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PREFACE

This volume eoncerns spectra with enriched multiplicative structure. It is a
trulsm that interesting cdhomology thecries are represented by ring spectra, the
product on the spectrum giving rise to the cup products in the theory. Ordinary
cohomology with mod p coefficients has Steenrod operations as well as cup products.
These correspond to an enriched multiplicative structure on the Eilenberg-MacLane
spectrum HZP. Atiyan has shown that the Adams operations in KU-theory are related

to similar strueture on i%s representing spectrum and tom Dieck and Quillen have

congidered Steenrod operations in cobordism coming from similar structure on Thom
spectra. Kahn, Toda, Milgram, and others have exploited the same kind of siructure
on' the sphefe spectrum $o construct and study homotopy operations, and Nishida's
proof of the nilpotency of the siable siems is also based on this structure on the

sphere spectrum.

In all of this work, the spectrum level structure is elther implicit or treated
in sn ad hoc way, aithough Tsuchiya gave an early formulation of the appropriate
notions. Our purpose is to give a thorough study of such structure and 1%s applica-

tions. While there is much that is new here, we are also very interested in

explaining how the material mentioned above, and other lmown results, can be

rederived and, in many cases, sharpened and generalized In our context.

The starting point of our work is the existence of exiended powers of spectra

generalizing the extended powers

. 3y _ tj)
DjX EEJ kzj X EZJ xzj X /E23 X

*

,

of hased spaces X. Here i:j ig the symmetric group on j letters, Ezj is a contract-
ible space on which ’*'j acts freely, the symbol x denotes the "half smash product®,
and %49} denotes the j-foid smash power of X. This comstruction emd its variants
play a fundamental role in homotopy theory. They appear ybiquitously in the study

of torsion phenomena.

T% will come as no surprise to anyone that extended powers of spectra can be
constructed and shown to have all of the good properties present on the space level.
However, those femiliar with the details of the analysis of smash products of spec-~
tra will also not be surprised that there are onerous technical deteils involved.
In working with spectra, the precise construction of smash produets is seldom rele~
vent, and I think most workers iIn the field are perfectly willing to use them with-
out bothering to lesrn such details. The same atiltude should be teken towards
extended powers.




v

With this in mind, we heve divided our work into two parts, of which this
volume is the firgt. We here assume given extended powers snd strugtured spectra
and show how to exploit them. This part is meant to be accessidble %o anyene with a
gtandard background in algebralc topology and some vague jdea of what the siable
category is. (However, we should perhaps insist right at the oubtset thai, in stable
homotopy theory, it really is essential to work in a good stable category and not
merely to think in terms of cohomology theories on spaces; only in the former do we
have such basic tools as cofibration sequences.) All of the technical work, or
rather all of it which involves non-standard techniques, is deferred until the
second volume. ’

We begin by summarizing the properties of extended powers of spectra and intro-
‘ dueing the kinds of structured ring speetrs we shall be studying. #An H_ ring spsc-
trum is a spectrum E together with suitably related maps IﬁE = E for j > 0. The
notion is enalogous to that of an E_ space which I took as the starting point of my
earlier work in infinite loop space theory. Indeed, H_, ring epectra may be viewed
as analogs of infinite loop spaces, and we shall also give a notion of K ring spec-

trum such thet H ring spectra are analogs of n-fold leop spaces. However, it ie to

be emphasized that this is only an analogy: the present theory is essentially inde-
pendent of infinite loop space theory. The structure maps of H_ ring spectra give
rise to homology, homotopy, and cohomology operations. However, for a complete
theory of ccohomology operations, we shall need the notion of an Hi ring spectrum.
These have siructursl maps szdiE * EGJiE fof § > 0 and all integers i.

While chapter I is prerequisite to everything else, the bloeks II, IIL, IV-VI,
and VII-IX are essentially independent of one asnother and can be read in any order.

In chapter II, which is primarily expository snd makes no elaim fo originelity,
I give & number of rather direct applications of the elementary properties of
extended powers of spectra. In particular, I reprove Nishida's nilpotency theorems,
explain Jones' recent proof of the Kehn-Priddy theorem, and describe the relation-

ship of extended powers to the Singer consiruciion and to theorems of Lin and
Gunawardena.

In chapter III, Mark Steinberger introduces homeology operations for H, (and for
Hn) ring spectra. These are analogs of the by now familiar {Araki-Kudo, Dyer-
Lashet) homology operations for iterated loop spaces. He also carries out exitensive
calevlations of these operations in the standard examples. In particulsr, it turns
out that the homeology of HZp is monogenic with respect to homology operations, a
fact which neaily explains many of the familiar splittings of spectra into wedges of
Eilenberg-Maclane and Brown-Petergon spectra.

In chapters IV-VI, Bob Brumer introduces homotopy operaticns for H_ ring spec-
tra and gives a thorough analysis of the behavior of the H_ ring structure with
respect to the Adams speeiral sequence and its differentials. Az very special

cages, he uses ithis theory to rederive the Hopf invariamt cne differentials and
certain key odd primary differentials due to Toda. The essential point is the rela-
tlonship between the structure maps DPE + E and Steenrod cperations in the E, tgrm
of the Adams spectral sequenmce. Only a few of the Steenrod cperations survive to
homotopy operations, and the attaching maps of the spectra QPSQ naturaelly gi#e rise
to higher differentials on the remaining Steenrod operations. in attractive feature
of Bruner's work is his systematic exploitation of a "delayed" Adams spectral
sequence originally dus to Milgram to keép track of these complex phenomena.

In chapters VII-IX, Jim MeCiure relates the notion of an Hi ring specirum to
structure on the familiar kinds of epectra used to represent cohomology theories on
spaces. For example, he shows that the representing spectrum KU for complex
periodic K~theory is an H2 ring spectrum, that the Abiyah-Bott-Shapiro orientaiions
give rige to an H2 ring map MSpin® » XU, and that similar conclusions holid with

= 8 in the real case. He then describes a general theory of echomology operations
and discusses 1ts specialization to ordinary theory, K-theory, and cobordism.
Finally, he gives a general theory of homology cperations and uses the resulting new
operations in complex K-theory itc compute the X-theory of QX = eolim annx as a
functor of X. This is a striking generalization of work of Hodgkin and of Miller
and Snaith, who trested the cases X = S0 and X = RP™ by different methods.

Cur appliecations - end I have only mentioned some of the highiights - are by no
means exhsusgtive. Indeed, ocur examplies show that this is necessarily the case. Far
from being esoteric objects, the kindsof spectra we study here sbound in nature and
include most of the familiar examples of ring spectra., Their internal siructure is
an essential part of the foundations of stsble homotopy theory and should be part of
the tool kit of enybody working in this ares of topology.

There is a single tsble of contents, bibliography, and index for the volume as
a whole, but each chapter has its om introduction; a reeding of these will give a
much better idea of what the volume reslly contains. References are generaily by
name (Lemma 3.1) within chapters and by number {II.3.l) when to resulis in other
chapters. References to "the sequel! or to [Equiv] refer to "Equivariant étable
homotopy theory", which will appear shortly in this serles; it contains the cone
struction and analysis of extended powers of gpectira.

J. Peter May
Feb. 29, 1984
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CHAPTER I
LXTENDED POWERS AND H_ RING SPECTRA

by J. P. May’

In this introductory chapter, we establish notations ito be adhered to through-
out and introduce the basie notions we shall be studying. In the first section, we
introdgce the equivariant half-smash preoduct of a n-space and & n~spectrum, where w

is a finite group. In the second, we specialize to obtain the exiended poﬁers of

spectra. We also catalog various homological and homotopical properties of these
constructions for later use. While the arguments needed %o meke these two sections
rigorous are deferred to the sequel {aliss [Equiv] or (511}, the claims the reader
is asked to accept are all of the form that something utterly trivial on the level
of gpaces ig also true on the level of speetra. The reasder willing to accept these
elaims will have all of the background he needs to follow the argumenis in the rest
of this volume.

In sections 3 and 4, we define H_ ring spectra and Hi ring specira in terms of
maps defined on extended powers. We also discuss various examples and catalog our
techniques for producing such siruetured ring specira.

§1. Fgulvarient half-smash producis

We must first specify the categories in which we shall work. All spages are 1o
be compactly generated and wesk Hausdorff. Most spaces will be based; 7 will denote

the category of based spaces.

Throughout thiz volume, by a spectrum E we shall understand a sequence of based

oy By > OBy,

the adjoints in > Ei+1' A map £:E + E' of spectrsa is a sequence of baged maps

spaces Ei and based homeomorphisms the noﬁation ag being used for

fi:Ei > Ei strictly compatible with the given homeomorphisms; f is sald to be a weak

equivalence if each f1 is a weak equivalence. There results a category of spectral .

There is & cylinder functor E A I* and & resulting homotopy category n§ . The
stable category-ﬂi is cbtained from hd by edjoining formal inverses to the wesk
equivalences, and we shall henceforward delete the ad}ective "weak". hd 1= equiv-
alent to the other siable categories in the literature, and we ghall use standard
properties and constructions without further comment. Definitions of virtually all
such constructions will appear in the sequel.

Define h¥ and 1Y enslogously to hd and Fd. For X ¢2, define
QX = coiim ﬁ“s“x, the colimit being taken with respect to suspension of maps
g » X, Define adjoint functors



: d + 4 and @ »J

by 1'X = {Qr'X} and &% = B,. (This conflicts with the notation used in most of my

previous work, where i and Q" had different meanings and the present ™ was called
Q,; the poini of the change is that the present ™ is by now generally recognized to
be the mosi appropriate infinite suspension functor, and the notation g% for the
underlying infinite loop space functor has sn evident mnemonic appeal.) We then
have QX = ﬂmzwx, and the inclusion and evaluation maps n:X + anﬁx and _
s:EnﬂnY + Y pass to colimits to give n:X + & r°X for s space X.and e:2 0 L » E
for a spectrum B. For any homology theory hy, e induces the stabilization
homemorphism E*EO + h,E obtained by passage to coiiﬁits from the suspensions A
assceiated to the path space fibrations By > PEq,q + Es for i > 0.

Let x be a finite group, generally supposed embedded as a subgroup of some
symmetric group Ej. By & based w-space, we understand a left g-space with a
basepoint on which n acts trivially., We let v J denote the resulting category.
Actually, most results in this section apply to arbitrary compaet Lie groups n.

Let W be a free unbased right w-space and form W' by adjoining & disjoint
basepeint on which v acts trivially. For X ¢ w7, define the Vequivariant half-
smash product” W Ko % to be W A o X, the orbit space of W x X/W x {¥} obiained by
identifying (wo,x) and {w,ox) for we W, x e X, and ¢ ¢ =.

In the sequel, we shall generalize this trivial construciion to specira., That
iz, we ghall explain what we mean by a "n-spectrum E" and we shall make sense of
"y ®o E"; this will give a functor from the category w4 of w-spectra to £. For
intuition, with = ¢ xé, one may think of E as consisting of based n-gpaces Eji for
i > 0 together with n—equiv&?iant maps Ejif\ s s Ej(i+1} whose adjoints are homeo-
morphisms, where r acts on S =8A .o a8 by permutations and acts diagonally on
Egp A8

The reader is cordially invited to try his hand at making sense of W x B using
nothing but the definitions already on hand. He will gquiekly find that work is

required. The obvious idea of getting a spectrum from the evident sequence of

spaces W K. Eji and meps

(W Ko Eji) ” w“u (EjiA Sj) M Wk“ E.]'(i-!-l)
is utterly worthless, as a moment's reflection on homology makes clesr (compare
II.5.6 below). The quickest form of the definition, which is not the form best
suited for proving things, is set out briefly in VIII 58 below. The skeptic is
invited to refer to the detailed constructions and proofs of the seguel, The
progmatist is inviited to accept our word that everything one might naively hope to
be true sbout W« E is in fact true,

Ped

The first and perhaps most basic property of this construsction 1s that it
generalizes the stabilization of the space level construction. If X is a based -

space, tvhen ©”X i8 a n-spectrum in a natural way.

Progésitian 1.1, For based s-spaces X, there is a natural isomorphism of spectra

Wk oK m p (W X).
" i

The construction enjoys various preservation properties, all of which hold
trivially on the space level. -
Proposition 1.2 (i) The functor W (?) from wf to £ preserves wedges, pushouts,
and all other categorical colimits.

(ii) If % is a pased g-space and EA X is given the diagonal » actlon, then

1

Wx (EAX) = (W E)aX before passage to orbits over w; if r aets trivially on X
W {EaX) = (W x, EYAX

{iii) The functor W x (?) preserves cofibrations, cofibres, telescopes, and all

other homotopy colimits.

Taking X = ™ in (i), we see that the functor W, () preserves n-homotopies
between maps of w-gpectra.

Let F(X,Y} denote the function space of based maps X » Y and give F(W",¥) the ¢
action {gf)(w) = flwg) for f:W » ¥, o ¢ w, and w ¢ W, For n-spaces X and spaces ¥,
we have an obvious adjunction

]

JW X, Y = =T (XFH,T)).
We shall have an analogous spectrum level adjunction
Alw “xE’D} =z o L(E,FiW,D})

for spectra D and s-speetra E. Since left adjoints preserve colimits, this will
imply the first part of the previous result.

Thus the spectrum level equivariant half-smash products can be manipulated just
like their simple space level counterparts. This remains true on the caleuiational
level. In particular, we shall make sense of and prove the following result.

Theorem 1.3. If W is a free n-CW complex and E is a OW spectrum wish cellular n

action, then W« E is a CW spectrum with cellular chains



Oy (W & E} 2 C W@ Cyl.
Moreover, the following asseriions hold.
{1) If D is a r-subcomplex of E, then W& D is a subcomplex of Ww E and
(W x E}/(Ww_ D) = Wg_ (E/D).
T T "
(41) If W* is the n-skeleton of W, then WB~! x_E is a subcomplex of W' s T and
W o B/ R B) = [0/ /00T /)] A B
(111} With the notations of (i) and {ii),

Wly p- s AW x B € Wi B
v kit ™ B K1

The caleulation of eellular chains follows frem (1)-(iii), the simpler calcula-
tien of chains for ordinary smash products, and en analysis of the behavior of the «

actions with respeet to the equivalences of (ii).

So far we have considered a fixed group, but the construction is also natural
in 5. 7Thus let f:p » v be a homomorphism and let g:V + W be f-equivariant in the
sense that gl{ve} = g(v)fle) for v ¢ Vand o ¢ p, where V ig & p~apace and W is a o~

space, For g-spectira E, there is then a natural map
*
gxl: Vi (£ E) » Wix_ E,
) T

where f*E denotes E regarded as a p-spectrmn by pullback along £.

For X e nd and Y ¢ pJ , we have an obvious adjunction

{H

EIENPNE S o7 (Y275,

We shell have an analogous extension of aection funetor which assigns a w-specirum

T up F to a p-spectrum F and an enalogous adjunction
nd(nw FE) = o 4(F,£¥E).

Moreover, the following result will hold.

lemma 1.4. With the notaiions above,

Wx (mw F)=Wx F.
W o] g

When p = e is the irivial group, = K F is the free -w-specirum generated by s

speetrum F. Intuitively, n x F is the wedge of copies of F indexed by the elements

~of 7 and given the setion of = by permutations. Here the lemma specializes to'giVe

Ww {ixF)=WeaF,

.mdﬂmnm@umﬂmmswmmquFism%mﬁﬂmﬁythAF.Nmemﬂ,mw

p = e.and V a point in the discussion above, we obtain a natural map
1:E» Wx E
K

depending on a choice of basepeint for W.

For finite groups n and p, there are also naiural isomorphisms

a:{W E) A{Vx F)+ (W=xV)x (EAF)
T p "X p

and, if pC E§’

(G + (¥ x Wj) ® E(J)
oS

g: V& (Wux_ E)
44 w T

for w-spaces W, w-speectra E, p-spaces V, and p-spectra F. Here E(j) denotes the j-
fold smash power of E and pfw  is the wreath produci, namely p x - with
multiplication

{“:“1:"‘:”3}{1:“31"°:“j) = (g1, uT(l)vl’."’uT{j)vj).
The various achtions are defined in the evident way. These maps will generally be
applied in composition with naturality maps of the sort discussed above.
We need one more general map. If E and ¥ are ﬁ—spectra_and % acts diagonally
on EAF, there is & natursl map

§: Wk (EAF) » (Wi E)a(Wx ).
i N v m

Arl of these maps 1,0,B, and § are generalizations of thelr evident space
level analogs. That is, when specialized to suspension spectra, they agree under
the isomorphisms of Proposition 1.1 with the suspensions of the space level maps.
Moreover, all of the natural commutative diagrams relating the space level maps

generalize to the spectrum level, at least after passage to the stable category.

§2. Extended powers of spectra

The most important examples of equivariant half-smash products are of the form
W B E(J) for a spectrun ¥, where n @ Ej acts on E(j) by permutations. It requires

a little work to make sense of this, and the reader ls asked to accept from the



sequel that one can construct the j-fold smash power as a functor from 4 to =4 with -

all the good properties one might naively hope for. The general properiies of these
extended powers (or j-adic constructions) are thus direct consequences of the
asseriions of the previous section. The following consequence of Theorem 1.3 is
particularly importans.

Corollary 2.1. If W is a free m-CW complex and E is a CW spectrum, then W % E(3)
is a CW-spectrum with

CylW % g9y 5w @, (CyE) .

Thug, with field coefficlents, CypiW "y £ld}) is chain homotopy equivalent to
Cy¥ @, (BB,

Indeed, C*(E(j}} x (C4E)J as a n-complex, where (G*E)j denotes the j-fold
tensor power. This implies the first statement, and the second statement is a

standard, and purely algebraic, consequence (e.g. {68,1.11}.

We shall be especlslly interested in the case when W ig contractible. While
81l such W yleld equivaient construciions, for definiteness we restrict attention to
W = Eu, the standard functorlal and product-preserving contractible p-fres CW-
complex {e.g. [70,p.31]). For this W, we define
- {3}
DE=W=x EY.

When = = 23, we write D E = {ﬁE. Since Ez, is a point, I E = E. We adopt the

convention that DOE = E(OJ = § for all spectra E, where S denotes the sphere
spectrum 1°sP,
We adopt analogous notations for spaces X. Thus DJX = Ezj 5 X(J), DX = X,
J
and DgX = 59, Since there is a natural isomorphism e=(xty 5 (zwx){J} of 7~

specira, Proposition 1.1 implies the following important consistency statement.
Corollary 2.2. For based spaces X, there is a natural isomorphism of spectra
DEX=zz2DX.
ki %

Corollary 2.1 has the following immediate consequence.

Corollary 2.3. With field coefficients,

HyD B = Heln; (ixE)) .

7

Ih'general, we only have a spectral sequence., Since the. skeletal filtrations

U of Er and By satisfy (Ex)®/x = (Bm)®, part (ii) of Theorem 1.3 gives a filtration of

DnE‘With successive quotients [(Bﬁ)n/(Bﬁ}nmllhﬁ(j).

Corollary 2.4. For any homolegy theory ky, there is a spectral sequence with
E, = ﬂ*(n;k*E(j)) which converges to kx(D E).

This implies the following important preservailon properties.

Pfogésition 2.5, let T be a set of prime numbers.
(1) If A:E » Ep is & localization of E at T, then D (E;) is T-local and
D E + D (Ep) is a localization at T.

(i1) If v:E =+ ET is a completion of ¥ at T, then the completion at T of
Dﬂy:ﬂﬂE > D“(ET) is an equivalence.

Proof. We refer the reader to Bousfield [21] for & nice ireatment of localizations
and completions of spectra. By application of the previous corollary with ky = =5y,
we see that D“{ET} hag T-local homotopy groups and is therefore T-loeal. ({HNote that
there is no purely homelogical criterion for recognizing when generasl specira, as
oppesed to bounded below spectra, are T-loecal.) Taking ky to be ordinary homolegy
with T-local or mod p coefficients, we see that D ) is & Zp-homology isomorphism and

D,y is a Zp—homology isomorphism for all p & T. The conclusions follow.

Before proceeding, we should make clear that, except where explicitly stated
otherwise, we shall be working in the appropriate homotopy categories hd or hi
throughout this volume. Maps and commutative diszgrams are always to be understood in
this sense.

The natursl maps discussed at the end of the previous section lead to natural
maps
(3} '
1E + D,E
Y i

aj,k:DjEA I}kE - Dj*kE

. DD E > DB
85,0057 P
and

§.:D,(EAF} > D.EAD.F .
Jd d J

These are compatiﬁle with their obvious space level analogs In the sense that the

 following disgrams commute.



8.
D,z7% D, (2% A2} vt B "X A D, 1Y
y . J J J d -
P xtdhy -7 I IR IR
= 6,
j *D. “D, — 4 ™D, .
J by DJX b3 DJ(XA Y} £ {DJXA DJY)
o B
o, ‘ e K . =, j,k - .
DX A DX —k Dyt X D, DX » Dyt X
i ) Ik Il . IR
L oo, x ‘ ) S]- X
L R &0, J s B [--]
z (Ds.x A DX e Ds ik 1D DX 2D, X

These maps will play an essential role in ocur theory. H_ ring specira will be
defined in terms of maps DJE + E such that appropriate diagrams commute. Just as
the notion of a ring spectrum presupposes the coherent associativiiy and commuta-
tivity of the smash produet of speetra in the stable category, so the notion of an
H, ring spectrum presupposes varicus ccherence diagrams relating the extended

powers.

Before getting to these, we describe the specializations of our transformations
when one of j or k is zero or one.

Remarks 2.6. When j or k is zero, the specified transformations specialize to
identity maps (this making sense since DOE = 3 anéd S is the unit for the smash
product) with one very important exception, namely Bj,O:DjS + 3, these maps play a
‘ ¢ i,0° Opserve that DjSO
is just sz, +the gnion of’ BEJ and & disjoint basepoint 0. We have the discretiza-
tion map d:sz + 8" specified by &(0) = 0 and d(x) = 1 for % ¢ BI
given explicitly as

special role in our thegry, and we shall also write gj =g

J-, and ‘Ej is

. Bemarks 2.7. The transformations 1y Sj 10 By It and é, are all given by identity
H E

maps, and

al,1 = 12:EA E -+ D2E.

The last equation is generalized in Lemma 2.11 below.

. diagrams commute.

Wé_coneiude this éeetion with eight lemmes which summerize the caleulus of

extended powérs of spectra. Even for spaces, such a systematic listing is- long

. overduse, and every one of the diagrams specified will play some role in our

theory. The proofs will be given in the sequel, but in all cases the anslogous

space level mssertion is quite easy to check.

Tet 1:EAF > Fa E denote the commutativity isomorphism in h{f .

'lemma 2.8, {aj it 18 a commutative and assoclative system, in the sense that the
D r

following dlagrams commute.

~

oy Al
W
D.Ea DI{E DiEA D.EADkE Di+jEAD}$E
o,
N s
T et L O B l"‘im‘,k
I O .
k,j 1,i+k
DkEA D:;E 4 DiEADj +}{E Di+j *"kE

Write ui ik for the composlite in the second diagram, and so on inductively.
2

Lerma 2.9. {Bj %} is an assoclative system, in the sense that the following
ETA < .7 s ‘

diagrams commute.

B: -
S VY I
DiDjDkE DijDkE

DiBj,kl lﬁij K

B. .
ik
DiDjkE Dijkg

Write Bi,j,k for the composite, and so on induetively.

. Lemma 2.10. Fach §, is commutative and associstive, in the sense that the following

d

it B 5
D‘].(E»\E)mwﬂmnjmnjp and D,(EAFAG) ————J-——w-&Dé{EAF)ADjG

. z S
D311 1 GJ[ [ SJ
1A6,

: 8§,
“ D AFAE) *—'——‘3——>D3.FA‘DJ.E D,EAD, (FAQG) ~wmmsmilna T)

EAD.FAD.G
4

d 37 3

Continue to write éj for the composite in the second diagram, and so on inductively.

Our next two lemmas relate the remaining transformations to the 14+
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Tepma 2.11. 'The following diagrams commute.

g, g8 — gy (DkE)(3)
Wﬁk
1,3'”1: lj+3{ 1J. ‘ DjkE
o B
" /Jk'
D;E AD,E WMDMRE D Dy Rk

Lemma 2,12, The following diagram commutes, where vy is the evident shuffle

v . s
(EAF)('j}_————'}————b E(J}AF(‘?)

isomorphisn

1j ljo\lj

3§,
D.AEATF) ~—————'1——————»DJ.EAD F

J J

Our last three lemmas of diagrams are & bit more subtle and appear to be new

already on the level of gpaces.

Lemma 2.13. The following diagram commutes.

B, . AB.
i,k "1k
DkaE ADJ. D]{E . Di}cE ADjkE
%1,3 “ik, Jk
Bs. s
R FY S
PiegPic® " Dy i
Lemma 2.14. The following disgrams commute.
x5 g
DHEAF)ADﬂEAF) » %+QEAF)
GJ. A(Sk dj-%k
lazal Uy g Al
' BT S Y.
DJ.EA DéFaDkEo\ D F DJE ADE ADJFABXF D5+kE l\}‘}j+kF
and
B
J ,k
i}jDk(E AF) 'Djk(E AF)
Djék sjk
( 8, Sj ™ Sj X
N ________.______3_____’ 2 X - A
D'J D Ea DkE) DjI}kE Ai)éDkF D_ij Dij

When 3 = k =1, this diagram speclalizes to

11

. 'Lemma 2.15. The following diagram commutes.

85 By sMBy g
2 1 I.',.
D;(DEADE) —————t——nD D EAD,D I Dy FADyE
Di%y x 14,1k
B. .
i,j+k
DDy, Dy oy

8
J
DAEAE »D.EAD,E
5 (EAE) 35
D, ..
512 3,3
B,
d42 o
D, T,E » DysF

(On & technical note, all of these coherence diagrams except those of Lemma
2.15 will commute for the extended powers associated to an arbitrary operad; Lemma

2.15 requires restriction to E_ operads.)

§3. H, ring spectra

Recall that a (commutative) ring spectrum is a spectrum E together with a wnit
map e:8 + X and a product map ¢:EAE + E such that the following diagrams commute
(in the stable category, as always}.

EaS —28npar et  gaE  BaRAR—221 Jpar max

| N
\¢/ e ' I/E

E EAL E EAE

In fact, this notion incorporates only a very small part of the full strueture
generally available.

Definition 3.1. An H, ring spectrum is a spectrum E together wlith maps gj:i)j + B
for j » 0 such that gy is the identity map and the following diagrams commute for
Jok > 0.



12

LTIR B ¥
S 59 S— . P S
D;EADE DjyE  and D; D Dj B
ERE —p D2E — D'}E —_— E

A map £:E + F between H_ ring spectra is an H, ring map if Ej < Djf.= f o Ej for
J >0,

This is a valid sharpening of the notion of a ring specirum in view of the
following consequence of Remarks 2.6 and Lemma 2.8,

Lepma 3.2. With e = £4:8 » Eand ¢ = £, 0 ;Z:EttE + E, an H_ ring spectrum 1s a
ring spectrum and an K, ring map is & ring mep.

There are varioug variants and aliernative forms of the basle definition that

will enter into ocur work. For a first example, we note the following facis.

Proposition 3.3. Iet E be a ring gpectrum with maps gj:DjE + B such that g5 = e,
£~ 1, and ¢ = Eatg. If the first diagrem of Definition 3.1 commubtes, then gj
factors as the composite

D;E = DJEAS&DJEAE—QL}»DJ&E LN
Conversely, if all gé so factor and the second diasgram of Definition 1.1 commutes,
then the first diagram also commutes and thus E is an H, ring spectrum.

—~ .
Proof. The first part is an elementary diagram chase. The second part results from
lemmas 2.8 and 2,11 via a rather lengthy diagram chase.

The @efinition of an H, ring spectrum, fogether with the formal properties
of extended powers, implies the following important closure and consistency
properties of the category of H, ring spectra.

Proposition 3.4. The following statements hold, where E and ¥ are H_, ring spectra.
(1) With Ej = Sj,O:DJS + 8, the sphere spectrum 8 is an H_ ring spectrum, and
e:83 + E is an H_ ring map.

(i1) The smash product EAF is an H ring spectrum with struetural maps the
composites

8, E, A E;
Dy(EAT) — . EaDF A B INGT P

the resulting produet is the standard ome, (¢~¢)(latall).

i
N
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,(iii) The composite 5.1.-3(3) + E is the jufolﬁ iterated product on F and is

3
itself an H,_ ring map for all .
Proof. These are elementary diagram chases based respectively on:
(i} Remarks 2.6 and the case k = 0 and £ = S of Lemmas 2.9 and 2.13.
(1i) lemmas 2.12 and 2.14.
{111} PRemarks 2.7 and Lemmas 2.9 and 2.11.

In view of Proposiﬁion 2.5, we havs the following further closure property of

the -category of BE_ ring spectra.

Proposition 3.5. If & is an H, Ting spectrum, then its localization Eq and
completion ‘%T at any set of primes T edmit unique H, ring structures gueh that
AE o+ Ep and  v:E » ET are H_ ring maps.

proof. The assertion is cbvious in the case of localization. In the case of

ecompletion, gé:DJ%T *> %T can and must be defined as the composité

. .
N PR £ RO I R -9 S
DyEy S, - (D,Eq) g SRS A S (DyE), Lo g

T
in easy calculation in ordinary cohomology shows that Eilenberg-MacLane spectfa
are H_ ring spectra.

Proposition 3.6. The Eilenberg-MacLane spectrum HR of a commutabive ring R admits a
unique H_ ring strueture, snd this structure is functorial in R. IfEisa
gonnective H_ ring spectrum and 1:2 + H{ngE} 1s the unique map which induces the
identity homomorphlsm on #p, then 1 is an H_ ring map.

Proof. Corollary 2.1 implies that 1j:F(j) + D,F induces an isomorphism in
R-cohomology in degree O for any cormective spectrum F. Moreover, by the Hurewics
theorem end universal ccefficients, #O(F;R) may be identified with Hom(nyF,R). Thus
we can, and by Proposition.3.4{iii) must, define 53:DJHR »> HR %o be that cohomology
elass which resiricts under 13 4o the j-fold external power of the fundamental class
or, eguivalently under the identification above, to the j-fold produect on R.
Similerly, the commutativity of the dlagrams in Definition 3.1 is checked by
restricting to smash powers and considering cohomology in degree O. The same argu-
ment gives the functoriality. For the last statement, the maps ngji and igj from
DjE to HlngE) are equal because they: both restrict under 1 i to the cohomology class
given by the iterated product (nOE)J > wyE.
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We shall continue to write i for its composite with any map H(ﬁoE) + HR induced

- Proposition 3.9. if E is an H, ring spectrum, then E, is an Hy, space with

by a ring homomorphism maE + R. We think of sueh a map 1:E » HR as a counit of E. gtruetural maps

the composite ie:S + HR is clearly the unit of HR.

