.1]. Also $h_2h_j^2$ is not a boundary since

there are no elements which can hit it. Thus τ_j is nonzero. Since $2 \bigcup_{i}(\eta_j) = 0$ and $2\eta = 0$, τ_j has order 2. Since there are no elements of lower filtration in the $2n + 1 = 1 + 2^{j+1}$ stem, τ_j is not divisible by 2. It follows that τ_j generates a Z_2 direct summand of the $1 + 2^{j+1}$ stem.

Note that the differential $d_2(h_2h_{j+1}) = h_0h_2h_j^2$ is, as usual, not sufficient to imply that $2\tau_j = 0$. For this, the factorization of $\bigcup_1(\eta_j)$ through $\sum^n P_{n+1}^{n+2} = S^{2n+1} \bigcup_2 e^{2n+2}$ is needed.

References

1. J. F. Adams, On the nonexistence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.

2. R. Bruner, G. Lewis, J. P. May, J. McClure and M. Steinberger, H_{∞} ring spectra and their applications (to appear).

3. D. S. Kahn, Cup-i products and the Adams spectral sequence, Topology 9 (1970), 1-9.

4. A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. No. 42 (1962).

5. M. Mahowald, A new infinite family in $_2\pi_{\star}^s$, Topology 16 (1977), 249–254.

6. J. P. May, A general algebraic approach to Steenrod operations, Lecture Notes in Math., vol. 168, Springer-Verlag, Berlin, 1970, pp. 153-231.

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154

Current address: Department of Mathematics, Wayne State University, Detroit, Michigan 48202