(a;j)o ) I DJ.EO »Ey .
In the rest of this section, we consider the behavior of H, ring specira with

respect to the funetors & and 9. Note first that if E is a ring spectrum, then

its unit e:8 + E is determined by the restriction of eO:QSO > Ep %o SO. If the two

resulting basepoints 0 and 1 of E, lie in the same compeonent, then e is the trivial

Proof. We must check that the commutativity of the diagrams of Definition 3.1 for E
implies their commutativity for Ey. For the first diagram, It is useful to

dntroduce the natural map
map and therefore E is the trivial spectrum.

{eae)
/ _ : LBy A By~ QUE A Fy) = (57E, A57Fy) ) ————» (EAF)
Definitien 3.7. An E_ space with gero, or H_, spaee,” 1s a space X with basepoint O 0 G0 0
together with based maps gj:DjX + X for j > 0 such that the diagrams of Definition
3.1 commute with E replaced by X. Note that gQ:SO + X gives X a second basepoint 1.

for spectra E and F. The relevant diagrams then look as follows

. s . . J
in H, space is a space ¥ with basepoint 1 together with based maps EI. x, 1% +» Y G
I DsEq ~ PyFy = " Dy afo
for j > O such that the evident analogs of the diagrams of Definition 3.1 commute;
¥t = YULL{G} is then an H_, space.
o) BP Cj'\gk cj“‘}{
. s . ¥ {a, .} ¥
We remind the reader that we are working up 4o homotopy (i.e., in hJ ). There i {D_E}Oa (DkE)O S A (D'E'kaE}G 3.,k°0 (0. . E)
iz a concomitant notion of a (homotopy asscelative and commutative} H-space with _ﬁ:” J J J*ET0
zZero, or H0~space, given by maps e:so > X and ¢:XA X + X such that the diagrams ' (E')G“ (Ek)o (£.nE) (g )
. 3 k O s
: defining a ring spectrum commute with ¥ replaced by X. It is immediately obvious ; J d 470
‘ . i &
! that, mutatis mutandis, Lemma 3.2 and Propositions 3.3-3.5 remain valid for spaces. : EO,\EG 4 (E AE)O -E
A commutative ring R = K(R,0) is evidently an H,, space, 3 being given by the 0
j-fold product with the Er. coordinate ignored. 1 (1) e )
J 2 2°0 2'C
The isomorphisms D.2°X = zijX together with the compatibility of the space %
and spectrum level trensformations Lir O g and ﬂj y under these isomorphisme D Eq > (DB}
have the following immediate consequence. ’ ’
and
Proposition 3.8. If X is an H , space, then I"X is an H_ ring spectrum with g
J.k
gtructural meps ) . . . DjDkEO DJREO
L E.DE X2 DX XK.
5% it E .
3"k
R " N : ) . o ¥ T. (8. ) ¥ o
The relationship of @ to H_ ring structures is a bit more subtle since it is S D‘(DKE)O J «-(D.DkE) J.k O (D..E)
not true that EEQQE 3 ﬂijE. However, the evaluation map e: @ F » E induces & d J ¢ JET0
@ o D { } .
Dje:z“’pjn E= D0k - D;E, 150 {D.)Ek)o (ng)o
P 4 ;J- (E,] }0 A
the adjoint (@ Dbs)n of which is a natural map LEEO '(IEE)O - Eb
L3 20
DR E»QDE or :D D.E) . .
i Rt R £y 8 > (05E)g
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In the upper diagram, )Og by the naturality of n and 1, and the compatl-

Cai, = (1
2°2 2
bility of the space and spectrum level maps 190 The commutativity of the top
rectangles of both diagrams follows szimilarly, via fairly eleborate chases, from
naturality and compatibility diagrams together with the fact that the composite

sostzzW >0 + 1 is the identity transformation.

The preceding results combine in the following categorical description of the

relationship between H_, spaces and H, ring specira.

Proposition 3.10. If X is an H.p space, then n:X » 2K is a map of B ;) spaces.

If E is an H, ring spectrum, then et 0 E > E s a hap of H, ring speetra. There-
fore  and & restrict to an adjoint pair of functors relating the categories of

H,y Spaces and of H, ring specira.

The proof consists of easy diagram chases. It follows that if E is an H, ring

gpectrum, then eq:QE, + EO is a map of HmO spaces., As we shall explain in the

gequel, the significance of this fact is that it implies that the obh space of an H_

ring spectrus is an "H  ring space'.

§4. Power operations and Hi ring sprecira

Just as the product of a Ting spectrum gives rise to an external product in iis

represented cohomology theory on spectra and thus to an internal eup preduct in its
represented cchomelogy theory on spaces, so the siructure maps gj of an H_ ring

gpectrum give rise to external and internal extended power operations.

Definitions 4.1. Iet E be an K ring spectrum. For a spectrum ¥, define

?j:EOY = IY,E} » [DyY,E] = B0nyv

ok
by letiing ﬁ%(h) = gé o] Djh for h:Y + E. For & based space X, let E X denote
the reduced cohomology of X and define

Py 4% = 1957 - Eoz‘”(ﬁz;ax) - EO(BZE»\X)
@ *? L
by Pj(h) = {£4) j{h) for h:L X » E, where
d=1x a:BE AKX = EZ, k. X+ B w. X9 = DX,
j 3y 17 j

Of course, the maln interest is in the case ] = p for a prime p. A number of

basic properties of these operations can be read off directly from the definition of

#
an B, ring spectrum, the most important being that 13 ?}(h) = hq, where

‘E:ﬁqE » n,E by aih) = of fﬁ(h) for neg
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) hJ & EO(X{J)) is the external jth power of h, and similarly for the internal cpera-

tions. MeClure will give a sysiemaiic study in chapter VIII. While we think of
the 5% as cohomology cperations, they can be manipulated to cbtain various other

kinds of opérations. For exsmple, we can define homotopy operations on wyE parsm-
etrized by elements of E*Djsq.

Definition 4.2. 1et E be an H_ ring spectrum. For a sErDqu, define
qE. Explieitly, a{h) 1s the composite

. CANESI )
5 —“rDjquE d EaE ——t g,

These operations will make s fleeting eppearance in our study of nilpotency
relations in the next chapter, and Bruner will study them in detail in the case
E = S in chapter V. MeClure will introduce & related approach to homology operaé
tions in chapter VIII.

Returning to Definition 4.1 and replacing Y by ij for any 1, we obtain opera-
tions C?j:E"iY - EGDjEiY. A momenti's reflectlion on the Steenrod operations
in ordinary cohomology makes elear that we would prefer to have operations
iy 5 E“jiDjY for all i. However, the iwisiing of suspension coordinates which
obstructs the eguivalence of IﬁziY with EjiD-Y makes clear that the notion of an H,,

J
ring speetrum is inadequate for this purpose. For ¥ = z“x, one can set up &

 formalism of twisted coefficients %o define one's way around the obstruction, bui

this seems to me to be of Little if any use caleculationally. Proeeeding adjointly,
we think of E'Y as [Y¥,5’E] and demand struciural maps gj:DjziE + 23iE for all
integers i rather then just for 1 = 0. We can then define extended power operations
o s
SJ:Eiy = 1y,5%81 > Inyy, 5t oy
P

. by letting j(h) #® £, 0 Djh for ni¥ - EiE; internal operations

J

Py Bl - wlyTx > wdd s““(Bz;A X = %31(333;\ )

for spaces are given by Pj(h) = (Emd)*wgk{h}, as in Definition 4.1.

In practice, this demands too much. One can usually only cbtain maps
Ej:Djzé%E » £33 for al2 Jj and i and some fixed ¢ > O, often 2 and always a power
of 2. In favorable cases, one can use twisted coefficients or restrietion to eyelic
groupg to £iil in the mlssing operations, in a mammer %o be explained by MeClure in
chepter VIII. The experts will recall that some such argument was already necessary
to define the classical mod p Steentod operations on odd dimensional classes when
p > 2.
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. . 4 .
Definition 4,3. Let d be a positive integer. 4n H_ ring spectrum ig a spectrum E

together with maps

g5, 1:03%0 » 28w
:

for all j > 0 and all integers 1 such that each £1,4 is an identity mep and the

following diagrams commute for all j > 0, k > 0, and ell integers h and 1.

R - s B .
ai ai. %3k ai ai k5 gOig
DETEA DT E——-J—‘———*I}j,rkx E DDyt E —Htfer I

- D&, 5 .
Ej,i"gk,ii ls".]"'k,l ﬁk,ll igjk,a
. v - ; E. 1.
EdjiEA EdklE & zd(3+k}1E DjxdklE iLki zdjkiE

and

diE) d D,zdh;«: A Dé xé‘iE

P3¢ lgz,h"%‘,i
. £ . , .
Dﬁzd(h*l}E I,bri Edj(h+1)E ¢ szaﬁtazéjiE

Dj{zdhEAE

Here the maps ¢ are obtained by suspension from the product 52,012 on E. A map
. di dji
£:% + F between Hd ring spectra is an Hi ring map if Ej 5° Djz p o gL
had 2
for all § and i.

£ 0 E. .
5,1

Remarks 4.4. (i) Taking 1 = 0, we see that E is an H_ ring spectrum, The last
diagram is & consequence of the first two when i = O but is independent otherwise.
{11) Since DyE = 8 for all spectra E, there is only one map 51,0’ namely the wnit
e:SO » B

{1i1) As in Proposition 3.4{1il), the following diagram commutes.

. . 1. .
(x84 ) I p ;Y

J
\}\\\ ,///g.*i
ZdjiE

{iv) As in Proposition 3.4{1i), the smash product of an Hi ring spectrum E and an

H_ ring spectrum F is an Hi ring spectrum with structursl maps the composites

. 4. s E. « ME;S .
p Y EaT) ———ﬂ—wjzélE AD,F it FE S INPLA SN
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. (v} The last dlagrem Iin the definition involves a permutation-of suspension

coordinates, hence one would expect a sign %o appear. However, as MeClure will
explain in VII.6.1, ryE necegsarily has charscteristic two wher d is odd.

Given this last fact, preeisely the same proof as that of Proposition 3.6
vields the following result.

Proposition 4.5. Let R be a commutaiive ring. If R has characteristie iwc, then HR
admits 8 unique and functorial Hi ring structure. In general, HR admits a unique

_and funetorial Hi ring structure. If E is a connective Hi ring spectrum and

i:E » H(EOE) is the unique map which Induces the identity homomorphism on T, then 1
ig an HS ring map.

At this point, most of the main definitions are on hand, btut only rather simple
examples., We survey the examples to be obtalned later in the rest of this section.

We have three main techniques for the generation of examples. The first, and
most down to earth where it applies, is due to MeClure and will be explained in
chapter VII. The idea is this. In nature, one does not encounter spectra E with Ey
homeomorphic o QE;,; bui only prespecira T consisting of spaces T; and maps
04127y = Tieqe There is a standard way of assocliating a speetrum to a prespectrunm,
and MeClure will specify concrete homotopicel conditions on the spaces Ty, and
compesites zéTdi * Taeise1} which ensure that the assoclated spectrum is an H_ ring
gpectrum. Curiously, the presence of ¢ is essential. We lnow of no sueh eoncrete

way of recognizing H, ring spectra which are not Hi ring epectra for some d > 0,

MeClure will use this teechnique to show that the most familiar Thom spectra and
K~-theory spectra are Hg ring spectra for the sppropriate d. While this technique is
very satisfactory where it applies, it is limited to the recognition of Hi ring
specira and demands that one have reasonably gocd cslculational control over the
spaces Tgy. The first limltation is significant since, as MeClure will explain, the
sphere gpectrum, for exsmple, is not an Hi ring spectrum for any d. The second
limitetion makes the method unusable for generie classes of examples.

Our second method is at the opposite extreme, and depends on the tlack box of
infinite loop space mechinery. In [71], Wigel Ray, Frank Quinn, and T defined the
noticn of an K, ring spectra. Intuitively, this is a very precise point-set level
notion, of which the notlon of an H, ring spectrum is a eruder and less atructured
up to homotopy analog. Of course, E_ ring specira determine H  ring spectra by
neglect of structure. There are also notions of E, space and H_ ring space which
bear the same relationship of one to the other. Just as the zero™® space of an H_

th

ring spectrum is an H, ring space, sc the zerc™ space of an E  ring spectrum is an

E, ring space. In general, given an H_ ring space, there is not the slightest
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th

reason to believe that it is equivalent, or nicely related, to the gero™* space of

an H, ring specirum, However, the machinery of [71,73] shows that E_ ring spaces

functorially determine £ ring specire the zeroth

spaces of which are, in a suitable
senge, ring completions of the original semiring spaces. Precise definitlons and
proofs of the relationship between E_ ring theory and H_ ring theory will be given

in the sequel.

As explained in detail in [731, which ccrrects [71], the classifying spaces of
categories with suitable internal structure, namely bipermutative categories, are E_
ring spaces. Among other examples, there result E  ring structures and therefore H,
ring siructures on the comnective apectra of the algébraic K-theory of commutative

rings.

The ¥, and H, ring theories summarized above are limlting cases of R, and H,
theories for n > 1, to which the entire discussion applies verbatim. The full
theory of extended powers and struciured ring spaces and spectrd entails the use of
operads, namely sequences (pof suitably :c"elated zj-—spaces Cj. An action of & on a
spectrum E consists of maps géz g& MZ_E{J) + B guch that appropriate dlagrams com-
mute. For an action up to homotopy, %he same diagrams are‘only requiréd td”ﬁgmotcpy
comazte. If each Cj has the zj~equiv&riant homotopy type of the configuration
space of j~tuples of distinet polnts in Rn, then § iz said to be an E, operad. E,
or Hn ring spectra are spectra with actions or actions up to hemotopy by an En
operad. ‘The noiions of By and Hn ring space require use of a second operad, assumed
to be an E_ operad, to encode the additive structure which is subsumed in the
iterated loop structure on the spectrum level. En ring spaces naturally give rilse
to K, and thus H ring spectra, and interesting examples of K, ring spaces have been
discovered by Cohen, Tayler, and myself {29! in connection with our study of
generalized James maps.

Qur last technique for recognizing E, and B, ring spectra lies halfway between
© the first itwo, and may be described as the brute force method. It consilstis of
direct appeal to the precise definition of extended powers of spectra 1o be given In
the sequel. One class of examples will be given by Steinberger's construction of
free {-spectra. Another class of examples will be given in Lewls' study of .
generalized Thom spectra.

CHAPTER II -

MISCELLANECUS APPLICATIONS IN STABLE HOMOTOPY THREORY

by J. P. May
~with contributions by R. R. Brumer, J. E. MeClure, and M. Steinberger

A number of important results in stable homotopy theory are very easy con-

- sequences of quite superficial properties of extended powers of spectra. ﬁe give

several such applications here.

The preservation properties of equivariant half-smash preducts (e.g. in I1.1.2)
do not directly imply such properties for extended powers since the jth power
funetor from spectra to zj—spectra tends not to enjoy sueh properties. We
illustrate the point in sectilon 1 by analyzing the strueture of extended powers of
wedges and deriving useful consequences about extended powers of sums of maps.
These resulis are largely spectrum level analogs of results of Nishida [90] about

extended powers of spaces, but the connection with transfer was suggested by ideas
of Segal [96].

Beinterpreting Nishida's proof {90], we show in section 2 that the nilpotency
of the ring =4S of stable homobopy groups of spheres (or "stable stems") is an
inmediate consequence of the Kahn~Priddy theorem and our analysis of extended powers
of wedges. The implication depends only ¢n the fact that the sphere spectrum is an
H, ring spectrum. This proof gives a very poor estimate of the order of
nilpotency. Nishide aglse gave a different proof [90] which epplies only to elements
of order p but gives a much better estimate of the order of nilpotemcy. In secticn
6, we show that this too results by specialization to 8 of a result valid for
general H ring specira. Here the key step is an application of a splitting theorem
that Steinberger will prove by use of homology operations in the next chapter. His
theorem will make clear to what extent thig method of proof applies to elemenis of
order pi with 1 > 1.

The material discussed so far dates to 1976-77 (and was described in {721).

The material of sectlons 3-5 is much more recent, dsting from 1982-83. The ideas
here are entirely due %o Miller, Jones, and Wegmarm, who saw applications of
extended powers that we had not envissged. (However, zll of the information about
extended powers needed to carry oul sheir ideas was already explicit or impliecii in
[72] and the 1977 theses [23, 101] of Bruner and Steinberger.) Jones and Wegmann
{44} constructed new homology and cohomology theories from oid ones by use of
systems of extended powers and showed that theorems of Lin [53] and Gunawardena [38]

imply that these theories specialize to give exotic descriptions of stable homotopy
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and stable cohomotopy. Jones [43] later gave e remarkably ingenious proof of the
Katm-Priddy theorem fin terms of these theories. The papers [43, 44] only ireated
the case p = 2, and we give the details for all primes In sections 3 and 4. (In
fact, much of the woerk goes through for non-prime integers.) The idea for the
Jones-Wegmann theories grew out of Haynes Miller's unpublished cbgervation that
systems of extended powers can be used to realize ecohomologically a basic slgebrale
construction introduced by Singer 152, 98]. We explain this fact and its

relationship to the cited theorems of Lin and Gunawardena in section 5.

§1. Fxtended powers of wedges and transfer maps

Fix positive integers j and k and spectra ¥; for 1 21 < k. let

i

Y ¥1V see VY and let “i:Ii + Y be the ineclusion. For a partition

T = (Jseeendy) of §, Jg 20 and Jy % oee o = 3, write a7 = o and let fy

jl:"'!ék
denote the composite

D. v

S
].A Dy v oy

Jy X
. - Dy YA<ssADy ¥ i DY
31 i 1 Iy J

For later use, note that permutations o ¢ I act on pariitions and that I.2.8

implies the equivariance formula fJ = ch o o. HNote too that, for maps hi:Yi + E

with wedge sum h:Y¥ » E, the following diagram commutes by the naturality of ay.

£
J
D, I, Aeee AD, ¥~ DY
Ji 1 3.k 3
1 k
D. A see D D.h
! jkhk{ ls
%1
D, EAN see AD, E~—~———> D.E
i Jx J

Theorem 1,1. Let ¥ = Y,V eeo VY. Then the wedge sum

.1 DYA'--ADYMW_FBY
i Y Ph Ik ;

of the maps f; 1s &n equivalence of spectra.
Proof. By the distributivity of smash products over wedges,

s Vo, Aeay,
I %1 j
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_where I runs over all sequences (il"‘*sig) such that 1 < i, <k. Say that I ¢ J if
there are exaétly ], entries i, equal to s for each & from 1 to k. For sach
partition J of j, let Iy = Zj, % =+« x I; and define

. 1 Jx
(;| } {jk))

Y‘],m \/ Yii\...AY_ = 5. ok, (Y A..,.Ayk

Tel 13 i d Ty
(Here the isomorphism would be cbvious on the space level and holds on the spectrum

level by direct inspection of the definiiions in (Fauiv. IT $8%-4}.} Then Yy is a
£ j-subspectrun of 700 gna 19 . v Y. Now

\/ EI: and Ef, x_ Y_ = EE v<' (Y A AY
2 ) ;
J 3 dE 3Ly
by I.1.2(1) and I.1l.4. Clearly fy has image in Ei, x YJ ané factors as the
composite I

(.}1} ()

iy} (3,)
1 k
EF,J. xxEJ{Y A sas AY

).

Here o i an isomorphism. (Technically, the smash product in its domain is

"internal' while that in its range is V"external®; see [Equiv, II83}.)

1tEE, % ese x B, — Ep
3 I J

naturality of the functor % and is a Ly-equivalence. Therefore i x 1 is an

equivalence (by [Equiv, VI.1.13}). The conclugion follows.

The map
is given by the commutation with produets and

Our interest is mainly in finite wedges, bul precisely the same argument
applies to give an analog for infinite wedges.

Theorem 1.2. Let {Yi} be a set of spectra indexed on a totally ordered set of

indices and let Y = \/ Y;. For a strictly increasing sequence I = {i},...,ik} of
indices and & partltlon I = (Jqye0e,dy ) of § with each Ji > O (bence k < j), let

f De Yo M e
3,005, %, ADy Xy DY

be the composite of f; and the evident inclusion. Then the wedge sum
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t.:\V D, YL A +es AD; T, — DY

331311 K J

of the maps fy 4 Is an equivalence of speeira.
H

Parenthetically, this leads %o an atiractive aliernative version of the
definition, I.4.3, of an O ring spectrum.

Propositicn 1.3. An HS ring structure on E determines and is determined by an H,
ring structure on the wedge V z8g,
i

Proof. If V zdiE is an H_ ring specirum with structural maps 53’ then the evident
. i
composites

g .
g. Dz E e (V1B — ;P — 58y

give E an H: ring structure. If E is an Hi ring spectrum with structural maps
gj i then the maps
L

£ gi 41 ;
£y (V Mgy —s D, 8 lEaceean, 5 FE s VMg
J 1 ,1 1 Iy i
determined by the composites
Asesa A
ai di ,j ,' 3, .1, dj.i dj, i
D, 3 YEasesaDd, » fg-% K s Y A viiay Ky 9, dry
J 3 ‘
1 k
X ai
r= ). 'jaia’ give Vz E on K, ring strueture. These correspondences are
a=1 i

inverse to one another.

Returning to the conmtext of Theorem 1.1, let

Voeoa [ Asea A
DJ(Yl Y ) —> JlY,i DjkY

denote the J%h component, of f; . Thus gy is the composite of the projection to
Ezj ®s Yg and the inverse of the equivsience {i x l)a in the proof of the theorem.
J

k

The theorem is of partieular interest when Y = <es = Y, hence we change 7

notations and consider a spectrum ¥ and its k-fold wedge sum, which we denote by

(k)Y. Recall thet finite wedges are finite products in the stable category and let

(k)Y and V:(k)Y e Y

ArY

denote the diagonal and folding meps.

/—

- Definitiqn 1.4+ Define T30y Ds Yr\ aos AD;jkY to be the composite

g
DY—-']——a-D (k)y ——J-H)j YAcoeaD Y.
1 K

Explieitly, let :;J:((k}Y)(J) >V vl pe tne projection and let 1; also denote

the map ITeld

Bz, s e, o v e () - B b SAC L

doEg S 3k j’:.)IsJ £

Our original map T3 is the composite of this map and the equivalence [{i E)a]

“We write t. for Tyt DEY + Y(j) when k = § and each JS = 1.

J

We think of 17 as a kind of spectrum level transfer map. When Y = Xt for a
gpace X and 7 C XJ, we have

. (j)z © é‘(j] ] j+
E):J.oc"Y _Z(EEJ.P(“(X} )—E(Ezjxﬂx}

by I.1.1. We shall prove the following result in the sequel.

Theorem 1,5. When Y = X", the map
; () n
TJ.EEj I><E Y > EEJ, bcz Y
J J
is the iransfer associated to the natural cover
EE, x Xj + BE, x X'j .
N 7 J ‘T‘j
We do not wish to overemphasize this result. As we shall see, the spectrun
level maps 1y, for general Y, are guite easily studied directly.

The importance of these maps is that they measure the deviation from additivity

of the functor DéY.

For maps hs:Y + E, by +...v by is defined to be v(by v...viyla.  Thinking now
in ecohomological terms, consider the hy; as elements of the Abellan group Oy = iY, 1}
of maps Y » B in‘f;.&.

%

aen = ANaee A
Corollary 1.6. Dj (hl + + hk) § TJ(O'J{Djlh'l Djkhk))' Moreover, the
following equivariance formula holds for ¢ & I.

% *
Mase M = e .
TJ(QJ(Djlhl ; Djkh])J ToJ{“aJ‘Dj l(i)ha 1{1}/; AD ‘1( )hc'l(k)})
o (k

-
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Proof. By Theorem 1.1 and the raturality diagram preceding it, the following
disgram commutes.

B.A D.{h,v esavh ) D.v :
DY —_—— DJ({k)Y) 1M M » Dj((k)E) —ln D,E
Al {gJ) v (gg) v
e Délhi Aosa A Djkhk Va,
VDY —"» VD, TAseeaADd, Y >\ D, Eress AD, E——>\[D,E
g 7 9 dye 19 Jy 7

The equivariance follows from 1.2.8, the formula f& = foJ o g, and the fact that
ch = A, '

Taking each hy to be the ldentity map, we cbtaln the following special caée.

% *
Corolliary 1.7. Détk) =7 TJ{aJ), and TJ{as) depends only on the conjugacy class
J
of J under the setion of ZJn

¥nen j is a prime number p and k = piq with 1 > 1 and g prime to p, a simple
combinatorial argument demonstrates that every conjugacy class of partitions has pis
elements for some s > 1 except for the conjugacy class of the partition J(k) =
(1,.4.,1,0,...,0), p values 1, which has (p,k-p) elements. Of course, pi'1 but not
yi divides this binomial coeffileient. A trivial diagram chase based on use of the

projection (k)

¥+ Pl ghows that Ty(x) coineides with ty(p) = 1Y » v(p), Also,
by L.2.7 and 1.2.11, %5(p) ~ 1p:E(p) > DPE, Puiting these cbservations together, we

obtain the following result.

Corollary 1.8. If k = piq with p prime, 1 > 1, and g prime to p, then

Dpk:DpY > DPY can be expressed in the form pil + (p,k—p)1prp for some map A.
In favorable cases, the following three lemmas will lead to & more precise

ealeulation of Dp on general sumS.

lemma 1.9. The following diagram commuies for all Y, j, and k and all partitions

J of §. .

DY ——3 2D, TAsseAD, Y
J N Iy
. vee A
1y TJIA Tjk
h {j.) (j,}
) e v A LAy K
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‘ Proof . '$his follows from a straightforward diagram chase which boils down to the

factorization of a:¥ + ()Y as the composite

aveenva U ()

v s, (k) Y Vear v v

Y

(where A:Y » (O)Y = 5 is interpreted as the zerc map if any j,. = O).

Lemma 1.10. The composite TJIJ:Y{J) > Y(J} is the sum over g ¢ L of the

permutation maps u:Y{j) - Y(J)o

=

' Proof. This is an easy direct inspection of definitions and may be viewed as a

particularly trivial case of the double coset formula.

Jlemma 1,11 For any ordinary homology theory Hy, the composite

1 a
J¥* ki
1 .

k J
is muitiplication by the multinomial coefficlent (jl,...,jk). In particular,
13*13* is multiplicaticn by j!.

Proof.. We may assume ‘that Y ls z CW-gpectrum and exploit L.2.1. Since
Wb = 1:Y + ¥, where ni:(k)Y + Y is the i™P projection, Ay:CyY + C*{(k)Y) =
CyY ® «oo @ C,Y is chaln homotopy equivalent to the algebraic dlagomal. With
Ty = see = Y = ¥, the composgite (i & 1)a in the proof of Theorem 1.1 induces oy
upon passage %o orbits over zj (rather than over 231 X see X zjk). Therefore
ay o 13 18 just the compesite
. () JI . .
wow, YD LAy (I D Ly oy ) BBy ),
375 R 173 1eq S

Since there are (jl”"’jk) sequences I £ J and thus (jl,...,jk) wedge summands
here, the conclusion eclearly holds on the level of eellular chains. -

§2. Power operatlons and Nishida's nilpotency theorem

let E be an H_ ring spectrum and Y be any spectrum. Reeall from I.4.1 that we
have power operations KE:EOY + EODjY specified by -§}(h) = ngj{h}. e use the
results of section 1 to derive additivity formulas for these operations and apply

these formulas to derive the nilpotency of m4S.
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O ,b L N = * 'EN] , .
Lemma 2.1. For h; ¢ EYY, fj(hl + + Iy} § txt ggl{hl) A A f}k(hk)), where

the produet A is the external preduct in E-cchomelogy and the sum extends over all
partitions J = {jl,...,jk) of J.

Proof. This is immediate from Corollary 1.6 and the commutative diagram

=%
D, EnsveaD, 8 —3 2D E
iy i i
A sesAE,
R J
EA sveo AE -t w

Here the terms with one j; = J ang@ the rest zerc give the sum of the 33(hi}.
When j is & prime number p, the remaining error term simplifies. The full
generality of the following result is due to MeClure.

Proposition 2.2. let hy s E'Y. If p = 2, then

Pm

*
- teevan )= fP(h)+...+ 32{11 + ) T{hi'\hé}'

. X lci<jck

If p is an odd prime and ¥ and E are p-local, then

(?p(hl+...+ h,) = ?(h ) »a.....nfg) (n} + T, (-— [{n #eees P (n 1{+---+h§)}}

In particular, E;(kh) # k'?%{h) + %T-(kp - k)T;(hp) in both cases.

Proof, We must show that
e 3 (P () A a® () = *(hj1 ceen jk)
SRR U A g, ) T Tty by

for a partition J = (jl""’jk) of p with no j; = p. By Lemma 1.9,

¥
A s Tj } . Thus it suffices 1o show that

* ¥
=
T TJ{TJ .

p 1

. %
Jx?j(h) = Tj(h )

for any §j > Cand h ¢ ). 1f j=0, n{0 ang Dpih) are to be interpreted

88 the identity map of 8 and the conclusion is trivial. If j = 1, the conclusion is
also trivial. There are no more cases if p = 2, 80 assume that p > 2 and

1 <j <p. By lempa 1.11, the composite

T - 1s
DY SN ) M«r%}j‘f

59

_induees miltiplication by j! in ordinary homology. Tt is thus an equivalence since

¥ % ¥ (3
Y and hence also DJY is p~local. Therefore ‘j:E (EJY) + B (Y(J)) is a

monomorphism and we need only check that
' * * %
1 Poth) = se.tndy.
1J?J 15758

The left gide is j!h3 By lemma 1.10, the right side is the sum over ¢ ¢ iy of

: u*{hj} The commutativity of E 1mp11es that a*{hJ) nd for a1l ¢,j, and h, and the

cbnelusion  follows.

‘ Now recall from I.4.2 that elements o ¢ Er(BPSq) determine homotopy oﬁerations
E:qu » n B ‘via the formuia afh) = a/’fg{h).

Corollary 2.3. let o e Er(Dqu) and h & ﬂqE, where q is even and E is p-local if p
is odd. Then
SED) = Ka(h) + ;—! (P - 0GP P,

where the product is the multiplication in wyE.

Proof. The following diagram is esaily seen to commute.

T Al D
sr~—“——>ppsan—2——~—»quAg_ﬁ—“—i—-+EaE
IR y
-pq p
z ((1 Alla) Ml
3P A gPY =5 PUPIAm AL 2 BAR ~ L g

* -
Thus Q/Tp(hp) = (2 pqTP*(a))hP. The conclusion fellows from the last statement of
the previous proposition.

Assuming that E is p-local {when p = 2 as well as when p Is odd), we obtain the
following immediate corollariles.

Corollary 2.4. If ph = 0, then pi"l(z”Pqu*(u))hP*l = 0 for all «.

Here we have multiplied by b to kill piﬁ{h). Of ecourse, this may not be
necessary.
Corollary 2,5, If both p'h = O and pia = O, then pl'ltx'l’qrp*(a})hp =0

One can also arrive at the last two corollaries by direect dlagram chases from
Corellary 1.8 and the definition of an H_ ring spectrum, without bothering with
additivity formulae. (That approach was taken in [72], following Nishida [90, 88]).
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These relations specialize to give nilpotency assertions, the sharpest estimate
being as follows.

Corollary 2.6. Let x & qu satisfy pix =0, where 1 > 0 and ¢ is even if p > 2.

Suppose that x = z"pqmp*(a) for some & ¢ qu+q(Dqu)‘ Then pi™*xP*? = 0. Moreover,

if pla = 0, then pi1P*1 = o,

The problem, of course, is to study E*(Dpsq) and Everything above applies

pr*

to an arbitrary H_ ring spectrum E, but to compute v,y we must specialize. If E =

b
MO, for example, then every element of mE has order 2 and no element ig niipotent,
hence %2*:MO*(D28Q) - MO*(qu) must be the zero homémorphism for all gq. This does

not contradict the following assertion.

Conjecture 2.7. Any element of finite order in the kernel of the (integral)
Hurewicz homomorphism 74E » HyE is nilpotent.

We shall prove the conjecture for elements of order exactly p in section 6, but
the methods there fail for general elements of order p:‘L with i > 1.

When we specialize 3o E = 8, we find that the Kahn-Priddy theorem gives
appropriate input for application of the resulis above.

Theorem 2.8, If p = 2, let ¢(k) be the number of integers j such that O <j < k and
J 20,1,2, or 4 mod 8. If p > 2, let (k) = [k/2{p-1)]. Iet g be an integer such

that q = 0 mod p¢(k), where q is even if p > 2. Then TP*:ﬂrDPSq > ﬁrqu is a
{split) epimorphiem for pg < r < pg+ki{p-1).

We shall prove this in section 4. Actually, the purely stable methods we use
will give surjectivity without giving a splitting. TFor this reason, we are really
only entitled to use Corollary 2.4, rather than Corollary 2.5. This doesn't change
the heuristic picture, but to give the correci estimate of the order of nilpotency,
we assume the splitting {(from [46, 95, or 271} in the discussion to follow.

Theorem 2,9, et % ¢ “ns satisfy pix = 0, where 1 > 0 and n is even if p > 2. Let
m be minimal such that mn z O mod p¢(€n/p"1]+i), Then pi“lxmp+1 = 0. Induetively,

some power of x is zero.

Proof. Ilet g = mn. Since n < {in/p~-1]1+1)(p-1), there exists « ¢ "pq+nDpsq such
that £ Ploy(a) = x. With h = ¥, Corollery 2.4 gives p"1x®"? = 0. Using

plu = 0, Corcllary 2.5 gives pi"ixmp+1 = Q.

Unfortunately, m increeses rapidly with n (although our estimate for p > 2 is
sharper than Nishida's since he only lnew Theorem 2.8 for r < pg+k). For example,

3

" the firgt stem in which an interesting element x of order 2 oceurs is the l4-stem

(“intereéting“ meaning that x is neither in myd nor a product of Hopf maps). Here
m = 64 and we can only conclude that %129 = 0, a truly siratospheric estimate. So
far, énd granting that our stemwise caleculations still extend through only a very
small range, we have no reason to disbelieve that x4 = 0 if 2x = G, Corollary 2.6
seems to suggest that this answer might be correct. However, as pointed out to me

by Bruner, 12*:ﬁ*D23Q + ﬂ*qu is not always an epimorphism and thus

-Gorollary 2.6 cannot be used to prove this answer.

§3. The Jones-Wegmarm homeology and echomology theories

The next three sections will all make heavy use of ceriain twisted diagonal

maps implicit in the general properiies of extended powers.

Definition 3.1. Let = be a subgroup of L and let W be a free »-CW complex. For s

based CW complex X and a CW spectrum Y, define a map of spectra
AW KﬁY{j))AK + W th(YAX)(j)

by passage to orbits over x from the z-map

1AM {j}

(WmY(é})AXMW—b{WDCY )

yaxt W A td),

Here the isomorphism is given by I.1.2{(i1) and the shuffle m-isomorphism

T axl3) 2 (v a0)1I). Note that a 1s the identity map when X = &° and

that the following transitivity and commutetivity diagrem commutes, where X' is
ancther based (W complex.

w uﬁY(‘j))AXAX' CArT, oy ptﬁY{']))AX'AX
AAl

w«ﬁ(nm‘é’»\x' A 4

“\« (i

W u“(y,\x,\x!){j) QMT_)_.,W kﬂ(YAX'AX)(';)

With » = Ly, ang W = EEJ, we obtain

A:(E‘;Y) AX » [}j(YA x.

Although not siricily relevant to the business at hand, we record the relationghip
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between these maps and the maps 135 0§ 10 3j,k’ and §; of I§2 and use them to

J
eccenstruct new exampies of H_ ring spectra.

Lemma 3.2. The following diagrams commute for spectra Y and Z and spaces X. The

unlabeled arrows are obvious composites of shuffle maps and the diagonal on X.

(i) 1, M1 §. M1
1A x—l—-a'nj‘f!\x D; (YA Z) AX —h 5 DY ADZAYX
L
1
(xaxy {3l —Lsn,(vax) Dy (¥AZAX) DY AXAD,ZAX

N

Dy(YAXAZAX) ——J——ij(YAX} AD(ZAX)

51ROy 54
| |

DJ.YAX th‘,{ AX A Dj(DkY‘AX) A

A D.A
lA A l«l

%k Bk
D ¥ax) AD(xAX) —E5 D, (Yax) DD (XAK) —dfo b (vaX)

a. AL B Al
DYADYAX —3K s p, yax njDkYAx——iLk———:DjkYnx

I learned the following lemma from Miller and MeClure.

lemma 3.3. et X be an unbased space and E be an H ring spectrum. Then the
function speetrum F(X*,E) is an H, ring speetrum with structural maps the adjoints
of the composites

Dae 3
DJF{X+,E) axh b o D, (F(x*,E) axT) —1 D,E —d g,

where ¢ lg the evaluation map. In particular, the dual F(X+,S) of £X* iz an H,
ring spectrum.

Proof. If j =0, 2:8A% = 1K —> EwSO = 8 is to be interpreted as 175, where

§:X° » SO is the discretizaiion map sending X to the non-basepoint. The dlagrams of
I.3.1 are easily checked %o commute by use of the diagrams of the previous lemma.

Beturning to the business at hand, cbserve that, with X = Sl, we obtain a

natural map A:SDﬁy + EBEY' Thus, for any integer n (positive or negative}, we have
the map

zna:zmln‘].z"n”ly = znzbjz'lz'nz ma-zni)gz‘nz.

We shell be interested in the resuiting inverse gystem

PR Wgnnjg—ny e wgm lejz—}'Y —-s-DjY —»E—}‘ng‘f —r s ——pg"n]jjgn‘; — aee

{where n > C). By the diagram in Definiiion 3.1, the maps

z“a:(znz)js‘n)ax x zn(DJs“nAx) w——rznnj(s'na X) = anjz“nz‘”x

&peclfy a morphlsm of systems, again dencted 4,

{(z“njs“n) AE} e {znnéz““x‘”}(} .

We shall study the homological snd homotopical properties of these aysiems. In this

section, we consider any j > 2. We shall obtain caleulational results when j is a
prime in the following two sections.

Iet Ey and £ denote the homology and echomology theories represented by a
spectrum E. For spectra ¥, define

)y = 1im 5,05 ™D and E;)Y = colin B (")
rldly « 14m B (27D, 5 AY) snd  Fo..Y = colim E (£°D.87AT).
% % LU i) J

Upon restriction to spaces (that is, to Y = "X}, we obtain induced natural

transformations
*

(J) (g '

¥ ¥

LV MaS S S M and A :E(é)x_—»ze

and these reduce to identity homomorphisms when X = 9, It is clear that Fia} is
*

a homology theory and F(j) is a cohomology theory on finite CW spectra. Passage

to celimits from the homomorphisms

W1 # . 3 - ~ i -
(21 :Eiﬂ(r.nDJE A5v) = B (2 1DJ.Z iy —E" (2" )
yields suspension isomorphisms
i+1 i
E(j)n’ —»E(j)}.’,

and A* is eagily seen to commute with suspension. The analogous assertions hold for
E;J). With these notations, the main theorems of Jones and Wegmann {44} read as

foliows {although they only consider primes j and only provide proofs when j = 2).

¥
Theorem 3.4. The functor E(g) ig & cohomology theory on {inite C¥ spectrs, hence

¥ ¥ * .
b :E(j)X > F(j)x is an isomorphism for all finite CW complexes X.
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Theorem 3.5. Let E be connective and j-adically complete, with #4E of finite type‘
over the j-adlce integers Zj = x %_. Then E(J) is a homology theory on finite CW

spectra, hence A*:Fié)x * E;J)X is an isomorphism for all finite CW complexes X.

We defer the proofs for a moment. As Jones and Wegmsnn point out, %these resulis

are no lenger valid for infinite CW complexes.

Recall that DjSO ® E”Bzg and the discretization map Bzg -+ SO induces

gj:nga > SO. Upen smashing with ¥, the composites

zn}:s ———vas 0 1,50

give a morphism from the systenm {anBS'nA Y} +o the constant system at Y. We call
this map of systems £ and obtain a map of cchomology theories

*-E*Y —-M)F* ¥

& '

commubation with the suspension isomorphisms being essily checked. We sghall shortly

prove a complement to this observation.

Propogition 3.6. Let E be an H ring spectrum, Then the composites of the
functions :

T, :EY = 157, B) —- (D2 7Y, B = g7
and the natural homomorphisms En{anjE"nY) > E?j}Y specify a map of cohomology

theories
3 - E( ) .

We thus have the trisngle of cohomology thecries

*
X
G X
d EJ
* A * *
SR S
E(J}X F(j)X
on finite CW complexes X. Since j {x} = P o D {x), we see lmmediately that

A* @[(1) gJ(l) where 1 ¢ EO(SO) is the iéentlty element. It does not follow that
*

A ’?3 = Ej in general. As we shall see in the next section, this fails, for exam-

ple when E = MO. However, as observed by Jones and Wegmann [44], this dmplication

dees hold for K = 3.

35

g&bgosition 3.7. The following diagram commutes for any finite CW complex X.

/\

colim = (i: DJZ; Ty L yeolim w {2‘: DJS BAY)

Proof . Sinee A*'fg and g. are morphisms of cohomology theories, they are egual
.for all X if they are equal for X = L, Any morphism ¢:E*X » F*% of cohomoleogy
theories is given by morphisms of n*So—modules. When E* = w* and X = SO, al{x) =
‘ pll=x} = ¢{1)ex, so that ¢ is determined by its behavior on the unit 1 = g%,

For general B and X = SO it is obvious that 5 (x) g (1)x It is not at all
obvious that (A*@E){x) = A ?? {1} « x We now have th1s reiatlon for £ = 3, and we
ghall use it 1o prove the KahnmPriddy theorem In the next section. As we shall
explain*in section 5, theorems of Lin when p = 2 and of Gunawardena when p > 2 imply
that Ep and thus E; in Proposition 3.7 are actually isomorphisms. We complete

this gection by giving the deferred proofs, starting with that of Proposition 3.6.
We need two lemmas.

Lemma 3.8. The following diagram commutes for any pariition J = (jl""’Jk)
of j.

t.Al

J
DY AX ~Sem D YAweeADS TAX (shuffle) (1AA), 1y yaXAeeeAD, TAX
1 x 1 o
A laA---Ag
T
D, (YA X) »D, (YAXIA ves AD, (YAX)
4 dx

Proof. The "transfer" 1; is specified imn Definition 1.4, and the proof is an easy
naturality argument.

lemma 3.9. For an H  ring spectrum E, the composite

A *
1%,8) —Lor (0,751 A, [szz"lY,E]
is a homomorphism.

Froof. By lemma 2.1, we have the formuls

. p—l
T =B« + 1 < (Boa® .
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With X = 8%, Iemma 3.8 and the fact that A:8% +» $'a sl is nuil homotopic imply that
‘i,gmiﬂ is null homotopic.
Thus @3 in Proposition 3.6 is a natural homomorphism. Tt is easily checked
that ?3 commutes with suspension and this proves the propesition.
Finally, we turn to the proofs of Theorems 3.4 and 3.5. Clearly it only
(i)

*
remains to show that E(j} and E, satisfy the exactness axiom on finite CW pairs

(Y,B). Although not stricily necessary, we insert a general chservation which helps
explain the idea and will be usged later.

Lemma 3.10., Iet £:B+ ¥ be & map of CW spectra with cofibre Cf. There is a map
¢:CDjf > Dij, natural in f, such that the diagram

5 3
D.Y CD.f —2 »5p.B
j i g

| oo, b

D, ¥ O M-~ D, ——i—-nDsz

commutes, where i:Y » Cf and 3:Cf » IB are the canonical maps. If f is the
inciusion of a subcomplex in a OW specirum, then the diagram

oD, ——-——‘i’———»néc;f

n D,%

s
D;1/D;B -4 D3 (¥/B)

also commutes, where the maps » are the canonical (quotient) equivalences and the
bottom map ¢ is induced by the guotient map Y » ¥/B.

Proof . CDEf = DjY \ub ¢ CDJB and Décf = DJ(Y e CB); ¢ is induced by the
inclusion DJY -+ Dij and the composite of A:CDJB > DjCB and the inclusion

bjGB > Dij. The disgrams are easily checked.

Of course, the bottom row in the first diagram is not a cofibre sequence and ¢
is not an equivalence. How let (Y,B) be a finite CF pair. For notationsl
simplicity, set

D;(Y,B) = D;Y/D;B  and 7 = Y/B.

As n varies, the maps

znxp:znnjtz”n!,z“ns} ——-ﬁ-anjz“nz
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'sﬁecify a map of inverse systems, again denoied ¢, and we shall prove the following

result.

Proposition 3.11. For sny pair (Y,B) of finite CW spectra,

* * -] =
¢*:E(j)z —= Colin E }:ni)J{E Iy 57Pg)

and, under the hypotheses of Theorem 3.5,
byilin EpTD, (27,1 7) £z

are isomorphisms.

Note that the assumpiions on E in Theorem 3.5 imply that all groups in sight
are finitely generated ij-modules and thus that all inverse limits in sight preserve

% .
exact gequences. Given the propoesition, the required E(j} and E(J) exact

%
sequences of the pair (Y,B) are obtained by passage to colimits snd limite from the

£ ang Ex exact sequences of the pairs (ﬁnDjE“nY,snDéz’nB).

Following ideas of Bruner (which he uses in a much deeper way in chapters V and
V1), we prove Proposition 3.11 by filtering Y wor 0 < g £ j, define

Ty = T(Y,B) = LUJyyneeeny,

J’

" where Yr =Y or ¥, = B and s of the Y, are equal to B. We have

{3 . = yhd}
B =TI € rj_lc-.-CFc}»xJ .
Each inclusion is a xjmequivariant cofibration, and we define

n, = EIS{Y,B} ® FS(Y,B)/I‘ (Y,B).

g+l

Then iy = z¢d) and, for 0 < 5 < J, ﬁs breaks up as the wedge of its (s,j~s} distinet
subspectra of the form Z; A +-«AZ,, where 2, = Z or Z, = B and s of the 7, are equal
to B, It follows that I, is the free zj-spectrum generated by the (Ey x zj_s)—

spectrum B{SIA 2(3-8) | mnat is,

0. = I,.% gl p gld-s)
s j-s

The functor Ezé ux (?) converts zj-eofibrations to cofibrations and commuies with

quotients, hence we have cofibre sequences

. .
(%} Ezj xxzj rg/r,n ———-a-Ez‘.d M):j rr/rt —rEEJ. uzj rr/rS

for 0 <r <s <t <Jj. For a based space X, the map a:D;¥AX » Bj(Y AX} induces
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compatible maps

A:[Ezj & PS(Y,B}EAX—rEzj e,

I s

J i
and similarly for f; on passage to quotients. The following simple observation is
the crux of the matier.

rS(Y AX, BAX)

Lemma 3.12. For 0 < & < }, there is a natural equivalence
aiD BA Dj—sz - EEJ- P(zj HS(Y,B)

guch that the following diagram commutes for any X. :

(D.BAD, zZ)ax B2IAA L gayap 7ax —228 L § (BAX)AD, _(ZAX)
8 j-8 8 J-8 8 J-8
afl a
A -
iExj ME_I[S(Y,BH AX > Ezj g ES(YAX,B AX)
J J
In particular, the bottom map 4 1s null homotopic when X = gl
Proof. By I.l.4 asnd the description of HS(Y,B) above, we have
{s), ,(i-8)
B, w, 0, (Y,B) = B2, B*WAZ .
d zj s J g = ):5”8
As in the proof of Theorem 1.1, we may replace Ezé by Efg x Ez;-s on the right side,

and it then becomes isomorphic to DSBAI}_SZ. The diagram is easily checked.

How apply ™ to the cofibre sequence {*) for the pair (2 7Y,z DB} with quotient
£™MZ. We obtain en inverse system of cofibre sequences for 0 < r < s <t <j. On
passage to E' and then to colimits {or to Ey and then to limits), there results a
long exact sequence. ¥For 0 < s < J, the maps between terms of the system

(sMEr,

p E‘ns(z'nY,z’nB)}

J
are null homotopic, hence its colimit of cohomologles is. mero. Inductively, we
conelude from the long exaci sequences that the colimits of cohomologies asscciated
to the quoiients rs/rt with s > 0 are all zero and that the maps of colimits of
cohorologies associated to the quotient meps ro/rt > PO/FS are all isomorphisms.
With s = 1 and t = p, this proves Proposition 3.11.
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§4. Jones' proof of the Kahn-Priddy theorem

¥We prove Theorem 2.8 here. The proof for p = 2 is due to Jones [43] and we
have‘adapted his idea %o the case p » 2. We begin more generally than necessary by
relating the cofibre seguences (%) above Lemma 3.12 to the maps_rj:DjY + Y(j) of
Definiton 1.4. The idea here is again due to Bruner. Thus let (Y,B} be & pair of
finite CW spectra with quotient Z = Y/B. The map T3 ig cbtained by applying the

- funetor EEJ K (7} to the composite

j :
G a0 gy e,
J

El .

T
(), L

tra (where, technically, the smesh product is external on the left and internal on

Jw (1,..4,1), and using the equlvalence Ezj & Y of nbnequivariant spec-
the right; see [Equiv. II 83] ). The spectrum Ly b y) 4s a wedge of isomorphic
capies of 71} indexed on the elements of zj, and EJA(j) is just the sum of the j!

permutation maps. It follows that ﬁJA(j} restricts to a I;-equivariant map

J
g » zé x Pq for 0 ¢ s £ J. Upon passage 1o subquotients and application of the

functor Ezé wy (%), we obtain maps of cofibre sequences
J

Ezj bcz.rs/rJG ———a-Ezj Mz.rr/?t — Ezj a><zjrr/rS

J
gl %) I
T /1‘t B rr/rt s 1 rr/rs

for 0 ¢r <8<t <j. With 1 = s+1, the left map Ty is nicely related to the

equivalence o of Iemma 3,12, as can easily be checked by inspection of definitions.

lemms 4.1. The following disgram commutes for O < g < j, where p is the projection
onto the unpermuted wedge summand.

o P
DSB“Dj_sZ Ezj wzj ES(Y,B}
| lzj
pi®laglisl o0y g8 a zU3-5) 2y (v,m)
JTEgx Zj~s 8

Wnen j = 2, there is only one map of cofibre sequences above, and we obtain the
following conclusion.

Proposition 4.2. For CW pair (Y¥,B) with quotient Z = Y/B,
! 1 Té
Baz —2eD,3/D,B —L 0,7 —Es 5B Az
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iz a cofibre sequence, where ¢ is induced by the quotient map Y + Z, is

the composite

13
1
Baz = (BAY)/(BaB) 220s (vav)/(BAB) —2D¥/D B,

and ré is the composite

T
A
D,Z ~2rg g = (YuCB) Az 225 1A 7,

Proof. ¢Combine the cofibre sequence

E22 ke lil(Y,B) —*DzY/DZB —> D, 7% —>» LEL

w, E {Y,B)
5 2 2 22 17

with the equivalence :BAZ + E:2 g HE(Y’B) and eheck that the resuliing maps are
those specified. R

Qur main interest 1s in the palr (CY,Y).
Corollary 4.3. The following is a cofibre sequence.

212 12
L{YaY) 292Y D,1Y TY ALY,

Proof. Use the evident eguivalence Dst/BZY = XD2Y and check the maps, using
Lemms 3.10 for the middle one.

For j » 2, we have too many ecofibre sequences in sighit. Henceforward, let p
be & prime and localize all spaces and spectra at p without change of notation. We
shall show that, for odd primes p and pairs {CSq,Sq), our gystem of cofibre
sequences collapses io a single one like that in the previous corollary. Recall
from Iemma 1.10 that Trlr:Y(r) > Y(r) ig the sum of permutations map and
it DY+ ErY induces muitiplication by r! on ordinary homology. In particular,

it
for 1 < r < p, DY is a wedge summand of ¥,

lemma 4.4. For 1 <r < p, DZ.S2‘1*’1 ig equivalent to the trivial spectrum and

11,.:823-»r + DI.S2q is an equivalence with inverse ;T T
: rt 'y

Proof. When Y = S2q, 1,1, induces multiplication by r! on homology; when Y = 82q+l,

it induces zero. The conclusions follow.

Thus, when Y is a sphere spectrum, most of the spectra

EL, g I 4CY,Y) = DSYAE}P_SSY
are irivial. P
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Corollary 4.5. let p > 2 and 1et'q be an even integer. Then.ﬁhere are cofibre
sequeneeé .
P9 o yp g3 A 1B PO
and
P L pp ¥ LAap g9 gPAY2
Iy P

Proof. Let Iy = I'y(CY,Y) and 1_ = I /T I ¥ = 5171, then Ep k. ng is trivial

s+1° Py

‘for 2 < s'< p, hence Bz, “zprr/rs is trivial for 2 < r < 8 < p. Thus rl/rp * I

and, PO/rp > ro/r2 induce equivalences upon application of Er, w, (?) and there
P

b
results a cofibre sequence

Ezp “zpﬂl _—va-Ezp «Epro/rp —=Ezp uzpno — zEzp & xpnl'

This gives the first sequence upon interpreting the terms and maps (by use of Lemmas

3.10, 3.12, 4.1, and 4.4). Similarly, if ¥ = 8%, then Ezp ¥ I is trivial for

1 <8 < p-1, henee Ei_ K /g 18 trivial for 1 £t < s £ p-l. Thus FO/FP_I > Ty

T
p ULy
and I + I'a/T., induces equivalences upon application of i, . (?) and there
P-1 Vip P ﬁp

results & cofibre sequence

By 'szﬂp—-l L “xpro/?p — B “zpno —> B, uxp LA

This gives the second seguence.

One can also check these cofibre sequences by direet homologieel caleculation;
compare lemma 5.6 below. We need some further information about the spectra an?S“n
in order %o use these sequences ‘to prove Theorem 2.8. Proofs of the elaims te

follow will be given by Bruner in V§2.

It p =2, let L = £"RP” with ite standard cell structure. {We write L rather
than the usual P for uniformity with the case p > 2.) If p > 2, let L be & CVW
spectrum of the p-local homotopy iype of E“sz guch that L has one cell in each
positive dimension g = 0 or -1 mod 2(p-1). The existence and essential uniqueness
of such an L was pointed out by Adams [7,2.2]. Let 1X ve the k-skeleton of L and
let L, = L/1! and L§+k = M52l por k> 0. Let ¢lk) be as in Theorem 2.8
{end recal}l that it depends on p}. If p = 2, then

Iﬁ+k . zn~m1§+k for m = n med 2¢(¥),

Ifp>2,e=0or 1, and k > g, then

pentk 2(nﬂn)L2m+k

$(k)
2nre 2mtg ‘

for m 2 n med P
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+k

‘We use this pericdicity to define spectra Lz for non-positive n, so that these’

equivalences hold for all Integers m and n. We then have that

n+k X ],
Ln is (~1)-dual to L—n—l-k .
Our interest in these speetra comes from the following resuit (proven by Bruner in

Zh T 20 PR - 20l
v§z2). [)P ES . <

Liﬂép”) P@ =1 [”?rﬁ94)4
Theorem 4.6. For sny integer n, z—nDPSn is p-locally equivalent %o Ln(P‘E).szfﬁjiiizf

{p-1)+k _ . L n X 2n
nLn{p 1yt If p =2, we may view DPS as S %o 3=, 1f

D has few enough cells to glve as convenient a filt%ation of
DPSn. We shall shorily prove the following result.

We define D S
p > 2, no model for Ex

Proposition 4.7. If p:L?k > SG is the projection onto the top cell, then

p*:ﬁnq(SO) > Tr—-q(lgk)

is zerc for 0 < q < k(p-1).

Sinee p is (-1}-dual to the inclusion et lfil of the bottom eell,
1*:ﬁq(s-1} + @q{Lﬁzl) is zero for 0 < g < kip-1)-1. The cofibre sequences of
Corollaries 4.3 and 4.5 restriect to give cofibre sequences

T
S—l 1 Lfil 4 L§~1 D SO .
Thus, Tp*'“q(Lb - nq(so) is an epimorphism for 0 < gq < k{p-1).
Infinity. Of course, LO 2 szzg splits as the wedge E”sz\/so. Since
zp1p:so * SG has degree pl, the finiteness of a*SO allows us 1o deduce the
following version of the Kahn-Priddy Theorem.

Now let k go to

0

Theorem 4.8. The restriciion Tp:xmBEP + &  induces an epimorphism

nq(ZmBEP) * nq(SO) @)Z(P) for q > 0.
To prove Theorem 2.8, consider the following diagram, where ¢ = O mod p¢(k) and
q is even if p > 2.
qu—l P4y E;pqu ~1 £ quLoml P ghd
I | I |
Pt quigjg‘éilf'l B quég Iltgqﬂs-z P, gpe

«JLAI

4
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‘Thé bottom cof'ibre sequence ia obtained by restriction from seguences in Corcllaries
4.3 and 4.5. ‘Periodieity gives an equivalence v such that the left square commutes.
Standaré cofibration sequence arguments then give an equivaelence » such that the

p factors through TP:EPSQ > 8P4 and is
an epimorphism in the renge stated in Theorem 2.8.

remaining squares commuie. The bottom map <

It remains to prove Proposition 4.7. For amusement, we proceed a bit more

generally.. Recall the noi necessarily commutative diagram

below Proposition 3.6, where E iz an E  ring spectrum. With E =
following result is Proposition 4.7.

S and X = &, the

Proposition 4.9. ILet X be & finite CW complex of dimension less than k{p-1)-q,
where 0 < q < ki(p~1). Then

0 O

(a1 e % = B 4% A %) —> EHL AX)

¥ *
is zere if F iz & conneetive H ring spectrum sueh that 4 @; wE

P
Proof. For n > k, the cofibre of A'EB+ED g, D5 has dimension at most
~(p-1), and it follows that the colimit F( ,X is aitained as E” q(zknps‘k/\}z).
let 1@ L = ZkD S

kT
where x is any map X E -4g,

be the inclusicon and consider the following diagram,

qD SqAXat——————zDS AX
z//ﬁ///, “/////// \\\\\\\*
‘inpqu-ewmznzkx DSAX——E——————-—s-SJ\X
~q
7% 5%
s |

2790 % E

-G, x
» 5 B &
P
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* *
A }Dp = &ps the bottom part commutes. We have

0

EPAK = p:lg + 8

k
the composite is obviously null homoitopie on L:i and of degree one on the top
We have

0

Y -G g3
B = 0Ly » 2TDS

E"quSq is O-commected. The conelusion follows.

Replacing S by £ in the deductions from Propogition 4.7 and using the results
of section 2, we conelude that, for gq » 0, all p-torsion elementis of "PE are

* * * *
nilpotent if & G; = g, This implies our earlier claim that a 1?2 7 g, when

E = MO.

§5, 'The Singer congtruction and theorems of Tin and Gunawardena

Singer introduced a remarkable algebraic functor R, from A-modules to A-
modules, where A is the mod p Steenrcd algebra, and Miller began the study of the
cohomology theories In section 3 by making the following basic chservation. All
homology and cchomology is o be taken with mod p coefficients.

Theorem 5.1. Let ¥ be a spectrum such that HyY is bounded below and of finite
- *
type. Then colim H*{EnDPE“DY) is iscmorphie to & 1R+H Y.

We shall prove this and some related observations after explaining its
relationship te the following theorems of Lin 153, 54] and Gunawardena [38, 39].
Let E* and ﬁ* denote the p-adic completions of stable cohomotopy and stable
homotopy.

- ~* ] . .
Theorem 5.2. The map g;:ﬂ*Y + colinm ® {EnDpS BAY) is an isomorphism for all
finite CW spectra Y.

As we shall explain shortly, lim ﬁwl{anPS"n} = 2@' Realizing the unit by a
compatible system of maps ;;P:S"1 + EnDPS"n and smashing with ¥, we cbtain a
compatible system of maps

Piply 2 glay o IS 8

Theorem 5.3. The map gg:%*z'lY + lim %*(EnDpS"nA ) is an isomorphism for eil
finite CW spectra Y.
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¥
Sinee gp is & map of cohomology theories and af is & map of homology

theories, it suffices to prove these lsomorphisms for ¥ = &%, Since
znn];{P"l)“ls“n i (~1)-dual to zmkngtp“l)”}“s"‘n”k,

the theorems are esentially dual to one another. Indeed, using the lim* exact

sequence and waving one's hands at certain compatibility questions, one finds the
following chain of isomorphisms, where m(p-1) > g.

1im 73(z7D, 8 = 32 g™
con 72"y 7 (szp )
1im FgtpE(p-1)-lgm,
% P

mek k{p-1}-1 -m-k
D
4 n_qu(x o 5 }

"

-

I
ot

Bl
=]

- N, .-
D3
ﬁ"%_l( o }

There is a map of A-modules s:R+Zp - zp, and the main point of the work of ILin
and Gunawardena cen be reformulated ag follows; see Adams, Gunawardena, and Miller
le].

Theorem 5.4. s*:ExtA{Zp,Zp) + ExtA(R+ZP,Zp) is an isomorphism.

An inverse system {¥,} of bounded below spectra ¥, of finite type gives rise to
an inverse limit

{E,} = um {EX,}

of Adaws spectral sequences, where {E.Y} denotes the classical Adams spectral
sequence for the computation of %*Y. Cleariy

. oy
E, = Extplcolim H Yn,ZP).

As peinted out in 174], {E.} converges strongly to lim ﬁ*Yn. We apply this with

Y, = XnDpS"n; Here Theorems 5.] and 5.4 give

Ey = Bxty(£718,,2,).

From this and convergence, it is easy to check that lim %_1(anpS"n} =% . The

compatible system of maps gIJ:S"1 > anpS““ then induces a map of spectral sequences
(£,6P} 1 {E571) + (B,).

By Theorem 5.4 again, Ezgp is an lsomorphism, and Theorem 5.3 follows by
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eonvergence. Theorem 5.2 .can be obtained by & similar Adams spectral sequence
argument {ag in Lin [53] and Gunawardena (38]) or by dualization.

The crux of the proof of Theorem 5.1 is the following result of Steinberger,
which is proven in VIIT.3.2 of the sequel. For spaces, it is dvue to Nishide [89];
see also [68, 9.41. Let r be the cyelic group of order p. We assume familiarity
with the mod p homology HyP X, its determination being a standard exercise in the
homology of groups in view of I.2.3 (see e.g. [68, §11}. Suffice it to say that .
H*D?rY has a basis consisting of elements of the form = & X3 G e B xy and &4 ® xp,
1 > 0. Here the x; and x run through basis elements of HyY, the x; are not all
equal, and the x| Q <+ @ Xy and »P together run through a set of w-generators for
(1, Y)P.  Restrieting to those i of the form (2s-q)(p-1)-g, where q = deg {x) and
g=0o0orl, and to a set of z‘.p—generators for (H*Y)P, we obtain a basis for H*DPY'
At least if HyY is bounded below and of finite type, we have analogous dual bases
for H*DﬁY and H*DPY with typieal elemenits denoted Wy 2 ¥ 6 oo @yp and LAY & yP.

Theorem 5.5. Assume that HyY is bounded below and of finite type. The subspace of
H*Dn‘.( spammed by {wy @y © +9e @yp} is closed under Steenrod operations and,
medule this subspace, the following relaticns hold for y ¢ HYY,

{i) Forp= 2,
j+a-i

2 i .2
qu{wj ®y ) = }: wj+s~—2i® (8g ¥},
i

s-21

(i1) For p > 2, let §(2n%e) = e, m m-%— (p-1), and alq) = -(-1)™gl; then

s . v li/zl+qme-(p-1)1 )P
Py @) % opi Yse2(spi) (p-1) @ (FY)

s 8(3-Dalq) | H/2rR-(R-1A-

. ® (epiy)?P.
i §~pi-1 ~pi) (p-1)

"j-pe2(s
(111) For p > 2, aluyyg ©¥F) = wy; @ ¥P.

o

We also need to know A*:H*DT[Y > H*(IDHE”lY). let En:Hq(Y) + H (Y} denote

the iterated suspension isomorphism for any integer n.
Lemma 5.6. For y e HYY,
¥ P 3+l -1.p
A ; = (=1 . .
(wJ ®yY) = (-1) u(q)z(w3+p_l ® {7y )

Proof. We first compute ay:Hy(ED Y) > Hy(D £¥}. Take f to be the identity map of Y
and replace Ep by D, in Temms 3.10. We find that the composite of ay and ihe
homology suspension iy 18 the suspension associated tc the zero sequence

A7

Cx(DY) —r CulD,CY) —= Cy(D zX).
By 1.2.3 and [68,51), we may instead use the merc sequence
W@ C (NP — W@, (0P — W@ o, (P,

where W is the standard z-free resolution of ZP' A direet chain level computation,

details of which are in [é8,p. 166-167], gives the formula

T

Bty @F = (-1 alge; @ (o0

for x e Hq__l('.(). Clearly a*E*(eO ® % @ o ®xp) = 0 for ail ¥;. The conelusion

follows upon duslization (and a careful check of signs).

The results above determine colim H*(an“z'nY} a8 an A-module, and similarly
with D?: replaced by Dp. To compare the answer to the Singer construetion, we must
first recall the definition of the latter [98,52]. When p = 2, Z"1R+M is additively
igomorphic to A ® M, where A is the lLaurent series ring Zzlv,v"ll,
deg v = 1. Its Steenrod cperations are specified by

rei )vr+s—i

sV @ x) = ;} (sazi ® Sqix'

When p > 2, z"lR*,M is additively iscmorphie %o A ® M, where A = E{u} x Zpiv,v“ll,
deg u = 2p-3 and deg v = 2p-2. Iits Steenrod operatlons are specified by

PP (ST @ x) = ) (_1)S+i((p—l)(r-i)—e) uevr+s-i—e ® Pix
i g-pi

+ (1-e) ] (~1)S+i( ‘P;E;’,E;“'l) w1 g gply
1

and

eVt @) = elv’ @x).

We can now prove Theorem 5.1. We define an isomorphism

wigolim H*(EnDPE"nY) > ﬁle+H*Y
as follows., For p = 2 and ¥y & H3(Y), let
n - .2 _ T
Wz, ® 7" =V @y,
For p > 2 and ¥ & HY(Y), let
4 r+g+ie+tlin

w2 (w ® {z %Py = (-1) v(q-—n}"luevr-':@y,

{(2rm-q) (p-1)-€
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where (2] + ¢) =(—1)j{mi)e. Note that

sladvia-1)Y = v(@™) and (D% = (c1)™(q).

By lemma 5.6, these p induce a well-defined isomorphism on passags to colimits. by
Theorem 5.5, we see that our constants have been so chosen that o is an Isomorphism
of A-modules.

Remark 5.7. When p > 2, there are two variants of the Singer construction., We are
using the smaller one appropriate to Dy. This is a'summané of the larger wvariant,

for whiech Theorem 5.1 is true with Dp replaced by D . See Gunawardena [39,91 for

detalls (but note that his signs don't quite agree with ours). 4

With Y = SO, Theorem 5.1 specializes to an isomorphism

= -1 - i 4 (30D g0
A= LTR,Z, = colin H (5 DS )o
Sinece A is an A-module, A @ M admite the diagonel A action, which is evidently quite
different from that originally specified on z'lﬁ+M. For finite CW complexes X, we
have the lsomorphism

* * - * -
A :eolim H (znan: By} wem colim H (anpS BAX)

of Theorem 3.2. We next obtain an explicit deseription of %he resulting isomorphism

% ] ok ¥
a iR Ex a0 K

Thus consider A:DKY/\X * D"(YI\X). When X = Sl, we computed Ay in the proof
of Lemma 5.6, When Y = 8, DY = ™Br" and the effect of Ax 1s lmplicit in the
definition of the Steenrod operations; sgee Steenrod and Eptein {100] (or, for

correct signs, [68, 9.11). The following result is a common generalization of these
caleulations.

Propsition 5.8. Iet x ¢ ﬁk(x) and y e Hy(Y). If = 2,
aile, ®5 ®@x) = Je o 1 ©(y@sqpn’.
i

if p > 2, let w2j+l) = (-1} (m!)® and g(2j+e} = g; then

" mkg, i i.p
byle, ®3F @x) = (-1)™ %) [ D e iy (pe1) @ 0 ® F)

qrmik-1)g i 1P
""{"1) 5(1‘)\)(]{‘-1) E (""1) er+p+(2pi—3§)(p-—l) ® {Y®?*SX) .
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iProéf. Modulo shuffling in C.{Y)P, which introduces the signs depending on q when

p > 2, Ay is computable from the map cbtained by quotienting out the action of
from the w-map '

8 ®1:0, (W) @ &, (X) @ C(NF —2C (W) @ T(x)P @ o (mP

induced by a m-equivariant approximation ¢ of 1 @ A4, where A’ is a cellular
approximation of the dlagonal X + ¥P; see e.g. {100, V83 or {68,7.11. The
essentlal point is that Y acts like a dummy variable, so that the standard
caleulation for ¥ = &0 of [68, 9.1] implies the general result.

Dualizing, and paying careful atiention to signs, we obtain the foliowing
version In cchomology.

Proposition 5,9. Assume that HyX and HyY are of finite type and that HyY is bounded
below. let x ¢ HNX) and y ¢ HUY). If p = 2,

. .
b @ (y @) = IVt @y ® 5.
it p> 2,

* Py o mi{q+1) i i
AW @ (y @) = (-1) olk) :% 1 1) (1) @Y ®P'x

gmklq+l} . i i
-(-1) 8G-130) | 1w ) (o)1 ® 7y ® 8P x.

A check of constants gives the following comsequence.

¥
Corollary 5.10. For M= H X, the formula

Mt en = ) v @ selx

1
if p = 2 and

AT @ x) = A A - Plx - (1-¢) ) w* i1 @ 8P x
i i

if p » 2 specifies a morphism of A-mwodules A*:Z"lR+M + AQ@M

The same formulae give a morphism of A-modules for all A-modules M which are
elther unstable or bounded above, either assumption ensuring that the relevant sums
are finite. In the bounded above case, but not in general in the unstable case,
this morphism is an isomorphism. See {98, 52, 82].
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Define e:R,M + M by the formulas
es{vPl @ x) = 8q7x

if p = 2 (where Sq¥(x) = 0 if r < Q) and
clw™l @x) = Py and ex{vi @ x) = -gFx

if p > 2. By.[198,3.4] and [52,3.5], ¢ is a well-defined morphism of A-modules.
When A* is defined, ¢ is the composite

*
R M -Ehs z(z'lﬁ+zp @ L@l z(z'lzp @M = M.

Generalizing Theorem 5.4, Adams, Gunawardena, and Miltler [9] proved that £ is an
Ext-isomorphism for any M. This leads to a generalization of Theorem 5.3 to a
version appropriate %o (Zp)k for eny k > 1, and this generalization is the heart of
the proof of the Segal conjecture for elementary Abeliasn p-groups. See [9,74].

§6. HNishida's seconé nilpoitency theorem.

If x & mE has order p, then x extends over the Moore spectrum M= g \JPCSH.
The idea of Nishida's second nilpotency theorem is to exploit this extension by
showing that DJ-Mn splits as a wedge of Eilenberg-MacLane specitz in a range of
dimensions. The relevant splitting is a special case of the following result which,
as we shall explaln shortly, is in turn a special case of the general éplitting
theorem to be proven by Steinberger in the next chapter.

Theorem 6.1. Iet Y be a speetrum obtained from & by attaching cells of dimension
greater than n. Assume that n,¥ is Z or Z ; and let v ¢ Hn(Y;ZP) be a generator.
Assume one of the following further hypothgses.

it

{a) p= 2 and either n is odd or glv) # O.
(b} p > 2, n is even, and g{v) # 0.

{¢) p =2 and Sg3{v) # O.

{(d) p> 2, nis even, and aPt{y) # C.

Then DjY splits p-~leoeally as a wedge of suspensions of Eilenberg-Maclene apectra
through dimensions r < nj + % (2p-31{j+1}~1. 1In cases (&) and (b), oniy
suspensions of HZP are needsd.

Before discussing the proof, we explain how to use these splitiings to obltain
relations in the homotopy groups of H_ ring spsctra. ILet Y and v be as in the
theorem above and localize all specira at p.
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"Thebrem 6.2. Let E be an H_ ring spectrum, let F be a connective spectrum, and let

$:EAF + £ be any map (for example, the product when F = E or the identity when
F=258. Iet xe ﬁnE and assume one of the following hypotheses,

(a} p =2 and n is odd; here iet ¥ = s".

(b} p > 2, nis even, and x has order 2; here let ¥ = M.

(e} p
{d) p* 2, nis even, and x extends over some Y with Pl(v) # 0.

i

2, n is even, and x extends over some ¥ with Sq3(v) # 0.

et R = Zp in cases (&) and (b) and R = n,¥ in cases (c} and (d) and let y = w,F be

in the kernel of the Burewicz homomorphism ﬂqF - HQ(F;R). Then xjy = 0 if

@ <3 (2p-3)(3+1)-1, :

Proof. Our hypotheses ensure that Hnj(DjY;R) z R. We can choose a generator u such

that the composite
. lj D.f n
s Dj§1 J = DY !

is znje, where £:8% » Y 48 the inclusion of the bottom cell and e:S » HR is the
unit. Choose ZX:¥ + E such that Xf = x. Then the solid arrow part of the

following diagram commutes and the top composite is xjy.

£33
Piagd 10y i X0 oD p 82 Ayt g
AL L
' '3 gyA1
. 4 D,xAl
):n']EAy DanAmeijm—-r DJ.EAF
Dyfrl” p3an
. } J
:”‘j}mwe—i‘i—l‘“a}xhl«“
w M
¥

Here r = nj+q, m:DjY > (DjY)r is the r®h stage of a Postnikov decomposition of IﬁY,

and p:(DjY)r > PR is the unique echomology class such that pw = p. The previous
theoren gives kT UHR » (DjY)r such that px = 1. The complementary wedge summand

of tMHR in (DjY)r is (nj}~connected, and it follows that K-Enje = m-Djf-1J. Since
¥ 18 comnective, wal induces en isomorphism on Tnj+a Since y is in the kernel of
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the Hurewicz homomorphism and the latter is Induced by eAl:F = SAF » HRAF,
Hea ¥ = 0. Chasing the disgram, we ccnclude that xjy = 0.

In particular, with F= E, q=n, and y = X, we cbtain x*1 = 0. With E = 8
and n > 0, case {b)} applies to any even degree element of order p. As observed by
Steinberger, when p = 2 case (a) applies to any odd degree element and gives a )
better estimate of the order of nilpotency than that obtained by applying case (b)
to x°. While this result gives a much better estimate of the order of nilpotency of
elements of order p in =4S than does Theorem 2.9, the estimate is presumably still
far from best possible. For example, if p = 2 and n = 14, the estimate is now
#0 = 0. Cases (c) and (d) apply to some elements of order pi with i > 1. The idea
is to add further cells to 7, or to §% (, ; 5%, so as to obtain a spectrum Y for
which the relevant Steenrod operation is non-zero. However, a given element x need
not extend over any such Y. (Conceivably some power of x must so extend.) This
explains why Nishida's second method fails to give the full nilpotency theorem and
why we cannot yet prove Conjecture 2.7.

We mugt still explain how to prove Theorem 6.1. The idea is to approximate Dj
through the specified range by a spectrum with additional structure and then use
homology operations to split the latter. The approximation is based on the
following observation about med p homology.

Proposition 6.3. ILet Y be an (a-l)-connected spectrum with HY = Zp, where 0 is
even I1f p > 2. Let £:8% » ¥ induce an isomorphism on Hy. Then the homomorphism
HyZ"DoY » HyDg,;Y induced by the composite

1AL %g9,1
DYAst 22 pyay —Ldap v
q q q+1

is a monomorphism for sll i and 1s an isomorphism if 1 < m{gq+l} + %-(2p—3)(q+1).

For spaces X, & self-coniained caleulation of H*qu for all g is given in
[28,184~5}. The generalization to spectra is given by MeClure in Chapter IX, and
the eonclusion is easily read off from these caleulations.

With the proposition as a hint, we construct the approximating speetra as
follows.

Definition 6.4. ILet {Y,f) be a spectrum together with a map f:8% » Y for some

integer n end define D(Y,f} = tel E“anqY, where the n'l! map of the system is

obtained by applying z—n(q+1} to the composite

[¢3
DYAF 225, pyay —Selap v,
a q q+1
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Noﬁ_the previous proposition has the following conseguence.

Corollagx 6.5. With Y and f as in the proposition, assume further that Y is
p-local of finite type. Then the natural mep D,¥ + znjD(Y,f) is an equivalence

d
through dimensions less than nj + %»(2p—3)(j+l) - 1.

Proof . - By the proposition, the maps E—n(q+l)(aq 19 1Laf) used to consiruct
DfY,f) in@uce isomorphisms In mod p homology and’thus in p-local homology in
degrees less than l-(2p-—3)(q+1). This fact for g > ] implies the conclusion {with

the usual loss of a dimension as one passes from homology to homotopy).

Thus, to prove Theorem 6.1, we need only split D(Y,f).

The following ad hoe definition, which generalizes Nishida's notion of a
r-spectrum §90,1.5], allows us %o describe the strueture present on the spectra
D{Y,f). In the rest of this section we shall refer to weak maps and weakly
computative diagrams when the domain is a telescope and phantom maps are to be
ignored. '

Definition 6.6. A spectrum E is a pseudo H_ ring spectrum if
(1} E is thg telescope of a sequence of comneciive specira Eq, q > 0
(11) E is a weak ring spectrum with uait induced from a map 8 + K, and
product induced from a undtal, associative, and commutative system of compatible
maps qu\Er *» Eq+r3
(iil} TFor each j > 0 and q > 0, there exists an integer d = d{j,q) and a msp

and

dg. djiq. : : dig.(j) dg. (3} dq. .
DLETTE o ETVCE, h b th 1 E .
gJ 3 q 5q whose composite wi 1J by ?q {z Eq) -+ Déz Eq isg
the (djq)th suspension of the interated product Eé?} > qu.
Examples 6.7. (i)} With each Eq = § and each d{j,q) = 0, a comnective H, ring
spectrum may be viewed as a pseudo H, ring spectrum.
(1i} With each Eq = ¥ and each 4(j,q) = d, a ecomneciive HS* ring specirum may be
viewed as a pseudo H_ ring spectrum; since E has structural maps 53 for all q,
negative as well as positive, we could obtain a different pseudo structure with each
dt},q) = -d.
(iii} Por an (n-1)-commected spectrum Y and map £:1S + Y such that either
2% 0:Y » Y orn is even, IY,f) is a pseudo H  ring spectrum with q@h term
E'anqY. Its product is induced by the maps
zwn(q+r)

=TI -ar . e-n{qtr) “q,r _-nlg+r)
5D YA = 1 (anA DY) —_— ATy Dgurl

these forming a unital, associative, commutative, and compatible system by 1.2.6 and

I.2.8 and our added hypothesis, which serves to eliminate signs coming from permuta-



54
tions of spheres. With ali d{j,q} = n, its structural maps are

- ng, .~nq - = +AJe e nja
. 1D, DY D,DY + B, ¥ D Y
£J Sa,q 32 (% } 5Dy > Dy PR ).

The following analog of T.3.6 and I.4.5 admits precisely the same simple
eohomological proof.

Proposition 6.8. Iet T be a pseudo H_ ring speetrum with echar wyE = 2 or all

d{j,q) even. Assume thai Bl = mpE for all q > qp and, for sueh q, let

4

i:Eq » H{upE) be the unique map which induces the identlty homomorphism on wg. Then

the following diagrams commute, where d = d{j,q):

da,
D
dq J dq
. E D,z H{n E)
PR 3 "0
%5 %
djq .
dja A . -4ie :
z qu > T H(HOE)

In the next chapter, Steinberger will use a computation of the homology
operations of the H, ring spectrum E{ }:quZP to prove the following generalization
of Nishida's result {90,3.2].

Theorem 6.9. let E be a p-local pseudo H  ring spectrum. If xGE = Zp, then E

splits as a wedge of suspensions of HZ If ﬁoE = Z

gy T > 1, or ”OE = Z{p) and if

o
p = 2 and Sq3i #FOorp>2and sPli # 0, where i generates HQ(E;ZP), then E splits

as a wedge of suspensions of Hzps,

s > 1, and Hz(p).

Considering the natural map £™™Y » D(Y,f}, and using the formula B (W ® V2) =
nw1(3 v2 of Theorem 5.5 for case (a), we easily check that the theorem applies to
aplit D{Y,f) for Y as in Theorem 6.1.

We complete this section with some remarks sbout the role played by befinition

6.4 in the general theory of H_ ring spectra.

Remarks 6.10. Let (E,e) be a spectrum with unit e:5 » E. Tet DE = D(E,e) and let
n:E = D E + DE be the natural inclusion. By I1.2.7, I.2.9, and I.2.13, the maps
B;,k:DjDkE > DjkE induce a natural weak map uy:DD,E + DE such that the following
diagrams (weskly) commube:

g
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D
D~ >, and DD E———-——ij—f-kwlm»nn £
‘ x 5 P ik
e b By
I
DE D, E k DE

If E is an H°° ring speetrum, then, by Proposition 1.3, the maps gJ.EJg + E deternine

a weak map £:DE » E such that the following diagrams (weakly) commute.

F ng
L E S —— and DD, E DE
\\\\\\\\\\ g By, £
E DE & »E

Conversely, by the same result, if y:DE + E mokes these diagrams weakly commute,
then its restrictions g4t DbE + E give E a structure of H_ ring spectrum. These
assertions are analogous to, but weaker than, the assertions thet D is a monad and
that an K ring spectrum is an algebra over this monad (compare [69, $2]1). The
point is that the ¥ fall to satisfy the requisite compatibility to determine a weak
map u:DDE » DE. By I.2.11 and I.2.15, the compatibility they de have is described
by the weakly commutative dlagram

BD, E A 3 —ermsccnn O, B A DS sty DI, F

k k k
! Juk D(“k,l o lae)
SDkE A w DE < DDk+lE

where vy is ipduced by ihe composites

AD,e

Dy, E AD, s——J—L——ﬁ’——A»D KEAD; e L35 I Dy

and §:DF » DFA D3 is induced by the maps Gj:DJ(FA 3) » DJFABjS.



CHAPTER IIL.

HOMOTLOGY OPERATIONS FOR H, AND H, RING SPECTRA

by Mark Steinberger

Since I, ring spectra are analogs of H_ spsces and H ring specira are analogs
up to homotopy of n-fold loop spaces, it is to be expected that their homologies
adait operations analogous to those introduced by Arakl and Xudo {12}, Browder {221,
Dyer and Lashof (33} and Cohen [28]. We define such operations In section 1 for H_
ring speeira and in section 3 for H, ring spectra.

As an amusing example, we end section 1 with the cbservation, due independently
to Haynes Miller and Jim McClure, that our homelogy operations in H*F{X+,S) @ H*X
coineide with the Steenrod operations when X is a finite complex.

For eonnective H, ring spectrs, we show that the resulting ring of operations
is precisely the Dyer-Lashof algebra. Moreover, if X is an H_ space with zero {as
in II.1.7), then the new operaticns for the H_ ring specirum I7X colneide with the

gpace level operatlons of ﬁ*x.

As will be shown by Iewis in the sequel, the Thom spectrum Mf of an n-fold or
infinite loop map £:X + BF is an H, or H_ ring spectrum and the Thom isomorphism
carries the space level operations to the new operations in EMf. This applies in
particular to the Thom spectra of the classical groups {although a simpler argument
could be used here).

In section 2 we present calculations of the new operations in less obvicus
cases (with the proofs deferred until sections 5 end 6). Our central ealeulations
concern Eilenberg-MacLane spectra, where , in contrast to the additive homology
operations for Eilenberg-Maclane spaces, these operations are highly nontrivigl. In
fact, they provide a conceptual framework for the splittings of various cobordism
gpectra lnto wedges of Eilemberg-Maclane spectra or Brown-Peterson apectra. The
proofs of these splittings in the literature are based on computations of the
Steenrod operations on the Thom c¢lass. We show in sectlon 4 that the presence of an
H, ring structure, n > 2 {n » 3 for the BP splittings}, reduces these computations
ta a eheck of at most one low dimensional operation, depending on the %ype of
splitting. In addition, we have placed these gplitting theorems In a more general
context which, as explained in the previcus chapter, leads to & reproof of Nighida's
bound on the order of nilpotency of an element of order p in the stable gtems. ALl
of our splittings are deduced direcily from our computation of the new operations in
the homology of Ellenberg-MacLane spectra.
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I wish to thank Peter May for his help and encouragement and.fo thank Arunas
Liulevieius for helpful conversations, and for sharing the result listed as
Propogition %5.1.

§1. Construction and properties of the operations

- Just as the space level operations of Araki and Kudo, Browder, and Dyer snd
Lashof are based on maps

Ezg %y ) S )
d
80 our new spscirum level operatlons are based on the strucitural maps

DR
gJ 5 » I

of H, ring speetra (ses I.3.1). We consider homology with mod p coefficients for a
prime p. The following omnibus theorem deseribes our operations. Properties of the
operations at the prime 2 which are distinet from the properties at odd primes are
indicated in square brackets. As usual, & denotes the homology Bocksteln operation,
and Pi denotes the dual of the Steenrod operations Pr, with PT = 59T if p = 2.

Theorem 1.1. ¥or integers s there exist operations Q% in the homology of E, ring
spectra E. They enjoy the following properties.

(1) The 0° are natural homomorphisms.

(2) @Q° raises degree by 2s(p-1) [by sl.

{3} Q% = 0 if 2s < degree(x) [if & < degree(x)].

(4} 0% = xP if 28 = degree{x) [if s = degree(x)].

(5) %1 =0 for s #£ 0, where 1 ¢ HnyX is the algebrajc unit element of HyX.

{6) The external and internal Cartan formulas hold:

Clx xy) = ) Qix x ij for x x ¥y & H(E F);
T itj=s
s B 1 j
Qlixy) =} (xHQty) for x,y e H.E.
itj=s

{7) The Adem relations held: if p > 2 and r > ps, then

oFo® = (-1 pi - v, v - (p - Vs - 1 - D

r

if p> 2 and r > ps, then
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r+g-i 1

060% = ] (-1 Hpi - rr - (0 - Ls - 11807
i

-3 (ul)P+i(Pi -1, - (p-1)s - 1)Qr+s i Ql.
i

(8) The Nishida relations hold: For p > 2 and n sufficiently large,

?:QS =73 (23" e - pi,pt + slp - 1) - pr o+ pi)Q°” r+d i .

i

In perticular, for p = 2, 8Q° = (s - 1)0°1, For.p > 2 and n sufficiently large,

PisQ° = I (-1 e - pi, 0%+ slp - 1) - pr bl - 18> e
%

S DT - opte1, P oslp - 1) - proapt)S T R,
i

{9) The homology suspension o: H*Eb + H,E carries the operations given by
the multiplicative H, space structure of K, to the operations in the homology of E.

(10) If E = 3"X for an H.o-space X, then the operations in HyE agree with
the space level operations in ﬁ*x.

The statement here is identiecal to that for ithe space level operations except
that operations of negative degree can act on homology classes of negative degree
and that a high power of p is added to the right entry in the binomiszl coefficients
appearing in the Nishida relations. TFor spaces, the same answer is obtained with or
without the power of p because of the restrictions on the degrees of dual Steenrod
operations acting nontrivially on a given homology class. Our conventions are that
(a,b) is zero if either a < Q0 or b < 0 and is the binomial coeffiecient (a + b}l/albl
otherwlse. The Nishids relations become cleaner when written in terms of classical
bincmial coefficients since

n
+a+b a+b
r ) ={7)

(a,p" +») = (F7] .

for a < pn and b > O.

The @° and gQ° generate an algebra of operations. If we restrict attention to
the cperations on connective H, ring spectra, then the resulting algebra is
precisely the Dyer-Lashof algebra in view of relations (3) and (8) and application
of (10} to the H_ o space obtained by adjeining a disjoint basepoint to the additive
H, space structure on g0,

We sketeh the proof of the theorem in the rest of this seetion. With the
exception of the proof of the Nishida relations, the argument is precisely parallel
to the treaiment of the space level homology operations in (28] and is based on the
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general élgebraic approach to Steenrod iype operations developed in [68] snd

summarized by Bruner in IVE2.

Iet = be the cyelic group of order p embedded as usual in 2p and let W be the

standard n-free resolution of ZP (see IV.2.2). Let G*(Ezp) be the cellular chains

of the standard xpmfree contractible space EE

JiW o C*(Ez } of w-complexes over Z

P and choose a morphism

p* We may assume that our H_ ring spectrum E is

a Cw—spectrnm with celiular structure maps gJ D £+ E., By L.2.1, DJE is a CW-

spectrum with cellular chains isomorphic to C*(Ez } @& {G*E)J Thus we have a
composite chain map

e, (0mP L8 ec (5 ) @ (6,B° = g (03 C,E.

P
mmMm@wummmmwmeem@w%®ﬁMM%®ﬁ®m®%L
where x e HyE, and we let Q;(x) e HyE be the Image of e; ® ¥, Iet x have degree q.
I£ p = 2 define

Plx) = 0 if s <q and  Q%(x) = Qg glx) if sz q.
for p » 2, define
Q°(x) =0 if 2s <qa  end  G%(x) = (-1)%v(@)Qpg.q)(p-1){X) if 28249
where viq) = (1)UL 2012 with n = ~'{p—1) By [68] the Q% and 8Q° account

for all non-trivial Q; when p > 2. Since Ep restricts on EP) 4o the p-fold product
of I and sinee the unit e:8 + E is an H_-map, paris {1)-(5) of the theorem are
immediate from [68].

It is proven in the sequel [Equiv, VIII.2.9] that the maps tjs %5 %o Bj,k: and
r
63 discussed in 182 have the expected effect on eellular chains. For example, 63*
can be identified wiih the homomorphism

1@te1A 0w . .
Oy {EE,) ® (C4E ® CyE) Gy (ELS) @ (C,E) ® CylEr,) @ (0,

where A' is a cellular approximation to the diagonal of EZ; and u and t are shuffle
and twigt isomorphisms (with the usual signs). The Cartan formuls snd Adem
relations follow. For the former, the smash product of H, ring spectra E and F is
an H, ring spectrum with structural maps the composites

g E,NE,
Dy(EAF) méijE/\DjF gy,

and the product EAE + E of an H_ ring spectrum is an H, map; see I.3.4. For the
latter, we uge the case ] = ¥ = p of the second diagrasm in the definition, I1.3.1, of

an H_ ring spectrum. The requisite algebra is donme once and for ail in {68].
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The Steenrod operations in Hy(D E) are computed in [Equiv. VIII §3], and the
Nishida relations follow by naturality. (See alsce IX.5.5 and VIII §3 here.)}

Since d*:ﬁ*(go) > H,E is the composite of the ldentification
ﬁ*(Eo) = H*(z”EO) and the natural map ey:Hx(1"Ey) + H4E and since e:5"f, » £ is an
H, map when E is an B ring speetrum, by 1.3.10, part (9) of the theorem is a
consequence of part (10). In turn, part (10) is an immediate comparison of
definitions in view of I.2.2 and I1.3.8. The essential point is that the isomorphism
DHE”X = sz“X induces the obvious identification on passage %o cellular chains, by
[Equiv. VIII.2.9].

Ag promised, we have the following observaiion of Miller and McClure.

Bemark 1.2. let X be a finite O complex. By II.3.2, the dual F(X',8) of 5°x* is

an H, ring spectrum with pth struetural map the adjoint of the composite
+ + A & + De &
DPIXT,8) A X —S—D (F(X s)ax)_JL»%pmw&ws.

Here Ay is computed in II.5.8, e4 is the Kronecker product H*X(g HyX =+ Zp, and

£ y is the identity in degree zero and is mero in positive degrees. For

ype anF(X+,S) = H&, we find by a simple direet calculation that § %y = Py

for all s > 0. A more concepbual proof by direct comparison of MeClure's abstrach
definitions of homology and cohomelogy operations is also possible; see VIII §3.

§2. Some calculations of the homology operations

For H a commutative ring, let HR be the speetrum representing ordinary
cohomology with coeffiecients in R. We wish to compute the cperations on the
homology of HZp and some related spéctra. We shall state our resulis here, but
shall present procfs of the computations for HZP in sections 5 and 6. Recall that
the mod p homology of HZP is Ay, the dusl of the Steenrod algebra.

Notations 2.1. We shall adopt the notations of Milnor in our analysis of A, [88].
Thus, at the prime 2, Ay has algebra generators g4 of degree 251 for 1 > 1. At cdd
primes, Ay has generators gy of degree 2pt-2 for 1 » 1 and generators 14 of degree
2pt-1 for 1 > 0. We shall denote the conjugation in Ay by x.

We have the following theorems.

Theorem 2.2. For p = 2, Ay is generated by £y as an algebra over the Dyer-Lashof
algebra. In fact, for i > 1,

- 81

i
Q2 —251 = xEy » "

Moreover, ngl is nonzero for each 8 » O and, for i > 1,

i
QS+2 “25 if s

1 0 or ~1 mod Ei

Q*xg;

o otherwise.
' o A ‘
In particular, Q% xf; = xfis7 for 1 > O,

Theorem 2.3. For p > 2, Ay is generated by t, as an algebra over the Dyer-Lashof

algebra. In faet, for i >0

Qgti)TO‘ (nl)ix':i and

BQp(i}TO = (‘1)ix~ii 4

where pl(i) = (pi—l}/(p-l). Morecver, gQSTG iz nonzero for each s > 0 and,
for i » O,
(_l}ist+p(i)T0 if sz -1mod p
3 i+l stp(i} . . i
Q Xty = {(-1)" "pQ i if 8 2 Cmod p
0 otherwise,
while
(«1)i+1QS+p(i)TO if 8 5 0med p:’L
stTi =
¢ ‘ otherwise.

i i
In particular, QP xg&; = xgj,1 for i > 0 and QP yr; = xry,; for i 2 O.

Thus, for p > 2, the operations on the higher degree generstors are determined
by the operations on the generstor of degree one. A complete determination of the
operations on this degree one generator does not seem feasible. However, we do have
a conceptual determinstion of these classes. For p > 2, let £ be the toial g class

g=1+gl+g2+...
For p » 2, let 1 be the total ¢ class

T=l+-{0+'|_-1+ e



g2

Sinee the component of these classes in degree zero is one, we may take arbitrary
powers of these classes.

Theorem 2.4. For p = 2 and 5 > O,

%y =15 ) e

that is, ngl is the {s+*l)}-st coordinate of the inverse of the total ¢ class. For
p>2sand s >0,
=S 8y, .~k
Pg = 1P g (pa1) ey 204

= 8(.-1
8%t = (1167 D ag(p1)

that is, QSTD i1g (-1)% times the [2s(p-1)+1}-st coordinate of the product of the’
total ¢ elass and the inverse of the total £ class, and SQSTO is (-1)® times the
{2s8({p-1})1th coordinate of the inverse of the total g class.

Here we are using the H_ ring structure on HZP derived in I.3.6. In the
following corollaries, we consider connective ring spectra E together with morphisms
of ring spectra i:E » HZ? which induce monomorphisms on mod p homology. Wher E is

an H_ring spectrum, i is an H_ ring mep by I.3.6.

For p > 2, the homology of HZ or HZ(P) embeds as the subalgebra of Ay génerated
DY xEq and XT§ for 4 > 1. For p =2, the homology of HZ or HZ{Q) embeds as the
subalgebra of A, generaied by gi and XE5, for 1 > 1.

Corcliary 2.5. For p > 2, the homology of HZ or HZ(P) is generated by y£, and yxtry
as an zlgebra over the Dyer-lashof algsbra. For p = 2, the homology of HZ or Hz g
is generated by gi and XEp &8 an algebra over the Dyer~Lashof algebra.

Similarly, at the prime 2, the homology of kG, the spectrum representing real
connective K-theory, embeds as the subalgebra of Ay generated by gi, xgg and ygy
for £ > 2. The homology of kU embeds as the subalgedbra of A, generated by
gi, xg% and xgi for i > 2.

Corollary 2.6. At the prime 2, the homology of k0 is generated by g?, xgg and xE1
as an algebra over the Dyer-Lashof algebra, while the homology of kU is generated by
gi and xt3 as an algebra over the Dyer-Lashof algebra.

Procof. By the Cartan formuls,

2 2 .2 2
R N

i:BP » HZ
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 Ye have analogous results for ithe p-local Brown-Peterson speetrum BP. let

D be the unique map of ring spectra. By the Cartan formule, if p = 2, or
by Theorem 2.4, if p > 2, iy embeds HyBP as a subalgebra of Ay whieh is elosed under
the action of the Dyer-Lashof algebra.

gorollary 2.7. For p > 2, HyBP is gemerated by xEp 8s an algebra over the Dyer-
Lashof éigebra. For p = 2, HyEP is generated by gi as an algebra over the Dyer-
Jashef algebra.

‘ "It is not known whether or not BP is an H, ring spectrum. However, suppose
that E is a connective H_ ring speetrum and that f:E - BP has the property that
if:ﬁff HZp induces a ring homomorphism on =zq. Then If 1s an H_ ring map, so

that (if)y commutes with the operations. Sinee 1y is a monomorphism, so does fy.

We shall also examine the operations on the homology of HZ o for n > 1. lLet By
be the homology of HZ and let 3 E Hzﬁzpn be the element dual topthe n-th Boekstein
operation on the fundamental cohomology class (so that gx = -1). Then H*HZPn is
the truncated polynomisl algebra

HeBE = Bylx1/(x%),
P

as an algsbra over the dual Steenrod operations. Here the inclusion of By in HyHZ

is indueed by the natursl map HZ + HZ ny X maps to zero in the homclogy of HZ

pr &

¥ is annihilated by the dual Steenrodpoperations.

Corollary 2.8. For p > 2, H*Hzpn is generated by x and the elements y&;
and ytq of By as an algebra over the Dyer-Lashof algebra. For p = 2, HHZ  1is

: F
generated by x and the elements gf and XE5 of By ass an algebara over the Dyer-Lashof
algebra. For p > 2, the element x is amnihilated by all of the operations Q5.
Proof. For the last assertion, note that 0%t is an element of Byx for all s since

Q5 maps to zero in Ay. Since x is annikilated by the dual Steenrod operations, the
Nishide relations reduce to

Plo%x = (-07 (e, 0" ¢ slp - D - pr)Q® Ty,

and

PEea® = (-1)7(r, p" + 8lp - 1) - pr - 1)80° %

for p > 2. &inee B;x is isomorphic to By as a module over the dusl Steenrcd
operations, and since no nontrivial element of By is annihilated by PL for r > 0,
and g if » > 2, Fx = 0 by induction.
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§3. Homology operations for H, ring spectra, n < e

Cohen, [28}, by computing the equiveriani homology of the space Czﬁj} of j
iittle n-cubes, completed the theory of homology operations for n-fold loop spaces
begun by Araki and Kudo, Browder and Dyer and lLashof. Since an H ring speetrum

(ef. [1,54]) E is defined hy structure maps Grﬁj) ©® E{J) + E, we can use Cohen's

L.
caleulations to obtain analogous theorems for Hy ringéspectra.

Theorem 3.1. For integers s there are operations QS in the homology of Hn ring
spectra. Q% is defined when 28 - degree(x) < n-1 [s - degree(x) < n-1] and the
operations satisfy properties (1)-(8) of Theorem 1.1 and the analogues of (9) and
(10) for n < =. Moreover, thege operations are compatible as n increases. '

The Browder operation, i, ;, is also defined for H, ring spectra.

Theorem 3.2. There is a natural homomorphism kn_}:HqE(a HE » Hq+r+nm1E’ which
satisfies the following properties.

(1) If E is en K 4 ring spectrum, A, ; 1s the serc homomorphism,

(2} agla,y) = xy - (-1)%yx,

1

(3} ag_q(x,¥) (—E)qr+l+(n‘l)(q+r+1)kn“1(y,x); Apap(%,x} = 0 if p = 2,
(4) Aq(1,x) = 0 = ay 9{%,1), where 1 ¢ HyE is the algebraic unit,

{5) The analog of the external and internal Cartan formules hold:

x| {|yl+n-1)

}\nwl(x@)y,x' ®y') = (-1} xx' @ )&1_1(3',3‘)

. ("1)IYI{EX'§+Iy'E+B"1’Anm1(x,x=) ®yy',

where |z| denotes the degree of a,

#

T4t 1 1
Anﬂltxy,x ¥') xkn_i(y,x Yy

yin-1+|x']}
TSN

+

x,x' yy!

(13 [ [n=Le x|+ |7 ])

+

x'xh, (50}

+

- ' ! 1
(- [l tm=Lefy Peixt iy lxnul(x,y’}yx’

(6} The Jacobi identity holds:

(_1)(q*f'n~~1)(s+n-—].)}t (x Anul{y’z)} . (wl}(r~n~1)(q*n~l)

n-1""7 An—i(y’ln—l(z’xl)

. (wl)(s+n-1}(r%n«1)l

n_l(z,kn_l(x,y}} % 0
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" for x e'gqﬁ, Ye BE, ze HE; Ay_q(x,A_1(x,x}) = 0 for all x.if p = 3.

(73 Pp 063 = T A (Fyx @ Pyy),
and ' iriEs
Xitn~1
Sknml(x,y} = Anwl(ﬁx’y) + (~E)I | xnmi(x,sy}

(8) A, 1(x,0%) = 0.

There is also a "top" operation, En-1*

Theorem 3.3. There is a function &, y:HE + HByi(n 14q)(p-1)% HyE + Hppanq!

q
defined when g#n-1 is even [for all ql, which is natural with respect to maps of Hy

ring spectra and satisfies the following properties. Here ad(x)(y} = Anul(y,x),
adi(x)(y) = ad(x)(adl'l(x)(y)}, and g, % ig defined, for p > 2, by the formula
En-1% = BEy_1X - adP-1(x)(gx).

{1) If ® is an H,,y ring spectrum, £ .x = glm-1ral/2, [gn_lx‘= @iy,

henee g,x = po(N=1+Q)/2y  pon g . EyF.

(2) If we let QIA-1+A)/2y (@@-1%%) gepote £, 1%, then g ,x satisfies
formulag (3)}-(5) of Theorem 1.1, the external Gartan formula, the Adem relationg,
ané the following analogue of the internal Cartan formula:

-1

£y qxy) = ] dxady + 3 xieri. for n > 1,
14]=g Osi+j<p J
0<i, §-

where s = 9:%_*(1 [n-1+ql, q = degreelxy), and iy is a function of x and y

specified in [28, III.1.3(2)]1. In particular, if p = 2,

Epqlxy) = ] oxaly - XA, 4 (%707,
i+j=s

Moreover, the Nishida relatiéns for Ep.y are the usual ones plus an wunstable error
term given by sums of Pontrjagin products which contain nontrivial iterated Browder
operations.,

(3} g qix,En 7)) = adP(y)(x) and o _;(x,z, 57} = O.

(4) gy q{x +¥) = g, 3% * £, ¥ + & sum of iterated Browder operations
specified in [28, TIII.1.3{(5)].

In the remainder of thls section we sketch the proofs of these theorems.

After replacing E by a CW spectirum and replaecing Cn(j) by the geometric
realizetion of its total singular complex, we have that CIJJ) b, E(J}, is a CW

spectrum, for any = C EJ’ with cellular chains naturally isomorphic to
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Gy €p3) (C*E)J (cf. [Bquiv., VIII. 2.91). With field coefficients, {CyE)]

is equzvarzantly chain homotopy equivalent to (H*E)J, 80 we can apply Cohen's
calceulations. We define Qix to be the image under the structure map of 25 C}xp,
where e; e Hj Czﬁ@)/ﬂp is Cohen's class, T c Ep the eyelic group of order p.
Define Q°x and £q.1X by the formula in §l. Since & (2) is homotopy equivalent to
Sn' , we can define An_ x,y) to be the image under the structure map of

(- 1)(n ~1)qrl 1 ®x®y, where 1 ¢ H_; § (2) is the fundamental class and x ¢ Hqg.

45 noted by Cohen, Theorem 3.1 is a consequence of Theorem 3.3, with 3.3(1)
immediate from the definition. With the exception of %those staitements involving
Steenred operations, all of the gtatements in Thedrems 3.2 and 3.3 follow from
equalities between the imsges under the structure map vy of the operad Cn of - the
elasses in the equivariant homology of the § n(3) which induce the stipulated
operations. These equalities follow from Cohen's work. This leaves Theorem 3.2(7),
the Nishida relations, and the verification that g _ix is the image under the
structure map of the appropriate multiple of € (n-1)(p-1} & xF, this last giving the

definition of g, yx which Cohen uses in deriving his formulas.

Sinee the Browder operation is defined nonequivariantly, Theorem 3.2(7) follows
from the Cartan formuls for Steenrod operations. The Néshida relations follow from
the computation of the Steenrod operations in HyD X [Bquiv, VIII &3], together
with the fact that the kermel of Hy( § ,(p) L B) E HyD_ E consists of classes which
are carried to sums of Pondrjagin produets of %he type s%ated (28, IIT §5 and 12.3l.

For the last statement, we calculate ﬁ(e(n-l}(p—l) ® xP}. Let ¢ be 2 chain in
C*trﬁp) which projects to a eyele in O*ﬁrgp)/np representing ¢(n-31)(p-1) and let a
be a chain in the integral cellular chains of E, representing x mod p. let

=gb, let N=1+q+ see + 21 in Z[n }, where ¢ is a generator of e Then

-1
d(a?) = prap ,

so that

ale ®aP) = peN @baP™ « (de} @ aP.

Since ¢ projects to a cycle mod p inm Oy (p)/n the transfer homomorphism shows
that &N ig a cycle mod p in C*C (p). Thus, cN C}baP -1 gives rise to a sum of
Pontrjagin products of Browder operstions in gx and x {28, IIL. 12.3], which, by the
space level caleulation, must be the appropriate multiple of aép'ltx)(sx). Since
de projects to zerc in the mod p chains of C11(p)/"p’ and since &P is fixed under

the action of T, We can £ind 2 chain & such that

ldey@ad = sN@aPl = s @ NP = ps @ aP

for ail a. By naturality and the space level result, & must project to a cyele

Theorem 4.1. If 7€ = Z, then E splits as a wedge of suspensions of Hi
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repreéénting €(p-1)(p-1)~1 N H*(CIJP}/“p}: 50 that & @ aP reduces mod p to 2
represeniative of €(n-1) (p-1) ® xP.

§4. The Spiitting Theorems

Wé present simple necegsary and sufficient conditlons for a more general class
of specira than previously mentioned teo split as wedges of p-loeasl Eilenberg-MacLane
spect;a or as wedges of suspensions of BP. The spectra we consider are pseudo Hn

. ring spectra, defined as in Definition I1.6.6, but with D.quEq replaced by

£l sy (quEQ}{j ', withn > 2. ’

Fix a pseudo Hy ring spectrum E = Tel Eq, and assume that .k ig of finite type
over #,E and that nOE = “OEq for g sufficiently large. Let i:E » HZP be such that
je:s? » HZp is the unit of HZP end regard i as an element of BO(E;Zp); mder our

hypotheses 1 will be unique. Let Z( be the integers localized at p.

pl

P’ P’

B

?haorem 4.2 If wph = 2 ., T > 1, or nyk = Z(p) and 1f p = 2 and SqBi #FOorp>»2

and 39 i# 0, then E spi?ts as a wedge of suspengions of HE gr 52 i, and Hz(p).
p
Theorem 4.3. let n » 3. If w4k Z( y and Hy (E; Z(p)) is torsion free and if p = 2

and Sq i #0orp>2and Pli # G, then E splits as a wedge of suspensions of the p-
local Brown-Peterson spectrum BP.

Remarks 4.4. The various known splittings of Thom spectra are direct consequences

of these theorems. C(bviously the splitting of MO and the other Thom speetra of
unoriented cobordism theories follow from Theoren 4.1. When gOMG = Z(p), the mod p
Thom isomorphism commutes with the Bockstein. At 2, the splittings of MSO and of
the Thom spectra into which MSO maps follow from Theorem 4.2 and the facts that ngi
is the image of w, under the Thom isomorphism and that Sqlw2 = Wy in H*BSO. The BP
splittings of MU =t all primes and of MSG and MSU at odd primes follow from Theorem
4.3 and similar trivial caleulations. Most strikingly perhaps, the splitting of MSF
at odd primes follows trivially from Theorem 4.2. Indeed, Pli is nonzero by
consideration of the first Wu glass in MSO. Sinece the p-component of “3 = gng =
nq+lBSF is ZP for g = 2p-3 and zero for O < q < 2p-3,

Z for g = 2p-2

P

H (BSF3Z ) =

¢ for O < q < 2p-2.

Thus, H2p~2{BSF Z.) = and the Bockstein

p’
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BiByp 1 (BSF;2,) + Hy, o(BSF;Z.)

is an epimorphism. Thus, the dual cohomology Bockstein is a monomorphism.
We turn to the proof of the splitting theorems. Define

HE [, 1] = \/ quHZp ,
|4 qe?
where d = 1 if p= 2 and 4 = 2 if p > 2. As pointed out in I.4.5 and II.1.3,

HZpix,x"1§ iz an K, ring spectrum. We think of 1% as the Laurent series spectrum on
HZP' .
Let Ay C H*(HZP[x,x"l]) be the homology of the zero-th wedge summand Hzp.
Since HZP is g sub-E  ring specirum of HZp[x,x'il, we know the operations on Ay.
Moreover, if x ¢ HdHZP[x,x'll gomes from the canonical generator of HddeZ , Then
the homology of HZp[x,x“ll ig isomorphic as an algebra over the dual Steenrod
operations to A*Ex,x_ll, the ring of Laurent polynomlals in x over Ay. We could
easily calculate the operations on the powers, xn, of x by use of the techniques of
the next section. However, remarkably, we shall only need the p-th power operation

on x. We should remark that multiplication by x,
dq dig+l}
HyEOHZ, > Hyl HZ,

is the homology suspension.

Lemme 4.7. In A*{x,x‘ll, for p > 2, 1 > 0 and q an integer

i 2
PGP gy ra
Q (Xgi i B x& i+l * X )
hence
2 i+l 2 3
Qe L - E O T a
& (x&y )= xgh, o A
For p> 2,1 >0 and q an integer,
i 2
qQ+p . ¥P8y = JR
Qp (xri ) Xijyq * % o

Proof . The internal Certan formula, together with the degree of yxg; and of ¥P9
gives ’

i- i i
YT (xg, - Y = (P xg, HAPWPY + g ) (FIEY)

2
By the Carten formula, qu+lqu = 0. 0Of course, PP . w79 (Theorem 1.2.(4)}).
The first statement follows from Theorem 2.2 or Theorem 2.3 and the fact

2
Ay € Agix,x™1} 1s a subalgebra over the Dyer-Lashof sigebra. Since yg;F « ¥ 4 =
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(XEi --qu}P, the second statement now follows by the Cartan formula. The proof of
the third statement is almost ideniical to the proof of the first.

-It should be noted that the full strength of Theorems 2.2 and 2.3 is quite
unnecessary for the compuistions above. They could be derived quite simply and
directly. We shall apply these computations to the proofs of the splitting theorems
by mesns of the following commutative diagram, analogous to that of II.6.8.

dg. {J)
L e <
Gay V) """ "9 \ dq {j)
£, wzj (70 S S DI Ha )
J
Ej N Ej
Q.
L i, :
ey AL:| s34 Gy
Ja P

Here, i, is the restriction of i:E » HZP to E , the right-hand map Ej is the induced
H, =ing structure of Hzp[x,x"}} restricted to the (dq}-th wedge summsnd. The
commubativity of the diagram is an easy cohomology caleulation provided tht Eq > B
induces an isomorphism of ny for & > q.

8

The key step in the proofs of Theorems 4.1, 4.2 and 4.3 is the following
result.

Proposition 4.8. _Let E = Tel EQ satisfy the hypotheses of Theorem 4.1, 4.2 or 4.3.
For the first two cases, let j:E » HnOE be such that je:S » HnOE is the wit. In
the third case, let j:E » BP be a lift of j above to BP. Then J induces a
monomorphism of p-primary cohomology.

Proef. We shall show that j induces an epimorphism of p~primary homology. Reeall
that i is the projection of j above into HZP' In the second case, if wyf = ZPr for
r > 1, the nontriviality of the r-th Bockstein operation on i shows that the
generator x s HyHZ . = B*[x)/{xz) is in the image of jy. (Here By = H*Hz{p}.)

Thus, for the secogd case as a whole, it suffices to show that By C Ay is in the
image of iy. Similarly, for the third case, it suffices to show that HyBP C Ay is
in the imsge of iy. The hypotheses of the theorems give us the following conclu-
sions. In Theorem 4.1, the nontriviality of the Bockstein operation on iq, for q
sufficlently large, shows that =4, if p > 2, or &), if p = 2, is in the image of
gk In Theorem 4.2, the nontriviality of P41 and gP*i, for p > 2, or of 5¢°1 and
SQBi, for p = 2, shows that for q sufficiently large, yg; and yrq, for p > 2,

or g? and yg, for p = 2, are in the image of iq*. In Thecrem 4.3, the nontriviality

of ?li, for p > 2, or of qui, for p = 2, shows that for g sufficiently large, XE1
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for p>2or gi, for p = 2, is in the image of iq*. Thus, the following con-
sequenees of lemma 4.7 and the dlagram preceding the statement will suffice.

(1) Ifp=2orif p>2andn > 3 and if x&; is in the image of ig,.y, then
Xé347 18 in the image of ldpgq*'

[2) If p> 2 and xr; is in the image of idpq*) then xti,.; 1s in the image of
i .
dpa¥

P s : . 2 .
(3) I£p=2nz3, and xo is in the inge of 1,44, then xgi,, 1is in the
imge of iSq*‘ -

The conditions on m are Just enough to ensure that B ({ (D) By, quEq) contains

preimages of the operations needed to carry out the argument.

The passage from the proposition above to the splitting theorems is well known
and has been exploited in the literature to prove the splittings of the cobordism
theories. Theorems 4.1 and 4.3 follow from the algebraic splitting theorem of
Milnor and Moore [87] together with standard propertles of HZp and BPF., For Theorem
4.2, H*E splits as a direet sum of suspensions of A/Ag and of A as a module over the
Steenred algbra A. However, the E, term of the Bockstein spectral sequence of 1
is spanned by the A-module generators of the summands isomorphie to A/AB. By
pairing up these generators with respeet to their higher order Bocksteins, we may
copatruct a map of £ into a wedge of p-local eyelic Eilenberg-Maclane specira which
induces an isomorphism on mod p cohomology. In all cases, the hypothesis on "OE

ensures that E is p-local, and the cohomology isomorphisms yield equivalences.

§5, Proof of Theorem 2.4; Some low-dimensional caleulations

We shall expleit the following cbservation of Liulevieius.

Proposition 5.1. let C = Zglx,x“ll be the algebra over the Steenrod algebra A which
is obtained by inverting the polynomial generator of HRP®. let Cy be the dual of
G, with a generator e, in degree t. Iet £,:0y +» Ay be the unique nontrivial
morphism of Ay comodules of degree -t (i.e., ftet = 1}. Then fien ig the component
of the t-th power of the total g class in degree n-t:

fe8p = (5t}n-t'

fal
Proof. lLet A:C + C@® Ay be the dual of the medule structure of Oy over the dual
operations. Recalli that for ¢ ¢ C and a ¢ A, if ie = E ey B oy, then

aec = § <a,aq¥c;. Here <, »1A@ Ay + &y is the Kronecker product. In particular,

fal

Cif axb =3 e ® ag, then fie, = o, for a e 4,

*
<a,ften? = <fta,en>

t
= <ax ,e_>
n

- n
BERRLFLIES G-

= <a,an>,

since <xn,en> = 1. However, A is an algebra map, and Milnor has shown that

i
¢ 2 o i
o= 3 X ®eo= 7 ox@g), .
i3 0 i i-i
Thus
1 it
axT = Y 2 ®ED), L.
i»t i-%

We salso have an odd primary analogue.

Propogition 5.2. For p > 2, let C be the A-algebra obtained by inverting the poly-
nomial generator in the cohomology of the lens space L”. Thus, C is the tensor
product of an extericr algebrs on a generator x of degree one and an inverted poly-
nomial algebra on y = x. Let Cx be the dual of C and let ey, e Cy be dual to y°
and let ey,.q = Cy De dual to . Let £5:04 + Ay be the Ay comodule map such that
fiey = 1.

{1) If % = 2s, then fie, is (-1 times the (n-it)-th component of the s-th
power of the iotal £ class:

_ n, .8
ften = (~1)7(g )nwt‘

{2) If © = 2s+1, then fie, is the (n-t)~th ecomponent of the product of the
total 1 elass with the s-th power of the total £ class:

ften = {EST)n__t-

Proof. et z; ¢ C be the dual of e;. Suppose that Az, = ) 2; ® a;. The sign
convention here is that for a ¢ A,

az, = } («1)i(i"t)<a,ai>z

i
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A similar ergument to that when p = 2 shows that fye, = {1)n(n«%)un. Here, Milnor's
caleulations are that

M= x®1 » ¥ yi®(1r)21_1 and
izl
i
e L Y ® (Edyy o -

i3s3
Thus

ayS = ) ) e (55)2i~2s and
12 8
M®) = ) oz @S, .
1 3 2gel * i-2s-1

In the remainder of thiz section and in the nexi, we shall need to evaluate
binomial coefficients mod p. The standard technique is the following.

Lemma 5.3. Let a = § a;p> and b = § byp” be the p-adic expansions of
a and b. Then (a,b) = 0 mod » unless a; + b, < p for all i, when

HI

(a,b) l_l(ai,bi) mod p.
1
Moreover, for s < pn -1,

(a,p® = 1 - a) & (~1)% mod p.
We shall not bother to guote the first statment, dut shall use it implieltly.
The following proposition is the key step in proving Thecrem 2.4.

Proposition 5.4. For p = 2, the mep £:Cy + Ay given by

>

gy for m > O

£y forn = 0
fen - [4

1 for n = -1

0 otherwise

LY

is a map of Ay coslgebras. For p > 2, the map f:Cy » Ay given by

{-1)%%+, if n = 28(p-1)
{-1)%80%1g if n = 2s(p-1}-1
fe, = § -1 forn=20
1 for n = -1
[ 0 otherwise
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.is a8 map of Ay coslgebras. Thus, in either case, the map f coineides with the map

f_y described above.

Proef. Of course £:0y + Ay is & map of Ay comodules if and only if f* A+ ¢ is a
map of A-modules. But this latiter condition is eguivalent tokthe gtatement that £y
commutes with the action of the dual Steenrod operations PE for k > 0 and alseo
commutes with the Bockstein g when p > 2

For p-> 2, Beoy = €ng q and Brg = -1, {We have adopted the covention that for
¥e HqK and X ¢ Hq*lx, <X, x> = (-1)q+1<8y,x>.} Moreover, the subspace of Cy

‘spaﬁned by €28(p-1) and €2 (p-1)-1 for s an integer is & direet summand of‘h* as a

module over the dual Steenrod operations. We have sgpecified that £ = 0 on the
complementary summand. Thus, for p > 2, i% will suffice 1o show that the dusl
Steenrod operations in Oy agree under f with the Nishida relations on the pertinent
homology operstions on g1 Or T4

For symmetiry, we shall write y for ihe polynomial generaitor of C when p = 2.
For p > 2, thekcomputation ig divided into three cases. TFirst, those e; which are
carried by PE to an element of positive degree, second, those which have image in
degree zerc, and third, those which have image in degree -1.

In the first case, we show that for p= 2 and 2k < s,

k
P§e8= wkﬁnd?lm x
g~2
and that for p > 2 and pk < 8,
k
Pg ©a(p-1) * (pk,s(p—l) - pk+l)e k
2{s-p ) {p-1)

Let d

1l when p = 2 and let & = 2 when p > 2. Then the statements above reduce to

k

P sk oy kel
Py eds{p—l) (p7,8(p-1) - p

le
a{s=p™) {p-1)

for p > 2. However, since C was obtained from the cohomoleogy of RP™ or L7,

0

for r

et

Pry = yp for r = 1

0 otherwise

Thus, for n > G, P'y™ = (r,n—r}yn+r(P“1) by the Cartan formula. Qur claim follows
from the calculation
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C@henp> 2., Forpr2andr >0 .
<yd{S--pk)(p--l) P x , P ‘ s
¥

k k
b - di{s-p ) {p-1}
X eds(ym1)> <PP ¥

’eds(p—1)>

#

0= Py h) = %0y h + et ety h

= (pk,s(p—ll —pk+l).

~1

T -1 -1
¥y e yPTYy

For p > 2 and & > pk, we have similarly that

k

by the Cartan formula. Thmas, Pyt = —yP=1p"1yl, so that
PY €aa(p-1)-1 (p%,5(p-1) - p*7 ‘

- 1lle " .
2{g~p ) p-1) ~ 1

Px'y""l =(_1)I‘yT(P-1}—1 s
Here, P'x = O for r > 0, so that

by industion. For p > 2, since PPx = Q for r > O
<x 8(p-1)-p*(p-1)-1 Ppk 1 7 B2, ,
¥ 2y ©

2s(p-1)-1" " (p5,8(p-1) - P - 1),

Pr(xy'l} - (_l)rxyr{p—l)-l'
On the other hand, the Rishida relations give us, for s > pk,

k k Thus, for p = 2,
P %, = (25,2Me-20%F g,
.1 ok 2%
R A R &y > =1
for p= 2, and, for p > 2, 3 2k
k k and for p > 2
P£ QSTO = "(pk,pm + s{p-1) - pk+l)Qs'P LI
A1 pF 5 et
= . s e+l k Xy ,P£ e 4 > = (-1} <xyP € > = ).
B 8%ty = =00 tslp - 1) - - 1087 xp 2p"(p-1)-1 2" (p-1)-1
The following lemma will complete the proof.

Here, the initial -1 is cancelled by the conventions in the definition of f, and the
additional high power of p In the right-hand side does not alter the binomial
coefficients unless the right-hand side would otherwise be negative. Thus, we nmust
check that for s > pk, if s{p-1} < pk+1, then {pk, o s{p-1) - pk*l) and

Lemma 5.5. For p = 2,

Pi+1QSE1 2 1.

{pk,pm + s{p-1) - pk*l ~ 1) are gero. S8ince s{p-1) £ pk+1 ~ 1, we have s £ p(k+l)

¥

For p > 2,
=}_+p«y.-.+pk° But.s:incep

<8, we have s = p* + t with O < t < p(k). Thus, P§8Q310~£ (1351,
glp-1} = k(p-—l} +tq, with O < 4y < pk. Thus, the specified coefficients are sero.

k
It remains to check those operations PE whose Images have degree O or -1 in Proof. For p = 2, the Nishida relations reduce to

Gy« However, e, mey not be In the image of any PE , 88 P'1L = 0 for r > C.
Pergl and PerTG are zero by the Nishida relations. (Q kills g or ,.}
For the remaining case, we shall show that for p = 2,

%) = (e-1,2%00000, = 1,

by lemma 4.3. For p » 2, the Nishida relaitions reduce to
2K
Fe ok q =2

. PiBQSTO ~(s~l,pn-s)QOPgsxo
and for p > 2,
k
PE e = -g

Swl
2pk(p—1)—1

= (-1)

-1

To do this, we must compute the Steenrced operations on y_l when p = 2 and on xy"1 by Lemma 4.3, since Bty = -l.
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Proof of Theorem 2.4. For p = 2 and s > 0, the fact that

0% = (N0

follows immediately from Propositions 5.1 and 5.4, For p> 2 and & > 0, the fact
that
S —

s, ~1
Qrg = (D7 gy 2

s g8, ,-L
BQ T * (-1)7 (¢ T)zs(pml)

foliows immediately from Proposition 5.2 and 5.4. However, all of the even degree

coordinates of g“lr come from 5“1. Thus,
s _ 8, .~1
BQ T = (~117 (g )zs(p—l) .
One can identify certain algorithme such as the following curiosity when

i 2ii1-1 R

g =t (@e (@ e
j=1

Thus, the actual computations can gei guite ugly. We have the following low-

dimensional computations of ngl for p = 2. In the next section we shall show that

ta"1£1 = {Qt"lgi)z. Thus, we shall only list QZtgl. We shall write

XEq = By for i 2 1.
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taﬁl for 0 < t £ 15, where p

= 23
s Q%,
2 B
4 6, k
6 By
8 69s,+ 678, + B3
10 678,
12 858,
14 8,
16 858, + 8,85 + 6% a56, + 6785 + 8808, + 628, + £)
18 8l + 818, + 18,
20 B?ﬁéBB + 3234 + gg
2 6,
24 67658, + 6l 8] 658,
% 838,
% s,
0 8
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§6. Proofs of Theorems 2.2 and 2.3

We shall compute the operations on H*HZP # Ay, The elements oka* are com-
pletely determined by the effect of the dual Steenrod operations Pﬁ for ¥ > 0,
“along with the Bockstein operatiem if p > 2. Thus, our computations will be based

on induetion arguments using the Nishida relations.

Theorems 2.2 is the composite of lemma 5.5 and Propsitions 6.4 and 6.7.
Theorem 2.3 1 the composite of Lemms 5.5, Propositions 6.4, 6.7 and 6.9, and

Corollary 6.5.

We begin by recalling some basic facts about the dual Steenrod operations

i Ag.

Lemma 6.1. The following equalities hoid in Ay. For p > 2 and 1 > O,

k
'ngﬂk if r o= p(k)

r
?*Xgl =
0 ctherwise

x
(Becall that ofk) = E—"5h L) Forp> 2 end i 20,

Pyxt; = 0 for v > 0,
and

Bxty = xBg -
Here, £y 1s identified with the unit, I, of Ay.
Remarks 6.2. Notlce that the added high power of p in the right-hand side of the

binomial coefficients in the Nishida relations allows us to make the following

simplification. For p > 2,

s 141, K s-piei 1
7y 0° = ] (-1 - pi,s(p-1) — pi)Q Py .
1
For p > 2,
x 8 i+l, k s—pk+i i
B0 pa® = ] (-1YH(pT - pi,slp-1) + pi - 1)BQ Py
i
i,k o\ oB-PE L
+ g (-1)"" " (p - pi - L,s(p-1) + pilQ Pe8 .

One of the key observations in our caleulations is the following.
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-

Lemmg 6.3. {The p-th power lemme). For p=2and 8> 1,

@l = (0% 1g2.

For p>» 2 and s > 0,

BQPSTO

(BQSTG)p .

Proof. We argue by Induction on s. We shall show that both sides of the proposed
X ‘
equalities agree under Pg for ¥ > 0 end under B when p > 2, Of course, g is no

problem, and both sides of both equations vanish under Pi. For the right hand

side, thisz follows from the Cartan formula. For the left-hand side, the Nishida

relations give

1 -
Pre% = (s~ 1)0% , and for p > 2

pree® = s50® - o*la .
k

Thus, we may restriet attention to PE for Xk » 0. If 8 = pk'l, lemma 5.5 %ﬂd the

Cartan formuls show that both sides of the equations are carried to 1 by PE .
Thus, the lemma is true for p =2 and ¢ = 2, and for p > 2 and s = 1. In the

remaining cases, k > Cand s > p -1, fere for p =2,

k X
P @7, = (2%,2s-100%F he
while
X k-1
AL A Y,
= @ e he)?
K
- el

by the Cartan formula, the Nishida relations and induction. For p > 2,

k

1
Pg {SQSTO}p

o
(B} 0Q°r)?

k-1

5 slp-1) - 100805 P ANl

LS
-{pk"l,s{p—l) - 1)pP® P Ty s

by the Cartan formula, the Nishida relations and induction. The conclusion follows
easlily from Lemma 5.3.
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We can now evaluate certain of the operations.

Proposition 6.4, For p=2and 1> 1,

For p> 2 and 1 > O,

s e = iy,

i
= —‘1
{Again p(i) %:i—-.)

Proof. We argue by induction on i. Again it wiil be sufficient to show that both
X
gides of ihe equations agree under PE for k> 0. Forp=2,

k ,i . i X
A NN LR
2t g0k
For 0 < k < i, the binomial coefficient is zmerc, while for k > i, @ £y % 0

for dimensional ressons. Thus, the only nontrivial operation is

i i
1.2°-2_ -3
R Cp =& e
2i~3 1 2
For i =2, Q £y = Q gl =y Since Ey = xgp, the propogition is true for
i = 2 by Lemma 6.1. For i > 2,

23,
& g - (@

2,

= (X654

by the p-th power lemms and induction. Iemma 6.1 1z again sufficient. For p > 2,
let L = 3. Then

1 1.1
prea® M = pradte, = 1
by Temma 5.5. Thus, BQlTO = -xgy. Fori>1,

Ko X
PP e e = % ettp-1) - 1P PP

0 0

. . k4
p plooy (VP

0’

by the p-th power lemma and induction. The result follows from Lemma 6.1.
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~ Gorollary 6.5. For p > 2 and £ > 0,
Qp(ljto = (—l)lXTl .

Proof. We have just shown that Qp(l)re and (—1)ixzi have the same Bockstein.
However,

i

k. . k
pE 0?1 = ~ipF ol p1nie? P

k
- «(pk,pi—l)Qp(i)_p %

. . k
For k < 1, (p¥,pt-1) = 0, while for k 3 1, P3P Ty = 0 for dimensional
reasons. The result follows from Lemma 6.1.

We wish now %o compuite the operations on the higher degree gemerators. By the
Nishida relations and Iemma 6.],

k s X S__pk
By Qxg; = -(0%,8(p-11007F yg

i K . 3
o 3 I - pa(d) 1)+ pptg)) Q%P P (el )
NEDS

2

end for p > 2,
k x X
7 8dxey = (65, 8(p-1) - g P X%y - (p-1,8(p-1))05P &g

. X, (s i
o5 SR L patd) - 1,8(p-1) + ppting® e +p(J){—xgEmj}.
NEDS

However, we may simplify this expression considerably.

lemma 6.6, Forp > 2 and 4 > O,
k k k
B ey = ~00%,s-10 P g - (0 - pys(p-l) ¢ PP el

For p> 2and 12 0,
k k 43
R 8%, = (05, slp-1y - 18Q° Py - (05-1,8(0-1010%F e,

Moreover, the following additional simplifications hold for particular values
of s. Forp>2, 8# Omod p and k > 0,

: k k
PE Bstri w ~(pk,s(pml) - 1)SQS_9 XTy *
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For p > 2, 8 Z -1 med p2 and k > 1,
X X
k -
Pl; QSX‘Si = w{p :S(P"l))QS P Xgi .

Proof. The assertion is true for k = 0 or k = 1 because of the left-hand term of

the binomial ecefficients. We shall assume k¥ > 1, If s # -1 mod p and j > O, then

s - pf + o(3) # -1 mod p. By the Cartan formula (or Theorem 1.2(5) if i = 3,

113
3
fu]

K .k
QP *p(J)xggmj 0. Ifaf-lmodp, p>2, k>0and j >0, p¥ - pplj) -1

mod p, while s{p-1) + pe(j) # O mod p. Thus,
k . . -
(p" = ppli) - 1, slp-1) + ppl§)) = 0.

For 8 5 -1 mod p, but s £ -1 mod pz (here p > 2}, & = tp-1 mod p2 for 0 <t < p.
Thus

s(p-1) + pp(3) = (p-t)p+l mod p°,
while

X i1 2

p - pplil 2 (p-1lip mod p.

Thus,
¥

i
li

(p polil,s{p-1} + pp(ji} = O.

It suffices to assume s & -1 mod p2. Here, for j > 1 {and k > 1),

H

g - pk + p(j) = p mod pz .

By the Cartan formula (or Theorem 1.2{5) if 1 = j),

K. . 3
s-p +pld)_.p°
Q Xgi_j O'

Proposition 6.7. Forp =2, 1> 0 and 8 > 0,

se2too

Q if £ 20 or -1 mod 2"

[k}

s 1
Qxg; =
0 otherwise .

Forp>2,1>0and s >0,

(_z)ngS+9(i)10 if 8 & ~1 mod pi
g ~ i+l s+plil) AP d i.
Qxg; = {-1}" "8Q 4 if j 2 Omod p
0 otherwise .

g3

~ Proof. 'We argue by inductlon on s and i. For p = 2, the sssertion is trivial for

i=1, Forp22,and 0<s < pi—l the assertion holds by dimensional reasons and
the p-th powerklemma. Of course, we shall show that both sides of the equations
agree under'PE for ¥ > 0 and under 8 when p > 2. Clearly beth sides agree

under Pi, and when p > 2, Lemma 6.1 implies that stxgi = 0 for all 1 and s by

k
induction and the Nishida relations. Thus, it suffices to check Pg for k > 0.

Case 1. &= Omod p, but s £ O mod pr.

- By the preceding lemma, .

k X
Py st£i= ~(p%,5(p-1110°"P X84

k . .
By induetion QS"P Xgi = (J unless 8 - pk = 0 mod pl. Since 8 £ 0 mod pl, this means

k<iand 5= pk mod pi. Here (pk,s{p—l)) = (pk,pk{pwl)) = 0. Thus stgi = Q.

Case 2. s = 0 mod pi.

Again
¥ ¥k
PR Q% = -10,ete-100%F gy

H

0 if k < 1 or pk > 8

3

-1 (55, sp-1180" PP ap e st s, p s 2

ik
25,103 g it s> 28> 2%

\%
N
-
k=]
I
%3

by induction. On the other hand,

X . X
PR e - pf s(p-n) + ot - 20" ap p s g

and
k i . i k
Pi Qs+2 —251 - (gk’s+21 B 2)Qs+2 ~2-2 & if p o= 2.
Sinee s = G mod pi,
0 for 1 <k <3

{pk,s(pml) + pi -2} =

(pk,s(p-l)) for k > 1

¥ .
It suffiﬁes tg show that Pf BQSép(l)TO = 0 for s < pk <8 + pli}, when p > 2, and

that Pi QSA"2 —251 =0 for s ¢ 2% ¢ g2l 2, These inequalities imply that

8 = pk, 80 that {pk,s(p-l}) = Q.
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Case 3. s £ 0 or ~1 mod p.

Again,
k k
Pg stai = —{pk,s(p—l))QS“p X6y = 0
by induction.
Case 4. & = -1 mod pi
Here,
k k k-1 .
P oy = -0, s(p-16%F ye; - (95p,s(p-1) + pr@ (IR P
by lemma 6.6 and the Cartan formula.
* Py
For 1 < k < i, Q%P yg; = 0 by induction. Since E%i B pt1,
k-1
QUSTEVRIBT Ty 20 forlek<i. Pork=1<1,
(ml)i(gQ((s+1)/p)~l+p(i«1)10}p N (_1)iﬂQs-p+p{i)T0 for p > 2
?EQSXEi =
i1 i
(gl (s¥1)/2}-1+2 —2€1)2 NG —451 for p = 2

by induetion and the p-th power lemmz. On the other hand, for s+ pli) end
P>2,

x . . X
PP o™ o (¥ s(p-1) + b - 2)pgBt0)P i

and for p = 2 and 2% < g +2%.2,

k i . i k
Pi Qs+2 ~2£1 " (2k,s+21ﬂ2)QS+2 meBEl .
Since s = -1 mod pi, the right-hand side of the binomial coefficient is congruent to

PP -p -1 mod pi. Thus, if 1 < k < i, the coefficient is zero and if k = 1, the
coefficient is ~1.

For s > pk > pi and 1 > 1,

. . k
U ep1) + (Fop,etp-1)eph (D10 P pon g 2

s-2%ipt o

[(25,8) » (25-2,8+2) )0 g for p = 2,

by induction and the p~th power lemma. Thus, for these values of k, it suffices to
check that

85
(pk,s{pml)} + (pk - p,8l{p=l) + p) = (pk,s{pul} - pi - 2),

which the reader may verify (or c.f. [101, p.541).

Forp>»> 2,1 =1and s> pk,

k k
PP e, = -0, s(0-102-80"1P )

by induction, while

K X
PP g™ e, = -, (s (p-11180™ P o

and the binomial ccefficients here are equal.

For s < pk < s+p{i), when p > 2, or for s < 2K <8+ Zi~2, when p =2, a simple

calculation shows that s = pk—l. Here

k k - .
Pg 8qP ”1+p(1)10 = w(pk,pk(p—i) + p(pi—l—l))BQp(i)”lro for p» 2

k k i
Pi Q2 ~1+27-2

i
s

. i
g = (Ek,2k+2l—3)Q2 “351 for p

Since k > i > 1, the binomial coefficient is zero.

Case 5. 5 -1 mod p, but 8 # -1 mod p°, 1 > 1 and k > 1.

Here, x

k
¥ -
B &gy = -0 ,spIn@ T gy

X
by lemma 6.6. But s—pk £ -1 mod pz, g0 that Q°F Xy = s

Case 6. 8§ & -1 mod p2, but 8 £ -1 mod pi; or § £ ~1 mod p but s £ -1 mod p2,

ks« 1land i > 1.

Here,

x X k-1
P ae, = -(05,0(p-1)05 P ygy ~ (pop,s(p-1)epi! {STH/EIET N 0P

Now 8 —~ pk = -1 mod pi if and only if L S yk"l 2 0 mod i"l. Since

i .o
§%$~¢ 0 mod pi™! either G5P yg; ana (! (S*1)/RI-P xE;_,)¥ are both zero or
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they are both equal to the appropriate operation on gift p>2or g if p=2, I

the latter case, the coefficienis cancel as k < i and s 2 pkv} mod pi.

Lemma 6.8. For p> 2, i >0 and 8 > 0,

gy = (17"

if & 2 0 mod pi
BstTi =
0 otherwise .
Proof. We argue by induction on s and i. The lemma is trivial for i = 1 or for
0< s < pi. Ag%in, both sides agree under g and Pi. We shall show that both sides

agree under ?E for k > Q.
Case 1: s = 0 mod p.
5-pt sep™
Bere QP xt; = Q P x6; by induction. By Lemma 6.6,

k
s
Pg BQ Xty

#

k X & k
~1p%,8(p-1) - 1)+ (p© - 1,8(p-11)10%7F xg,

8

X s-pi
~(p%,s(p-110°F xe,

X @
Therefore, BQeri = QSin°

Case 2. s £ 0 mod p.

Here, by Lemma 6.6,
k 5 k 5- x
PE 80ty = -(",s(p-1) = 1)eQ”F x1,

k
but Q5P x1; = 0 by induetionm.

Proposition 6.9. For p> 2, s > 0and i 20,

{wl)i+1QS+p(i)fo if ¢ 2 0 mod p1

o] otherwise.

Progf. We have shown thaf both sides of the prospective equation agree woder the
Bockstein, By lemma 6.1,

K 3 k s—pk
Pg Q Xty ® -{p ,s(p~1))Q Xty -

87

‘ . k

For fixed i, we argue by induction on & that Pf agree on both.sides of the
prospective equation. Again the assertion is a trivislity for i = 0, for X = 0, or
for G < & < pt.

Case 1: s # 0 mod p.

) k
Bere, @°°P Xty = 0 by induction.

fase 2: s = O mod p but 5 2 0 mod pi. -

. s_?k X 1
By induction, Q 73 = O unless k < 4 and s = p* mod p. Here

(pk,s(p—l)) = (pk,pk(p-l)} = 0.

Case 3: 5 0 mod pi.

i3
Here Q%P T4 = 0 by induetion for k < i, Again by induection,

X o x 141 _s-prapli)
PE Qxty = ~{p",8lp-1) )1{~1)"7Q P el

0 b4

for 1 <k < 5. We have
ngQs*p{i)ro = —(pk,s(p—l} + pi - I)QS-Pk*p(i)TG .
Since s & 0 mod pi,
0 for 0 < k<1

(pk,s(p-l) + pi - 1) =
(0", s(p-11) for k > 1.

For s < pk < s+p(l), s = pk and

¥
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]
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CHAPTER IV

THE HOMOTOPY THEORY OF H_ RING SPECTRA

by Robert R. Bruner

Around 1960, Liulevieius 155] and Novikov {91] introduced Steenrod operations
into the cohomology of eocommutative Hopf algebras,. in particular the E, term of the
Adams gpectral seguence converging to the p- ~-component of n*SG. During the 1960's
Barratt and Mshowald (unpublished) studied the quedratic eonstruction, using it to
conetruet homotopy operations and to derive relations in homotopy. Toda {106}
studied the mod p analog, the extended pth power construction, end used 1% to derive
relations in the odd primary compenents of a*SO. Early in the study of the
quadratic eonstruction, it was conjectured that the quadratic construction could be
used to provide maps representing Steenrcd operations. This was proved by D. 3.
Kahn [45]. He also showed that this determined some differentials in the Adams
spectral sequence snd related the homotopy operations %o Steenrod operations.
Milgram [81] reformulated Kahn's work in a form which generalizes to the mod p case,
this formulation being exactly analogous to the reformulation necessary to define
mod p Steenrod operations. He also showed how %o derive many more differentials
from the geometric construction of the Steenrod operations in the Adsms spectral
sequence. In particular, he showed that the Hopf invariant one differentials follow
in this way. Milgram's work was confined to a rTange in which it is possi?le to act
as if one were operating on a permanent cycle. At sbout the same time, Makinen
1621, working at the prime 2, showed how to account for the fact that one may not be

operating on a permanent cycle.

Tn order Lo construct the Steenrod operations geometrically, a map from an
extended power of a sphere to the pth power of that sphere is needed. Kahn, Milgram
and Mskinen obtained such meps by using coreductions of the extended powers of
spheres. As usual when studying stable phenomena on the space level, such coreduc-
tions exist only in a range of dimensions, but, by suspending everything an appro-
priate number of times, that range can be made arbitrarily large. This makes It
éppear that we should be working with speetra. To do this, however, extended powers
of gpectra are required. With this motivation and others, May [72] showed how to
constraet them. In place of a eoreduction, this allows us %o use the strueture map
DpY » Y of an H, ring spectrum Y, This permits us to construct homotopy operations
which are related to Steenrod operations in the Adams spectral sequence for Y. In
addition, we get differentials in the Adams spectral sequence and relations in the

homotopy groups of any such gpectrum.

89

We can now Indicate that part of the present work which is new. First,
everything we do’applies %o all H_ ring spectrs, not only the sphere gpectrum,
Second, we have done the hemologieal algebra necessary to produce Steenrod opera-
tions in the genmeraiized Adams spectral sequence and have shown that they come from
the H, ring structure just as in the ordinary mod p Adams spectral sequence. Third,
we have Included & reasonably thorough aceount of the homotopy operations and the
relations'between them. Undoubtedly, some of these results, especially in the mod 2
case, are known, although diffieult to find in the literature. Passing references
to Barratt and Mahowald are found in [45] and some related results exist in [1061,
[104], '180] and [79]. Fourth, we have generalized the results of Mikinen to the odd
primary case, producing new formulas for differentials in the Adame speciral
sequence. This involves a detailed study of the homotopy of extended powers of
cells. Finally, 1% is our hope that the present account has benefitted sufficiently
from the process of refinement that occurs with each extension or generalization of

previous work, that it is simpler and clearer than previous accownts and that this
will make the results more accessiblie.

all nontrivial detaiis.

In this spirit, we have attempted to include

We have tried to maximize the extent to which all of this ecarries over to arbi-
trary homotopy functors [X,-1y besides the traditional wy = [SO,-]*. Of particular
interest is the case in which X is a Moore space. Much of the work in [92] can be
interpreted as caleculations of the homotopy operations which apply when X is a Moore
space. The generaligation to arbitirary X is only partially carried out. The
difficulty in extending it lies in our ignorance sboui the extended powers of spaces
other than spheres. Note, however, that VI 82 contains results which facilitate the
anlysis of extended powers of other spaces. Finally, we should point out the
remarkable fact that the key differentials needed for the computation of the stable
homotopy groups of spheres from the cohomology of the Steenrcd algebra are direct
consequences of the K ring structure of the sphere spectrum. It is appealing to
think of the H, ring structure as a machine which encodes the destruction of
Steenrod operations, which exist uniformly in E,, converting them into more
complicated relations in homotopy. In this vein, we point out in section VI §1 that
our analysis of the differentials can be used to compute exiensions which are hidden
in £,. In summary, we feel that the resulis contained here should be & part of

everyone's Adams spectral sequence %oolkit, and we hope that the present exposition
will make this possible.

We have organized this paper so that the general theory is in Chapter IV,

explicit computstions and relations in homotopy are in Chapter V, and formulas for
differentials are in Chapter VI.

Chapter IV is organized as follows. In §1 we initroduce Ext,{(N,M} for comodules
N and M over a commutative Hopf algebreid A. In $2 we define and study products and
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Steenrod operations in ExtA(N,M) when N is a eoalgebra and M is an algebra in the
category of A-comodules. In 83 we set wp the Adams spectral sequence. In §4 we set
up an external smash product pairing in the Adams spectral sequence and use it to
define an internmal preduct in the Adams speciral sequence converging to (X,Y¥l, when
¥ is a suspension spectrum smd Y is a ring spectrum. In §5 we derive the main
conceptual result of the chapter: the H ring structure map DPY + ¥ naturally
induces the (algebraically defined) Steenrod operations in ExtE*E(E*X,E*Y), the E,
term of the Adams speetral seguence converging to £X,Y]§. Thus, for #_ ring spectra
¥, the Steenrod operations in B, reflect strueture which exists in [X,¥]y. In 37 we
define the homotopy operations in #,Y derived from DPY + Y and use a speeiral
sequence originally due to Milgram to identify operations in Ext(wyX,ExY) which
correspond 3o homotopy operations and relations between them. In §6 the spectral

sequence is defined and its relevant properties are derived.

I heve benefitted from conversations with many people in the preparation of
this material. Of special importance are Peter May, Arunas Liulevieius, Daniel
Kabn, Mark Mehowald, Jim Milgram, Jim MeClure, Jim Stasheff, Mark Steinberger, and
Bob Wellingion.

§1. Cohomology of Hopf Algebroids

Let k be a commutative ring with unit. A Hopf algebroid (R,A} is a cogroupoid
in the category of graded commutative k-algebras. Thus R and A are graded commuta-
tive k-algebras and there are k-algebra homomorphisms nL’“R:R + A, eihA -+ R,

Yih o+ A.@h &, and x:A + A. The simplest way to recall the diagrams these satisfy is
to dualize the diagrams satisfied by a groupoid with "objecis" R and "morphisms! A.
The left and right units g, and ng are dual te the source and target, the
augmentation e is dual to the morphism which assigns each "object" its ideniity
"morphisnm", the conjugation x is dual to the inverse, the coproduct ¢ is dual io
compogition, and the product ¢:A.@& A+ A is dual to the diagonal.

The twe units, g, and TR give A two R-mogule structures: a left R-action
rea = nL(r)a end a right R-action a.r = &nR(P)- Therefore we shall find +the
category of R-R-bimodules more appropriate than the category of R-modules. The
commutativity of R enables us to embed the category of {either lefd or right) R-
medules as the full subcategory whose objecits are those R-R-bimodules which satisfy
rex = {—1)|xl§rlx-r for 8ll elements x. There are two forgetful functors from R-R-
bimodules to left or right B-modules which simply forget the R-action on one side or
the other, We let Mp be the right R-module whose R-aciion equals the right R-action
on M. Of eourse, the sbove embedding gives My a left R-aciion whieh agrees up to
sign with the right R-action. For example, here is the left R-action on AR:

N

(ml}EfliaEa -

L]
.
»

1

SNSRI PONES

it

nR(r)a R

Similarly, ML will denote M with its right action forgotten.

We 1et.®3 denote any of the tensor products

R-R-bimodules x H-R-bimodules —— R-R-bimodules

Right R-modules x B-RB-bimoduleg - Righi R-modules

B~B-himodules x Left H-moduleg -~ Left R-modules.
Thus, M @; N gets a left action from M if it has one, gets & right action from N if
it has one, and amalgamates the right action on M with the left action on N. It is
necessary to distinguish these three tensor products and to aveid automatically
embedding cne sided R-modules in R-B-bimodules because the embeddings do not commute
with tensor products. The next paragraph contains a telling example of this. We
let @ = & in the rest of this sectlon.

A right A-comodule is & right B-module M with an R-linear map ;M » Mx A

making
W,
M Ll M@ A M M M@ A
i
\ l®e *’Mji Py @1
v
M MGaA—LBY cugama

commute. The algebra R is a right A-comodule with yp # ny and a left A-comodule
with ¢g = npe The coproduet y:4 » A ® A makes Ay a right A-comodule and Ay & left
A-comodule, The module M & A exemplifies the lack of commutativity between ® and
the embeddings of R-modules into R~B-bimodules. If we tensor with A, then embed we
get a bimodule whose left and right actions agree, whereas, if we convert M to a
bimodule then tensor with A we get a bimodule with different left and right actions.
This prevents us from viewing Py B85 2 bimodule homomorphism unless we replace the
codomain by (M C)A)R. It is simpler %o think of oM » A @M as existing in the
category of right B-modules, There is one situation in which we will automatically
view 2 one sided module as a bimodule. If N is a right R-module snd we write M® N,
we mean ‘to imply that N iz first converted to a bimodule so that the tensor product

is one of the three discussed above.

We assume benceforth that A is R-flat (on either gide; the two conditions are
equivalent). Then the category A-Comod of right A-comodules has kernmels {which may
be computed in R-Mod) and is therefore abelian.
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If P and G are right R-modules then Homp(P,Q) is the graded R-module whose
degree¢ t component consists of homomorphisms which raise degrees by t. If Mand N
are right A-comodules then Homy(M,N} is the k-submodule of Homg(M,N) consisting of
comodule homomorphisms. It is an R submedule for all M and N if and only if

e'l{m @ a) = fm' @ yla®la 4f ¢im) = § m' @ a®, The isomorphism ¢ makes the

M

8

comrute. Both 1 @ ng and gy are R-split by 1 ® . Thus we may take either as our

disgram

L T TRe
The forgetful functor A-Comod + R-Mod {(which we denote by m—»m and f +—nf}
has a right adjoint

(7) @ A : R-Mod » A~Comod ‘eganonieal .R-split monomorphisms into an Injective comodule. We choose 1 & ng

because it will relate well to the Kunneth homomorphism later. It also allows the
which sends a right R-module to the right A-comodule P ® A with coproduct 1 ® u. We

call such comodules extended. The adjunction

‘ f‘oilo‘&ing convenient description of the canonical injective resolution. Iet
pidy » i be Coking), end write 2z for pla). Define t:4 » A by tp = 1 - mpe.
Then for any right A-comodule M, there is a short exact sequence

HomR(M,P) = Hom, (M,P @ 4)

1@&n
. » R A B BT ——m(
sends f:M+ P to (£ @ 1)y and sends 1M > P@ A to (1® ¢)f. 0 M"\ /M®ARF. /"M®A
. N ~—
Retracts of the extended comodules form an injective class relative to the R- 19c¢ 19t

of right A-comodules {solid arrows), which is R-split (dotted ArTowWE] .
split exset sequences, and we have the usual

Definition 1.1: Let M be a right A-comodule. The normalized canonical resolution
C(4,M) of M is the R-split differential graded right A-ccmodule

Comparison Theorem: If (O + M » XO + Xl ¥ sse g an Rusgilit exact sequence of
right A-comodules and O + N » Y, + ¥. » ««¢ is a complex of injective right A-

0 1
comoduies then for each A-homomorphism f£:M + N there is a unique chairn homotopy I 0 g c’2'0 c dl e
elags of A-homomorphisms F:X » Y extending f. Ow —w t . __~
R o g
0 i

Wie note for future reference that we may choose the splitting homomorphisms where Gs - M®KS ® AR' ds = (1® na)(l @ p) and o = 1@t (1®e). We write

g g g mla | »++ |2_la for n®a, @+ ®a_®ael_, and assign 1t homological degree
Mafe X «e«pmx —t EER T 1 8 1 8 8
' 0 1 S s, internal degree t = {m| + ] |a;] + |a|, bidegree (s,t) and total degree t-s.
P I# ¥ 1s also a right A-comodule, the canoniecal complex C(N,A,M} has

so that €0y = 0 and g = 0.

1% .
1 LA . =

We define ExtA $0 be the ith right derived functor of Hom, relative to S Cs,t(N’A’M} HmA{N’Cs(A’M)}'

injective comodules and R-split exact sequences.

Proposition 1.2. Ext,(N,M} = H(C(N,A,M}).

The tensor product M® N of right A-comodules can be made a right A-comodule by

the diagonal coproduct j.:_ : Proof. If we let n: M » C(A,M) and e: C{A,M) » M be

Me N L8 wer0res L8 T8 voneins281l8 0 yvoue A 1@np: M> M®A = Cy(4,M) and

1®e: CO{A,M) = M®A+ M,
[The slert reader will notice thal the separate maps here are well defined only if

@ = @, ratber than ®R. The composite, however, is well defired with ® = ®ﬂ.] then then it is easy fo check that d2 = dn = O, 02 = gg=0and do + od =1 ~ ng. Thus
N = Ap we have the right A-comodule M & Ap with &lagonal coproduct, in contrasi to q d d

G u— m----—-a-n -—ho ——-—bl — e
the extended coproduct on M ® A. Nevertheless, M® Ay is isomorphic to M® A as a i 0 = M CO c1 C2

right A-comodule. The isomorphism o : M®AR +M®A 1s the adjoint of the Rw

is an injective resolution R-split by ¢ and ¢, which implies the propesition. //
homomorphism 1@ e : M@ A, » M. Explicitly, e(m @a) = i m' @a"a and
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Note that we use %~ as our total degree rather than t+s. This (t-s) is the
topologieally significant degree in the Adams speetral sequence

5,%
Exty (B EY) == [4,¥]y o

If we regrade C(A,M) by nonpositive superseripis, it really is the totsl degree in
the sense of being the sum of the internal and homological degrees.

§2., Products and Steenrod COperations in Exi

We begin this section with a quick description of the product in the Ext module
we have jusi defined. The rest of the section is devoted to the development of the
Steenrod operations in this context. The main point is to show how the development
of Steenrod operaiions in 168] is carried over to the cobar complex C(N,A,M) in the
setting appropriate to generalized homology theories.

The indexing we have chosen for Steenrod coperations disagrees with that of
[55},168] and [81]. Our reason is this: as noted in section 1, the appropriate
total degree for ExtSsY 15 4-s rather than t+s. This change converts the grading of
[55] and [68] to the grading we have chosen. With our grading, the operaiion pi
raises the geometrically significant total degree t-s by 2i(p-1} if p > 2 and by 1
if p = 2. This conforms tc the pattern estsblished by the Steenrod operations in
cohomology and the Dyer-Lashof operations in homology. This is not merely an
analogy. We shall see that the Adams spectral sequence connects the Steenrod
operations in Ext with homotopy operstions. Under the Hurewiez homomorrthism these
homotopy operations correspond to Dyer-Lashof operations and our choice of indexing
leads to precise compatibility with these Dyer-lashof operations.

In this section we let ® = @.

In order to introduce products and Steenrod operations into Ext,(N,M) we
require more structure on N and M. The necessary definition follows.

Definition 2.1. ZLet C be the category whose objects are triples (N,4,M) sueh that

1) (R,A) is a Hopf algebroild over Xk,

2) M is a commutative unital A-algebra (that is, an algebra with unit
gt B> M In the category of A-comodules), and

3) N is a cocomutative unital A-coalgebra (that is, a coalgebra with counit
gy:l + B in the category of A-comodules)

and whose morphisms (N,A,M) + {N',A' M") are iriples (f,A,g) such that

1) A:(R,4) + (R',A') is a morphism of Hopf algebroids,

2)  f£:M» M' is an algebra homomorphism preserving units and a r-equivariant
eomodule homomorphism (f{mr) = £{m)i{r) and Q’M'f = {f @ A)\#M}, and

in ¢. In turn, this induces a unit
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‘4] 'g:N' + N (note reverse direction) is a coalgebra homomorphism preserving
counits end a A-equivariant comodule homomorphism (g{n'i(r)) = g(n')r and
(1@ )\)ng = (g ® i)tpN,}-

If {N,A,M) is in €, we write ¢: M » M and a: N » N* for the iterated product and
copreduct.

Note that (R,A,R) is in { and that the unit ny and eounit ey induce a
homomorphism
(aN,l,nM):(R,A,R) + (N, 4,M)

(%) , Ext,(R,R) » Exty(N,M}.

If (R,A) and (R',A') are Hopf algebroids over k then the obvious struciure maps
make (R@ R', A® A') a Hopf algebroid which we will usually call A® A'. The
functor @ defines a functor ‘

A-Comod x A'-Comod + A @ A'-Comod.-

Thus, 1f M 18 an A-comodule and M' is an A'-comodule, then C(A,M) & C(A' M) is a
differential graded A @ A'-comodule with differential d@ 1 + 1® 4, wit n @ 5,
augmentation ¢ ® ¢, and contracting homotopy ¢ @ 1 + ne @ o. By the comparison
theorem, there is & unique chain homoiopy class of A@ A'-homomorphisms

ClA,M) @ CGlA' M) » CAQ A" M@ M)

extending the identity of M@ M'. If ¢ is an A-comcdule, let C = C@ «++ ® C with
n factors C. Regard ¢ ag an A-comodule by mesns of the iterated product ¢: A s oA
in the usual way. For each initeger n there is a unique chain homotopy class of A-

homomorphisms

¢:C(A,M™ + CLAM)

extending the product ¢:Mn + M. This implies that C{A,M} is a homotopy asscciative
and commutative differential graded A-comodule algebra (DGA In A-Comod). Finally,
if (N,A,M) ¢ § , the homomorphism

HomA{I\%,G(A,M))n = o(N,a,M"
e

HomA(Nn,C(A,M}n}
{Hom{A,cp)

Hom, (N,0(4,M)) = C(N,4,1)
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makes C(N,A,M} into a homotopy associative and commutative differential graded
k-aigebra. (There is an Alexander-Whitney map which makes C{A,M} and C{N,A,M)
strictly associative.) This product on CG(N,A M) makes ExtA(N,M) into a bigraded
commutative associative algebra over Ext,(R,R} with unit (¥} induced by
Hom(e,n}:Hom,{R,R} » Hom, (N,M).

We can now summarize the development of Steenrod operaticns given in 1681. Iet
k= Zp and let 7 C EP bte the cyclie p-Sylow subgroup generated by the permutation
a = {1 2 «+s p). Recall the usual kg free resciution of k.

Definition 2.2. Iet }\’i be free over kr on one generator e., let

i
dlegy) = (1 + o+ o+ e +°‘p—l)e2i-—l and dlegg,y) = la = llegy,

and let .}’(’0 +» k send aiee to 1.

Tet ¥ be any kzp free resolution of k and let j: »V be a kr chain map
ecovering the identiiy map of k. Let « and EP act trivially on a chain complex K, by
permuting factors on KP, and diagonally on ¥ @ KF and V& k¥ respectively. We
let Wi & (KP)n have degree n-i, n being the total degree if K is bigraded. Then we
can define Steenrod operstions in H(K) if K is a homotopy assoclstive differential
k-algebra with a kv morphism 8: W@ KP » K such that

(1) oley @ ¥P is the iterated product KP + K associated in some fixed order, and

(i1) ¢ is kw~homotopic to W @ KP —-’}—‘9—1? T e Kp ~4 K for some
kzymhomomorphism $e

A morphism (K,8) + {K',8') iz a morphism £:X » XK' of differential k-modules such
that 8 is kn-homotopic to 8'(1 ® fP}. The tensor product (K,0) ® (X',0'} is
defined in an evident way and the Steenrod operations satisfy the {intemrmal) Cartan
formula if the product K @ K » K defines a morphism (K,8) ® (K,9) + (K,8). ILet QL be
a }cxpz free resolution of k and let 1 = ZPJ‘ZP ¢ 2 be the p-Sylow subgroup. ILet

w: N® ;wp-r L be a kr~homomorphism extending the identity k + k where w ® Jyp is
given the evident t action. Then the Steenrod operations in H{K) satisfy the Adem
relations if there is a k& z—homomorg)hism ;U@ K » K such that

4

2

2
(v ey’ ox® v®1 .Y g P
shuffle ¥

P
wo e )P 188 . weyP 0

is k1t homotopy commutative.
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The following lemma will imply that 8,4, and £ exlst and make the appropriate

A diagrams ‘homotopy comnute when K = C(N,A,M}, giving us Steenrod operations in

Exty (N,M).

Lemma 2.3: Let p be a subgroup of Lpe Iet ‘U be any kp free resolution of k such
that 1%‘0 = ¥p with generator 2q. Let M and N be A-comodules. Let

LY . s S
- 0 —=M € K('.) o Kl [+

be an B-split exact sequence of A-comodules and let

4 A

0 1

0—m N —T» 1,

be a complex of extended A-comodules. Let f:M° » ¥ be a p-equivariant A-comodule
homemorphism, where p acte trivially on N and by permuting factors on W, Let o
algo act on K¥ by permuting factors, and onY @ ¥¥ by the diagonal action. Give
Y ® ¥ the A-comodule structure induced by that of K and let ¥, @ (") 4 have
bidegres {j-i,t). Then there is a unique p-equivariant chain homotopy class of
p-equivariant A-comodule chain homomorphisms &: V@ K* + L which exiend f:

v £ =N
r
‘| |
ro $
kg # <ep> ® Ky —————r1L.

Some such ¢ satisfies #{ ¥; ® (Kr)j) =0 if ri > (r-1)§.

Proof. We will define p-equivariant A-comodule homomorphisms from ‘F’i ® (K¥) j o
extended comodules by specifying thelr adjoint R-maps on elements v® k with v in a
chosen p basis of ‘U’i. It is easy to check that we get the same homomorphism by
extending by equivarisnce and then tsking adjoints as we get by first taking.
adjoints and then extending by equivariance.

Write ®1,3 for o vi 2] (Kr)J-. We define &4 3 by induetion on i and subsidiary
induction on j. The existence of @0, *l<e0> ® K » L follows from the comparison
theorem, so we may assume ‘pi,j constructed for all i' < 1. If j < 1 then q’i,j = 0
ginece L is a nonnegative complex, so we may assume (bi,j' constructed for j* < j. If
7 is the adjoint of ¢, we let

(a) 3. = (ds

1.

on elements v @ k with v in a chosen p-basis of ‘if:'-L, where

fj1 " 4,51 @10 @S

8=7 eyl @ ¢ @ 17732

i
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is the contracting homotopy of K' (so that dS + 84 = 1 - (ne)¥). To show that this

makes ¢ a chain homomorphism we must show that

(b} d¢ (6®1) + ¢ j(1 @ d).
r

i,j-1 " Y151
It suffices to show that the adjoint of (b} is %true on our chosen p-basis, and we

may assume {b) holds for smaller i and J. Thus, letting the adjunctions be under-
stood and using (a)}, we have

(d®1) * oy (1@d)

%1-1,4-1 i
= q’i-l,j—l(d ® 1)+ d‘{’i,j-z(l ® 53) - @iwl’jml(dtz 54}
. T
= ‘H’i,j—l + (@i_l’j_l(d@& 1) - d@i,j_l)(lca ds + 1@ (ne) 3.

Applying (b) inductively twice shows that

( 0.

q)i—l,j-—ltd ®1l) - d@i,jwl){l ®4) = ”ddq’i,;mg =

If we let ?:‘UO fid M + N be p~equivariant and satisfy f = ?i(e > ® M"  then

0
. = L
85 o{1 ®n7) = nf. Then (@ial,jml(déal) - d@i’jﬂl)(lﬁ) (ne)?) =

— 2
f{d @1) = 0 by p-equivariance of f and because dn = 0. This completes the

{ Tbecause

inductive consiruetion of ¢. Now let us show that the ¢ we have constructed

satisfies ‘I’i,j =0 if ri > (r-1)). This s triviel if 1 = QO or j < 1 50 we use

- induction on i and a subsidiesry induetion on j. When ri > (r-1)j the induction
hypothesis implies that (a) reduces to éi,.} = - ¢i—1,j—l(d ® S}. This implies the

result, again by the induction hypothesis, except when j = rn#l and i = j~-n. In this

case we iterate {(a} to obtain

T = — rN 0.'-
{e) 25 5 {-1) q’i-—r,j-r(d ® S)p, (4 @ S)p, Py (2@ 8),

where each Py is a sum of permutations of the factors of ¥ coming from the
equivariance of ¢. The number of factors ¢y of el @ vee @ ¢, € x° which are
annihilated by o:K + K inereases by at least one each time we apply S; this is where
we require 62 = gg = Q. Since permuiations preserve this property and since ¢ @ S
oceurs r times in (o), it follows that By 5 = 0 in thia case also, completing the

induetion.

Finally, we chow that ¢ is unigue up to p-equivariant chain homotopy. Suppose
0,0:¥@ K » L both extend £. We define Hy 5: V3 ® (KN » Ly 5 g by letting ite
2
adjoint be

89

if § < i+l ordi <0

~ ~

{

iz - H

cbi,g-'l - ei,jml - ARy g i«-l,j—l(d ® 11l ® 8 otherwige

on elements v & ¢ with v in a chosen p-basis of Ll"i. We must show

4aH, + H

By ,5-1 % By 5 (1@a) =2,

J
The definition of H; i implies thai, on the p-basis, the adjoint of Hi,j{l‘g’ d) is
. s .

a®1) + H, - P
[d®1) L, »d=3 i,3-1

- the desired expression minus

r
(65 5 =0 jy - ;- H gy (@@1)I1@dS+ 1@ e,

Now, L@ d8 =Ounless § > 2 and 1 @ {ne)” = O uwnless j = 1. If j = 1 then

everything is zero unless i = {), when we get ( 8, A1 R nr)(l & ¢'). Since
0,0

®0,0 ~
25 o1 ® W'} = uf = 8, (1 ®n") the Tesult follows when j < 1. When j > 2 we find
El ¥

by induction that

(8 s g =05 s - =B, . (dOLI1EA =0

Hence H is a p~equivariant A~comodule chain homotopy ¢ = e. //

Remark: Since ¢ is determined up to chain homotopy by £: MF + N i1 is emsy to see

that ¢ 1s natural in M and ¥ up %o chain homotopy.

Suppose (N,A,M) is a tripie in § defined over k = ZP. The product MY » M is
commutative, hence Lemma 2.3 with p = 7w and v = p implies that there is a wnique s~
equivariant chain map ¢: W@ ¢ » G, where C = G(A,M). &ince 3 is an
A-homomorphism we also have a homomofphism

w tom, (N,0)F = ¥@ olN, 4,07
Hom , (W, )@ ®) 2

lHom(A,f})

Hom, (N,G) === G(N,A,M)

and since A:N + NP is cocommutative, this ¢ is also m~equivariant.
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Definition 2.4: With the notation of the preceding paragraph, let x & Exti’t(N,Mf{
If p = 2 define

(1) st = phx) = ayle ®x%) if 1> t-s.

i~t+s

I p > 2, define

plix) = ('l)i”(t“S)¢*(e(21—t+s)(p—1} ©xP)  if 20 > t-s
(ii)

) = D ulbed (e oy (p1)g XD IF 21 s

where m = (p-1)/2 and vin) = {-1)j(m!)€ if n = 2j+e.

Note that sPi is a single symbol, a priori unrelated to pl {however, see
Theorem 2.5 vii). By [68], the Pl and gp! account for all the nonzero operations of
the form x =g, {e, @ ).

If (N,A,M) is an object of & defined over k = Z such that N,A and M are all
torsion free, let N=N@ By A= A@ Z,, and M= Mo Z,- Then (N,AM) ¢ £ and,

as usual, the sequence Zp * 4 5> ZP induces a Bockstein'homomorphism
P

8:Ext§’t{§,ﬁ) » xSt

A A
which we will use in Theorem 2.5 (vii}.

(N, M)

We are now ready to apply lLemma 2.3 and [68] to produce the main result of this
section.

Theorem 2.5: The Pl and BPi are natural homomorphisms with the following
properiies.

()t t s Extif{t"zl)(P'1}+€’Pt (e=0if p=2)

{ii) When p = 2, Pl = 0 wless t-s <1 <t. Whenp> 2, Pl = 0 uless
t-5 < 21 <t and gPL = 0 unless t-s+l < 21 < t.

(311) PY(x) = xP if p=2 and 1 = t-s or if p > 2 and 2i = t-s.
{iv) The internal and external Cartan formulas hold:
P x@y = ¥ P (x) @ PP y) and
i

ey =] et e Py « 1 0w e gty
i i
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fv) 'ﬁhe Adem relations hold: if a>pband ¢ = Qor 1 (e = 0 if p = 2) then
Bl

PP = § (-1 (pioa,a-(p-1)b - 1-1)g%P* P Npt
§

kS

if p> 2, a2>pband e=0Q orl then

8°p%eE? = (1-¢) § (-1)%*F(pi-s,a-(p-10b - 1)p*P71pt
i

-5 (12 proac1, a-(p-1)b-1)g%p* P gpt
§

(vi} Suppose £:(N,A,M) + (N",A",M"} and g:(N',A",M') » {N,A,M} are morphisms
in § such that C{fg):C{N',A',M') + C{N",A",M"} is zero on the cokernels of

the wnits. Then oPl = Ply ang csBPi = msPiu where ¢ is the suspension

g-1,%

o:EatS b (N, I0) > Extd,

(" ,M")

defined as C(f)d“lC(g) on representative eyeles.

{vii) If (N,A,M} is the mod p reduction of a torsion free triple defined over %
then BP1+1 = 1l 4f p = 2 while 5Pi is the composite of g and Pt oif P> 2.

Proof. Tet C = C(N,A,M). ZIesmma 2.3 produces the necessary chain homomorphism
NS C? + C and, ir Vs a kzp free resolution of k, 6: V@ ¢P » ¢, The
wniqueness of ¢ implies that ¢ factors through ¢ up to chain homotopy. Hence the
Steenrod operations are defined and satlsfy (i}, (3ii), and (vii). Naturality
follows from the unigueness of ¢. Iemma 2.3 alse shows ¢ = O in the cases relevant
to (ii). Commutativity of ¢:M @ M » M and the uniqueness clause of Zemma 2.3 imply
that C{N,A,M} is a Cartan object and an Adem object. Hence (iv) and (v) hold. To
prove {vi) we must construet ¢,¢' and o' such that equality holds in fg = ¢"(1 ® £P)
and g¢' = ¢(1 @ g?) rather than Just chaln homotopy. It is easy to check that this

will be true if we construct ¢,¢'and ¢" as in Lemma 2.3, because C(N,A,M} is
functorial. //

§3. The Adams Speciral Sequence

This section begins with some technical lemmas sbout homotopy exact couples and

the associated spectral sequences for use in VI. We end the section by setting up
the Adams spectral sequence.

We will work in ithe graded stable ecategory K*i . This is cbtained from the
stable eategory "h§ speeified in I81 by introducing maps of nonzero degrees. The
eategory E;i has the ssme objects as nd, and its morphisms from X to Y are the
elements of the graded abelian growp [X,Y], with [X, Y], = [£%,Yl.
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befinition 3.1: Consider inverse sequences
e ! 2

YO e Yl

qr-—-YE-Q—mM 'Y

such that each Y  is a OW spectrum and each i, is the inelusion of a subcomplex.
{This restriction is imposed purely for itechnical convenience. Ik represents no
real restriction since any inverse sequence can be replaced by an equivalent one of
this form by means of W approximation and mapping telescopes.) Define

:YSH._,YS and Ys =¥ /Y moisr and let

i = i i e L
,T 8" " s+r >

8,r 8 gti g+r-1

be a cofiber sequence with as,r of degree -l.

given a spectrum X we obiain an exast couple

s®tix’¥sjt-s

) $,t
k Dy

and hence a speetral sequence. The term E;’t' has many descriptions, of which we

will find
:zm{ix,ys’r] ~>1X,YS,th_S)
* [X’Ys-—rﬁ,r]t«s

Es,'t -
T ker{ [X,YS
’

8

-
1}t~s
particularly convenlent.

s,n+s
- .
gives minimal hypotheses needed %o recognize differentials in the spectral sequence.

If x ¢ [X,Yg ,l,, we let X denote its imege in E The following lemma
H

Lemma 3.2: Iet Te !X’Ys,l]ml and g ¢ [X7Ys+r,1]n satisly

pif = i'g € [X,Ys,rl’r%n, where i' is induced by igey,p-10 Then
af=0 ifk<r

a.¥ =g

and dkg

4

¢ for all k.

The pext two technieal lemmas will be used repesiediy.
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Lemme 3.3: If f ¢ iX’YS,r+p]n and g e [X’Ys+r+p*q]n—1 are sueh that

isf = 1g e 1X,¥.,..1.;, then there exist

1
E e [X’Ys+r,p]n and f'e {X’Ys,r+p+qln
guch that

e e
i A e (XY, 1,

o~ o~ 4
R
o

dr'ﬁ = 3(f} , and N

for k < r+p+q ,

4

r+p+qf = dr+P+qF1 =€ .

Lemma 3.4: Assume p £ q < r and suppose given £ ¢ [X,Ys+p r-p]n’
b
ge gx’Ys+q,r~q]n and k¢ [X’Ys,p]n*l such that 3f = 8g € [X,¥ .1, 1 and

poh = £ - ig e §X1Y3+p,r-p]n' Then,

ifp<q,dph=%‘ and dr_q'émaf:ag,
while if p=q,dfh=F-g and 4 F=3f=9g=4_¢

Now we turn our attention to the Adams spectral sequence based on a commutative
ring speetrum E with unit. We shall use ® to denote ®" E We sssume that ExE is
. SSume LAt s

flat as a (right or left) module over wyE. Thig ensures that {wyE,EyE) is a Hopf

algebroid over Tok and thai EyxX 1s an ExE comodule for any speetrum X. Here EyX =
Tx{XAE}. The struetural homomorphisms are defined as follows. Let n:8 + E and
piEAa B » E be the wnit and product of E, and let t:tAAB » BaA be the twist map.
Then ny = Egln} = {nally, ny = (1anlg, & = uy and x = 1y while

¢imy,E ®"OE 1E > m, B is given by ¢(e @8} = ulans), and $:E,E ®"0 EE » EE

s
is gi*{en by $la@8) = (papd(lazAal){aafl. The coproducts ¥y and Y5 are defined
as 8, Egllan} in the foliowing diagram. In it, the homomorphisms 8, and ¢, are

defined by

al(a®s) (1raiarpd(lazal)leng)

#

32(a®8) (Tapalilansg)
while 8 is the algebraic isomorphism defined in §1. (Recall that {ExE}p means Byl

with only its right =4E sction.} Adams [6, Lemma 12.5] shows 8y is en isomorphism-
since ExE is flat over myE. =
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EX @ (E,E),

1®n ‘(/////,//////’//’
¢}
1
(lan), 6
\
¥

Byl > E, (XaE)

]
EX @ EF

We have seen in §2 that o iz an isomorphism. It follows that 81 is also an

isomorphism. Note that 6 is the Kunneth homomorphism for X and E.

Pefinition 3.5. An Adsms resclution of a spectrum Y is an inverse sequence

io il
Y =1[0‘w_—-}(ln-————-—Y24—-——-———e..

ag in Q@finition 3.1 such that, for each s

-~

(i) hYS 1 ig a retract of XSA E for some specirum XS, and
1
{11) Ed, » E*Ys,l ie a nyE~-split monomorphism.
A map of Adams resolutions is a map of inverse systems. The canonical Adems

resoiution is defined inductively by letiing Ty = Y, Ys+1 = YS:\E and
:i.s = 1lai: YSAE +.YSA S = Ys

where the unit & + £ is the cofiber of 1i:E +» 8. The Adams spectral sequence for

[X,Y]x is the spectral sequence of the homotopy exact couple obtained by appiying
* %
[X,~14 to an Adams resolution of Y. It is denoted by Er’ {X,Y}).

Condition (1} ensures that E,Y_ , is a direet summand of an extended comodule
£l
and condition (iil) ensures that the sequences Ey¥ -+ E*Ys,z + EyEY ., are ml split

short exact sequences. Splicing them, we obtain an Injective resolution (¥*) of EX:

0 BY B ~—“--—>E*3Y<M7*XZY2’1 SIS
%) \E / E, 5°Y \
g LLg wh Lo

To proceed, we need another assumpiion on E.

gondition 3.6.
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[X,YAE]ly = HC)F&E*E(E*X,E*(YA E))E Homw*E(E*X,E*Y)

for any ¥ when EyX is =3xE projective. By {6, Prop. 13.4 and Thm. 13.6] this
nolds for E = §, HZ_, MO, MU, MSp, K, KO and BP. Note that Condition 3.6 will be

satisfied if we have a unlversal coefficient spectral sequence.

*
Ext_ J(EX, n JF) == F X

B

- for .the module spectra F = YAE over E. Also note that Condision 3.6 will Dbe
‘satisfied for ail Y if it is satisfied for ¥ = S, using the argument of {6, Lemma

12.51. Thus we have the following equivalent form of Condition 3.6:
if E,X is u4E projective then E'X = Hom,, p(EyX,15E) .

Finally, if Condition 3.6 holds then the isomorphism in 3.6 will also hold with YAE
replaced by any retract (wedge summand) of YaE.

Given Condition 3.6, Definition 3.5(i) implies that if E.X is «,F projective
then (X,Ys,lé z HomE*E(E*X,E*YS,l). Hence E, of the AGams specirsl sequence is
ExtE*E(E*X,E*Y} in this case. By (6, Thm. 15.1}, under appropriate hypotheses the

E E .
speeiral sequence converges to [X,Yly, where | , ]y denotes homotopy classes of maps
in the category obtained from the stable category ﬁ;ﬁ by inverting E equivalences.

For future references we note the following lemma.

Lemma_3.7. The resolution (*) obtained from the canonical Adams resgolution is
isomorphic to the cobar resolution C{E4E,E.Y) of Definition 1.i. If EyX i #yE
projective then the El term of the resuylting spectral sequence is isomorphic to
Cl{ELX, ExE, E.Y).

Proof, The isomorphism 9, converts the cobar resolution into (%), If EyX 18 5B

projective we use the natural isomorphism 3.6. //

In the next seciion we will need the following result on maps of Adams
resoluticns.

Proposition 3.8: Suppose E,X is wyk projective, {Xi} and {Yi} are Adams resoclu-
tions of X and ¥, and each E X, is myE projective. Let £:% + Y and let T bea
chain homomorphism extending fy:
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0——-—-———;:E*X—~—--w —ph *Xll—-n.--

L%

f*l 'fGl ?11

0 ——wE Y —— B¥, | e By g e

Then there is a map of Adams resolutions extending f and inducing t.

Proof. Sinee all EgX, are wyl projective, so are all E*Xi,l (z BgXy @ E*Xi+1).
Hence
[Xi,l’Yi,l]* = H"m{E*Xi,l:E*Yi,l}

and the ?i gorrespond to unique maps ?E:Xi,l + Y, , such that (fi?* = Ty, Ve

2 >t
construet £5:X; » ¥Y; commuting with £, , and £, by induetion.  When 1 = 0 we let
fo = £, This commutes with fb agince it comnutes after applying Ey and
[X’YO,].]* = Hom{E*X,E*Yo,l) .
Assume fq,f5,...,f5 4 have been constructed. Let fy be & map which makes the

following diagram commute.

R e ! 4
— ' =
!’ 141 ifi lfi-l lfi-1
— .Y
i % T4 1-1,1

To see that fi commutes with ?i we need only check that it commutes after applying
Ey, end this holds because 1% holds after composing with the epimorphism E*Xi—i,l *>
ExX;. This completes the induetion. //

§4. Smash Products in the Adams Spectral Sequence

We are now ready to introduce smash products into the Adams spectral

sequence. Our main result is

Theorem 4.4: There is a pairing of Adams spectral sequences
%% % %
Er (X,Y} @ Er (X',1') » Er (KA X', YA Y")
converging to the smash product
L&N*QIXHT]*+§XAXUYAW]*.

If EyX and EyX' are myl projective them the pairing on E, is the external product
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Ext{E,X,ExY) @ Ext{EgX',Eg¥') » EXt{EX @ ExX',Ey¥ @ Ep¥')

composed with the homomorphisms induced by

B (XAX') ———wEX® EX'

and . EY @ EY! ———>E (YAT').

(Note that the preceding isomorphism is the inverse of the external product
EeX @ EgX' » Ey{X aX'), and is an isomorphism because EyX and E,X' are uy,E_

projective.)

As a corcllary we have

Corollary 4.5: (i) {E.(5,5)} is a spectral sequence of bigraded commuiative
algehras.

(i1) E.(X,Y) is a differential E,.(8,8) module.

(1i3) If X = 5% for some space Z, and if Y is u commutative ring spectrum
then {E.(X,Y)} is a spectral sequence of bigraded commutative {ET(S,S}}‘algebras
whose produci converges to the smash produet internalized by means of the diagonal
A:X » Xa X and the product u:¥aY + Y. If 2 has a disjoint basepoint, then the
EL(X,Y} are unital.

In the ordinary Adams spectral sequence (B = HZP, ¢ prime) these results are
quite easy. If {Yi} and {Yé} are Adams resolutions of Y and ¥Y', then their smash
product {Yi}z\{fi} (to be defined shortly) is an Adams resolution of YAY'. The
prairing in Theorem 4.4 is then obiained by simply taking the smash product of
representative maps. To get the internal product of Corollary 4.5 we need only note
that the product YAY » Y is covered py a map of Adams resolutions
{1’1}». {Yi} * {Yi}. In the general case, this plan of proof encounters two
obgtacles. First, the smash product of Adams resolutions may or may not be an Adams
resolution. Second, a map X + Y may or may not be covered by a map from a given
Adams resolution of X to a glven Adams resolution of Y. fThere are two facts which
enable us to avoid these difficulties. First, for spectra which have 5yE projective
E-homology, everything works ag in the ordinary case. Second, ail the Adanms
resolutlons we need have the following form: spectrum to be resclved smashed with an
Adame resclution of a sphere. This enables us to reduce to the case of the sphere
spectrum, for which everything works as in the ordinary case, sinee EyS is 7,8
projective. The de}ails follow.
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Lemma 4.1. lLet (X,A,U0} and {¥,B,V) be CW triples. The geometric boundary 3 makes

the following diagram commute.

. X.X
AAY X AB L B
3 {a 1) (1 3}

AAYUXAB AN Y X B
TAY oERBO TAT = @ " EIvErY)

io il i2 .

Definition 4.2. iet X{)q—-mmxl-&——x2q—~w»~ “ee
3 3 3

and !oo--wgw—‘.{le—l—‘fzmmz—”.

be inverse systems in whieh each map is the Inclusion of a sibeomplex. The product
{Xi} A{‘ii} is the inverse system

k .o
7 4—-~€}-—Z «n—l-—.u

G 1

whers Zn = un}{ian.

Proposition 4.3: Let {Xi} and {"Ii} be Adams resolutions of X and Y. Then
{X.i}.\ {Yi} is an Adams resolution of XAY if either

{a) ExX and EyX; for each i are myE projective
or (bl {Xi} and {Yi} are the canonical Adams resolutions.
The resolution of Eg(XAY)} asscelated to {Xi}/\ {Yi} ig, rvespectively,

(g) +%he tensor product of the resolutions associated to {X;} and {Y;},
or (b) E(XAY) @ C(EE,nE) @ C{EE,n,E} = CIE,EE(XAT) @ C(E,E,n,B)

in

CLELE @ E4E,Ee(XaTh),

{Recall that C{A,M) = M@ C{A,R). Also, in case {a) note that the spiit exact
sequences

0 ——» E X > B

N+l 0
show that if two of Xn,Xn 1 and Kml have mxE projective E-homology, so does the

kS
third. Hence, if E,X is u4E projective, then X has Adams resolutions {X;} In which
each By X; 1s mgE projective. The canonical Adams resclution is one such.)
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o Proof: Use the notation of Definition 4.2. The equivalence

Z = L MY
1,1 P}'{Fn P,1 q,1

implies that Definition 3.5.(i} is satisfied in either case.

Suppose EyX, is nyE projective for each n. Then FyX, 1 is also nxE projective
X *
_for each n. Hence E*(xp)lh Yq,i} E E*}%,} @ E*Xq,l' This and Lemma 4.1 imply that

0 — By(XaY) ——= B2y o ——> ByZ) ) > cen

" is the tensor product of the resolutions associated to {X;} and {Y;}, and is

therefore n4E split since each of the factors is. This implies that {Xi}A{Yi}

satisfies Definition 3.5(ii) and is therefore an Adams resolution of XA Y. This
completes case {a}.

Let {Ei} be the canonieal Adams rescluiion of S, and let {Fi} = {Ei}n {Ei}' By
(a), this is also an Adams resciution of S and its assoeiated resolution of Ex8 is
C(ExE,nyE) @ C(ExE,ny®) (by Lemma 3.7). The canonical Adams resolutions of X and Y
are X4 {Es1 = {XaE;} and Y~ (E;}, and their smash product is XA ¥a {F;}. Since
each EgF; is gk projective, (b) follows immediately. //

Proof of Theorem 4.4. Let {En} be the canonical Adams resolution of S and let

{Fub = {Bg) A {Ej}. Iet y = (Y;{}:{Fn} > {En} be 8 map of Adams resoluiions which
extends the equivalence 34 8 » S. Define a pairing of spectral sequences

Er(X,Y) & ET{X',T{‘) + Er(XAX', Yayh)
by composing the smash product

YAE, 1@ (0,7 B, ]

t L
phy OAXY, YAR ATAE, ]

H
,Tnen

with the homomorphism induced by

Iaral
L i LA ' A G 1
Ia Es,rAY A Es‘,r Tatia Es,r Es‘,r int AFs+s',r
11!\'\;
' A
IAY Es+s',r

where y is a map of cofibers induced by vy. According to [64), this induces a
peiring of spectral sequences I1f
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{1) the pairing on E, induces that on ..y

and, {2) 4, acts as a derivation with respeet to it.

Condition (1) is obviously satisfied, and condition {2) is en immediate consequence
of Lemma 4.1 and the fact that {1A3){fag) = (ml)lfifl\ag.

1% is clear that this pairing converges to the smash product.

That the pairing on E, is as stated when EyX and EyX' are #xE projective
follows from the commutativity and naturality of the following diegram

(x%,¥] X,y _____/_\_..M_,. [X AX',YTAY']
3 'ﬂ® X-: n E) n+nl

v
Hor (B, %, B, ¥) @ Hon™ (E,X',E,Y") Hon™ ' (E (X A X'),B(Y AY'))

J' %
& K
K

M y
Ho™ ™ (B X @ By X', E Y ® B Y') —em——— Hon™ ™’ (E,X @ B X', B (Y AY)

E, ®E, l By

{Here «:EyX @ ExY + Ey(X aY¥) is the Kunneth homomorphism.)  //

§5. Extended Powers in the pdams Specetral Sequence

We are now prepered to show that if Y is a commutative ring spectrum whose »th

power map Y(r} » ¥ extends to a map
§:DpY + X,

then £ can be used to construct & homomorphism of the type used in 82 to define
Bteenrod operations in ExtE*E{M,E*Y}. Assume given such a spectrum Y and map f
throughout this section. As & consequence, we obtain in Corollary 5.4 an explieit
representative map for BEij given a representative map for x. In chapter VI this

will enable us to compute some differentials on gEpdx.

let 5 € %, and let W, be the n-skeleton of a contractible « free CW complex W.
Azsume that W, = w. The skeletal filtration of W induces a filtration

(r} Y(r)

i, _ - W
D“Y = ‘Hi of 51;?: W Ko

of W, X, where X is any ¥ spectrum.

> Y and, more generally, a filtration Wi.:xﬁ X
let ¥ be a ring spectrum which satisfies Condition 3.6 and for which ExE is wyR

flat. ILet

Y=Yo+yl4....

11

) be an Adams resolution with respect to E. Iet (F } be the r-fold smash product

{Ys]"{r}" The = aetion on Fy =_yo{x'} is cellulsr and ¥,y is a » subcomplex of F,
for each s. Thus we may define

0

and ZS=Wisans.

(1) Zi—l,s and zi,s«rl are subcomplexes of Zi,é
Z B
. i,s i
(i1) o - ~AF,
i-1,8 i-1
b4 B, ¥
(111) 08 s A B

3-1,8¥%1 601 Pip Fap

{iv) The following diagram commuies.
Zi!s . Bi A Fs
451,69 %1 g0 Bi1 Tan
31 Inlviag
2.
i-1,s %y sr1 Biag Fs 0B Tou
AT Vi 7 =R AT CVETAT
12,8 %121, 841 11,541 71,542 i-2 a4l i1 842

Proof. Parts {i}, (ii) and {iii) are in Theorem I.1.3. Part (iv) is much more
delicate and is proved in {Equiv, VI. 4.9 and VIII. 2.71. //

Theorem 5.2: If ExY, is mxE projective for each s then there exist maps

Ei, gt Zi, g * fg.3 which make the following diagrams commute.

i,s %,8-1" i s 51,8
El is 1 in,s'-z l"’z,s lgi—i,s

o-i Yorgg® g-i Yo i

Proof. Sinee W, = =, ZO,s = Fg. Thus we may let 5{),5 be the map of Adems

resolutions which Proposition 4.4 ensures us iz induced by Y(r) + Y. For induetion

we may suppose gi, g constructed satisfying the theorem for 4 < k. The maps Ex g for
8 < k are defined to be ’
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7 ——>Wx_ F, -53Y.

k,s x O

Hence we may alsc assume that £y . has been constructed satisfying the theorem for
r

g' < s. To construct §x,s compatible with £, 5-1 and Ek-1,50 W€ need £x,s to make

the following diagram commute.

Ex-1,8-1

-1,8-1 T F e

pA
_l,_._— - l is—k—l
- £ fesl Ly
k,s k,8-1 g1
The obstruction to the existence of such & Ex,s lies In [Zk,s/zk-l,S! Ys—k—l,l] and
by naturality lies in the image of [Zk,smllebl,s-l' Ys—k—l,l}‘ By Lemma 5.1.(i1),

EplZ; /%1 o) iz 73 projective for each i, and hence
> ¥

(2 /21 g0 Tguie-1,1) 2 Homp p(Bally o/Zy o) Ba¥oe 1)

The equivalence 5.1.(i1) converts the inelusion zk,s/zk-l,s * Zk,s—-l/zk—l,s—l into
1A Jg q where jo o 1s the inelusion ¥y » Fy_y. Sinee Exjg = O, the obstruction to

the existence of £, . is 0. /
?

If we define Mfk to be my (WM ) and d: Wy o» )‘/k_l to be 3y, we obtain a
Zimi~free resolution of Z with W, = Zlnl. Let Gs,t = By o¥s1 Then

¢ » CO > Cl > {',2 + sss is the resolution of EY associated to {Y }. if each EyYg
is myE projective then the Kunneth homomorphism is an isomorphism from C¥ to the
resolution associated to {Fg i. Lebt hpimy » By pe the Hurewicz homomorphism, < the

Kunneth homomorphism, and assume wnE = Zp

 Coroliary 5.3. If ¢ is defined to make the diagram

h© 1
W e E wo e QE v
k 1 Si’ti Ek X k-1 T b5y si,l
i
] K
I k-
; A
*y Epgrc Mg MFg )
k
‘ £
I k,s ¥
|
-4
et e By etklsk,1

commute {where 1 =t + «s0 + tr and 8§ = 8, + eee * Sr}’ then ¢ is in the chain

1 1

homotopy class desceribed in Lemms 2.3.
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f__fgéé‘_- The E4E comodule structure, the m action, and the diffevential on ¥ @ CT
' are specified in ILemma 2.3. By 5.1.{iv), ¢ respecis the differential. Since g
restricts to the product {Ys}r > {Ys}, ¢ restricts to the product ¢ » C. Both
Exg, e¥ and « are comodule maps, while hy ® 1 is a comodule map because the image of
hE is primitive. ¢ is m-equivariant because Ek,s is defiend on the ordit specirum
W " Fs. //

Now assume X is a spectrum with a coproduct aA:X + XAX. TFor example, X could
be a suspension spectrum with its natural diagonal. Assume also that EX is nyR
projective so that x:{EgX)}T » E*(X(r)) is an isomorphism. :

Coroliary 5.4: If e e W and fj e [X!Ysj,lltj—sj then $,({e ® fi5® °22 ® fr*) is
represented by the composite

Ys—k,z
t-s+k
E I g1‘:,s
giretkylr) kg, A 53 % v AN Y
i ea A fj ¥ k-1 i sj,l
J
Proof. Consider the following diagram
& ton ! =
W, ® : Hom (E*x,csj} = n M ) ® QJ? {x,xsj&;,ﬂj_sj

l@ Al

t T (r}
#, ® B ((E,DT, @C_ ) SNV, NS I AU S PR

Hom® ((E,x)7, 7, @ @ ¢_ )
i 51 la,g ]
] Hom({4A,®) k.8
Bomt(E*X,Cs_k} = (XY i 1 Mg

The left colurm is the homomorphism ¢ used in 32 fto define Steenrod operations in
EX%E*E(E*X,E*Y). The right column sends e @ fy @ <+~ & f, to the composite which
the corollary asserts represents dyle @ f1@ @ fr*). Thus we need only show
thet this diagrem commutes. This is an easy diagram chase from the following two
faets. First, there ls the relation between @ and A expressed by the dlagram at the
end of §54. Second,, the homomorphism

w: N ® Hom(M,N) » Hom(M, W, @ N)
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given by ale ® £)(n) = ¢ @ f{m}, when cowposed with Hom(l,hp @ 1}, sends e® f to ‘

e, ®f
Mz EgS @M ~———= Ey(W/W 1) @ N. 7/

Remark 5.5: When Y = S we are in the situation studied by Kahn [45!, Milgram (811
and Mikinen [62]. They worked unstebly, and in place of the ¥, structure mep
ei’n:D;Sn > 8%, (A coreduction is a map which,
together with the inclusion 1:89P 5 Dpsn, splits off the bottom cell.} Such core-
ductions exist for n even and congruent to O medule a power of p increasing‘with i
(Theorems V.2.9 and V.2.14). They can be obtained(by "destabilizing” ¢ as follows.
In V 82 we will show that D;‘Sn = BP?:J: and that p‘;"i . znp(i) ifazo (2t()
(and similarly for odd primes). Thus, the following composite is a coreduction.

E:DPS + 3, used coreductions

”g nt+il
£°p0
i
£47p
R on
zanSS e g0, 5 —EEn 40,

Tnis implies that we are looking at the same siructure they were considering.

§6. Milgram's Generalization of the Adams Spectiral Sequence

In (81} and 180], Milgrem introduced a generalization of the Adams spectral
sequence and used it to study differentials of the form drBEPjX in the mod p Adams
spectral sequence for w*SO. The essential idea behind the spectral sequence is
this. The Adams speciral sequence for maps inte 2 arises from a gecometric con-

struetion of a resolution of HeZ. Suppose that we have a filtration of HyZ of the
form

HyZ 3 Hyly J HeZo D oe-

for soms sequence (usuglly finite} of maps 2 « Zy ¢ Z5 « +++ . Milgram's I1dea was
to construet a geometiric resoluiion of Z in which we delay the resolution of HyZ; so0
that it begins in filtration 1. The Adams spectral sequence is then the special
case defined by Z « ¥ « ¥ « «se. Whem %3 iz the N-1 skeleton of an N dimensional
complex %, the differentials are determined by snd provide a clear piciure of the
attaching maps.
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Coﬁ;inue to agsume that E is a ring spectrum such that FyE i ayE flat and
which satisfies Condition 32.6.

Theoren 6.1: Let

fa £ 5
3=z« Lg% oy

be a sequence in which EyZ; 1s nyl projective and Ef; is a ngE split monomorphism
for each i, Then

C . *%
{i)  there exists a spectrsl seguence Er (X,a), natural with respect to maps of

such sequences, such that

s,t _ g~3,t-1
Ez’ (K,a_) = ? E2 ! (X,Cfi) .

%
where Er {X,Cfi) iz the Adams spectral sequence converging to {X,Cfiif;
(11} if ExY' is m4E projecilve and

fo‘\l f}~ Al
}AE’ = {ZpATY! e By A Y S e )

there 1s a pairing

E(E, 20 @ B (X!, Y1) e B (XA KT, 3 AT
> 4 B T ’ p VAR AT 3N

2t e o,y —2 o xaxzaxE

which is the direct sum of the smash preduct pairings on E2
¥ L2 I Rk . .
E2 {X,Cfi} ®E2 (xr,y") ——rEz (X aX ,Gfih‘xf );

(iii) 4f

Y= YO

is & mep from } into an Adams resolution of Y, then there ls a homomorphism ¢
of spectral sequences

T K

el

*¥% B
E, (X,1) = (XY
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which maps the pairing in (ii) to the smash product pairing

B B Y] —— B (XA XT,241)
- (X,3) ® " {x’, e (XA ,3
cel c

¥ G %%

E, (X,Y} &L, (xr,xr) ———+E, (XAX',Yng'} ;
. X% E .
{iv} the spectral sequence Er (X,g) converges to {X,Z], if

(1) E and 7 satisfy Adams' eondition for convergence of the Adams spectral
*¥
sequence £ (X,2) == iX,ZiE {stated below) and
(2) Ey(Mic Z;) = 0, where Mic Z; is the microscope, or homotopy inverse
limit of the Z. '

Bemarks: Adams’ conditions for the convergence of E:*(X,Z) Ei {X,Z]E are

{a) 2 is bounded below,

(b} E is commective and y: wOE C)wDE + “OE is an isomorphism,

{e) if RC Q is maximal such tha% the natural ring homomorphism % + mpk
extends to R + mpE then H.E is finitely generated as an R-module for
ail r; ’

see (6].

The proof of the convergence will show that EgMic Z; = O is equivalent to
lim EyZ; = O = lin® ByZy.

Proof. ¥First we will construct s new inverse gystem into which Z maps and from
wgiah E;*(X,g) will be obtained by applying [X,?]E- Then we will show that

Ez splits as stated. Next we will prove a2 statement which will imply naturality of
the spectral sequence and the first part of (1ii) simultaneously. The next step is
to eonstruet the smash product pairing and prove (ii) and the last siatement in

(iii}. Finglly we prove convergence.

Te construct the inverse system from which the spectrsl sequence will be
obtained, we begin by choosing Adams resolutions

f f f.
- i,0 A,k i,2
Cfy =% 0" 21 41,2 sev -
Let =y 1, By e oe; 3 be the natural map. Since FyCfy is a direct summend of EyY,
x }
{as myxE modules}, ExCfy s mE projective. Thus we may assume that Eud, ) is aykE
projective for all 1 and j. We will inductively construct spectra %, and

i
m®aps fi: Zi+z + Zi and ei: Zi > Zi such that we have a map of inverse systems

"7
f f f
el i
ZO Z Z wue
- ?- e -
ZO Z Z sa0
To start the induetion, led %b = ZO and €5 = 1. Assume for Induetion that we have

construeted Eb “ see & Eﬁ and &q,...,8, such that for each 1, 0 £ 1 £ k, there is
an EyE comodule igomorphism

E*Zi = E*Z}-. ® E*Zi“l,l @ vee (B E*ZO’i
under which e; is inclusion of the first summand. This Implies that E*fk is wE
projective. Thus we may define

my Ty R Ofy oV e Y OF

by requiring that my = ("k,0¢k}* @ Tgel,l % @ eev @y k% undir the isomorphism,
where ¢y, » Cfy = Zk,o is the natural map. Define fk Zk 517 Z, 1o be the fiber
of w. The definitien of my implies that the following diagram commutes, thereby
indueing ey, .

r ¢
¥ k
Zk+1 > Zk » ka
Eek+1 1 ey {“k,G’O""’O)
¢ -
¥ f i
5 X .7 k.
Ty y Oy 0¥ =tV Oy

let ¢ = Cleyly) and D = Cey,y be the indicated cofibers, and consider the following
braid of cofibrations.

e, f

/x_x\ "k

/\/\/
\{ \/

33

1 k-i
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gince (eyxfy )y is & monomorphism, Tpy is an epimorphism and hence
2 ees E 2
ExC = Eyly @ Bylyy 1 @ 120, k.

Since j,ry = W, we must have J;x = ®my 44 x. This is a monceorphism and, hence i
1M1 k 1 i,k-1 s ¥ Yl 1.

J 3 % ig an epimorphism. It follows thal 0

E,D = E*Zk,l @ rer @ E*ZO,}{H . .where, for each k, Ci; is a retract of G A E for some G, We shall factor this map
through ﬁhe. inverse system {fk} That 1s, we shall construct meps e!:%, + Y, such

L%k k
that the following diagram commuies.

How r, 4 = O because (e fy )y 1e a mopomorphism, Tt follows that (r.),jl)* = 0. This
implies that there is a unique homomorphism r:EyD » E*Z}ﬂl such that

r,]3 * = Ty oxe Thus royr = 1, from whieh it follows that E*zk+l 2 EgZy, @ ED and fy g )
that ek+1 * is inclusion of the first summand., This completes the :Induction'. We e ke+l
define E (X 3} tc be the spechral sequence obtained by applying (X, ?}* %o the ketd
inverse system {fi}‘ It is clear that . L Ck+1
B Py
. I A ~
g = @Yy er ). ~.
3 ! i i~
e >
*
To show that the same splititing applies to E; we need only show that d, is the G}lc -
. T . ¥ Y
direct sum {?él. For each k, ka = Cfi,k—i is a retract of Cya E for some Cy i, K+l
and E*Cf‘k 18 wyE projective. Therefore, the map ka > Zk+1 + kaﬂ_ ig
e . ige! 10N . T o=
completely determined by its induced homomorphism E,CF, » E,Cf, ., which splits as We proceed by induction. Let eof = ¢, and assume inductively thet ej,...,ey have
been col . |
desired by construetion. In other words, the sequence nsiructed. We seek o)., such that
0 » E,CF, » B,0F. - ' p Gl
» By Cfy » B,CT) » eer vl ;Ykﬂ
t e
is the direct sum of the sequences 6k+1l ckf}/” 113:
— /”
0+ ByOfy o> ByOf 4 > oee 1 "
with the ibH sequence delayed wntil homological degree i before it begins: 2 A
k
Ek
0 ——— E*Cfo . E%Cf'O 1 mag*cfo g T e
’ commutes. With the notations used in the braid of cofibrations, the obstruetion to
® @ @ the existence of ol . lies in the image of j,:(C,Ci ] » [D,Ci,). This image is
0 et E*CfI’Q e E*Gf}_’ ———Fees zero because O = jox:EyC » ExD while EyD is myE projective and Ci, is a retract of
CkAE‘
@ @
o ——r sz 0 — e as This completes the inductive construction of the c]'{. Now {iii} follows by
’

assuning Y, « ¥y + +++ is an Adams resolution. For naturality, suppose given
3y o= {Zé « Zi * eerks Let Y, = 7% and let o, -Zi + Z:'L be the composite

To prove naturality and the first part of (iii}, we suppose given & map of L
Zi ¥ Z'i + Z;;_; then apply the preceding paragraph.

inverse systems
Our next step Is to construct the smash product pairing. First note that
Er*; ' gatisfies the hypotheses of the theorem, so gives rise to a s;)éctral seguence
#%
E2 (x,émp) a (;) F2 (X,cfi:\ T) =—=[X,Za Y’ ]f for any X. Choose an Adams
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resolution of Y' with each E, Y} projective over mwyE

g g
¥ mYE) 4—2-—Yi.c-—l-...
and let
= 7 1
Fn U Zi’\YJ .

i+ = n

As in the derivation of emash products in the Adams spectral sequence (Theorem 4.5),

we have a palring from
*% *%
E, (X,z} ®E, xr,yy-

to the speciral sequence obtained from Fny + Fy « «o» by appiying [Xa X',?if, and
this pairing converges to the smash product. Thus, to show the existence of the
pairing
% *% *%
1 1 t 1
Er {X,}) ®@E, (X',X') » E. (XX ,%AY ¥,

we need only show that the sequence FO « Fp o« eoe is equivalent to the sequence

T
ZOAY a— Zl

need Adsms resolutions of C{f‘il\l) = Cf A If we use the smash product of our

AT g—ore  derived from 3A Y. To construct the latier sequence, we

chosen Adams resolutions of Cf; and of ¥' then both Fp,y - Fpand 2 A X" > 3 ndY'
have cofiber .
V of, . ™ Cg, -
iti+tk = n id x

Starting with FO = ZOA T = ZOAY’ we obtain an equivalence

F,a——— F_ dem——  ese

k R

ZOAY‘ ‘A—‘”"Z:LAY‘ e w b @

by induction. This proves the existence of the pairing. It iz immedlate that it
operates componentwise on EZ* hecause the pairing is defined by taking the smash
product of representative maps. This complebes the proof of (ii). The second half
of (1ii) is also immediate because the maps ci{fsl induee a map from FO + Fl “ e
to the smash product of the Adams resolutions of ¥ and ¥'.

To prove convergence we refer the reader to (6, Theorem 15.1] for the body of
the proof and indicate only the changes needed to adapt Adams' proof to our
situation. The easential step is to show that (Tj 'z'i)u; = 'f:f(“‘i’iﬁ E) so that we

1

will bave a short exact sequence

(%) 0 —» lint BZ, ~» &, Mic B —rlin BZ; —0.

We will also went this result with Ei replaced by' Z; throughout. By Adams’

S

. Theorem 15.2 if, suffices to show n;z'i = 0 for r <mn, where n; is independent of
i, and similarly for =,Z.

Since Z = ZO is bounded below we may assume "rZO = (} for r < ny. Then the
Hurewicz theorem and the Kunneth theorem imply that E Zy = =,{Zgn E} = 0 for
1 RS TR Since EyZ, » FuZg is a menomorphism, EZ; = 0 for r < n;. The Hurewics
and Kurmeth ‘theorems now imply that H.Z; @ ngE = O for r < ny, but Adams shows
]—‘[I:Zi @ nnk .z H.Z;. We conclude that n2; = 0 for r <. We therefore have a short

exact sequence

0 » in' B2 > EMe Z, » lim B,Z; » 0.

By hypothesis (6.1.iv.2), EyMic Z; = O and hemce lim' EyZ; = O = Lim EyZ;.

By construction of "fi: Zi 1 Ei, we see that the inverse system
BBy ¢ Byl € oo is the direct sum of E*fo + EyZy « +++ and an inverse system all
of whose maps are O. It follows that 1im __E*Zi =0 = lim E*Ei' Thug, once we have
the exact sequence (¥} we will ¥mow Ey Mic Z; = O from which convergence follows as
an Adams' Theorem 15.1. '

It remains only %o show ndy = 0 forr <mng-1. Sinece 1 Z:L =0 forr<mp

: T
and 8ll i, the exael sequence grzi > nr_“lzi +1 implies rCfi =0 formn < mnp and

iilti. This easily implies that anfi j= 0 for r <m;, Suppose, for induetion,
2

ﬂr§i= 0 for r < nj-l. The exact sequence

Tr+l \3/ ij,i—l g T

implies that Tl‘rzi+1 =0 for r < ny-1, completing the Induciive step and, hence,
the proof of convergence. [/

7. Homotopy Operations for ¥ Ring Spectrs

In this section we define ihe homotopy operations which can be obtained from X
Ting structures and derive their purely formal properties. Caleulatione of extended
powers of spheres will enable us %o glve conerete results about thiese operations in

Chapter V. Most of cur spplications will deal with the case k¥ = 1 of the following
definition.
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! T
Definition 7.1. If « €Y (D, 8= ses D, 8
m gy Iy 1

®
by letiing « {fl""’sz} be the composite

' *
], define a tm, X ser ¥ W ¥

L n D, flf\ “”\D,j kal

n 3
% g laieeaDn, § 5y 2 K D, Yaess AD, YaY 5> 1.
91 Ix 51 Jy

Remarks 7.2. (i) We write £ for any composite of the maps £: DJ-Y + ¥,
oyt leYA---ADan > DjY where § = jq * *** Ip, and p: Y(n) + Y, gince they are all
hemotopie.

{i1) We can obtain similar operations
*
[X,Y]. % eee x [X,Y] 2= [X,Y]
n n, m

n n
parameterized by o ¢ Ym(Dg S 1A vos A E}j S k} for any space X by defining

G*(fi,..-,fk) to he L k

k n k n,
xa gt La8sxa A D 8y A (ALDy 1 R AY
i=1 91 {=1 4

Ap, £, A1
i i *

g -

D, Ya¥
1 ji

S

L

where A is the composite of the diagonal X » X{k}, & shuffle map, and the natural
transformation XA Dan + Dj 2%, This is a direct generalization of the classieal
derivation of Steenrod operations from the map Xa D3 » DoX.

The next proposition records fairly obvious properties of these operations.
Recall from I.§1 the natural transformation
§:D (XAY) » D XaDY.

The produet u: Y~ Y + ¥ induees products

Y:I.A ® YJ.B e d Yi+1(AA B)
and

TriY ® nj‘f —_— ﬂi+éY,

hoth of which we denote by juxtaposition.

S(i1) la+ B

i) oy !mlmé.s},\---ng.s ) and a, €Y
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: . «
‘proposition 7.3. (i) o iz natural with respect to H_ ring maps

)*=a*+8*

S (iii)  The patural inclusion 1:Sn‘§ > Djsrl induces a.*(x) =x .

n

" k43
3 (D SELy A 8%
1 k 2 ¥+1 32

* % *
then (0.10.2) {fl""’fﬁ,) # o (fl""’fk)aZ {fk+l""’f£}'

2

CaGy) = (8y0a)) (x,7). Thus if sy(a) = § B, ‘then

a*{xy)' ) ‘ai*(x)si*{y).

froof. (i) and {ii) are obvious. (i11) follows from the faet that
Y‘j —r s ‘{)'}.Y b Y

is the j-fold preduct. {iv} is alsc obvious from the definitions. {v} follows from

the commutativity of the following diagram

D, (%A y)al D, (u) Al
st Mﬁmwné{s"wsm) AY —'j—————-—Dj(Y AY} AY MDJY AY —5 ey
8, () snl § AL "
D.xAD.YA1L
z}éé’;\ DJSmAY Dy ¥ A DAY EOE Al YA Y A

Commutativity of the rectangle at the right follows from the definltlon of B, ring
spectrum and commuiativity of the diagram

‘D, {1)
Dy (Y aY) -wimwnjnzy

16 Iﬁj,z
DJ.YA DjY W——haj’j Dij

by Lemme I.2.12. //

As should be expected from thelr esseptially maltiplicative origin, the

. * : . .
operations & are far from being additive. In faet, their behaviour on sums is

determined by the transfer maps

T DY+ D, YA «eenD ¥
EA. 4y dy
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defined in II.1.4 for each partition J = (i;,...,j) of j. When J = (1,1, 000,1) we

i = g.s {3
write 1y 1J.DjY + ¥ .

Theorem 7.4. I o e ‘I*Djsn then

atay e by - ) (1 a1 0y ey )

where the sum is %taken over all length ¥ partitions J of j. If j is a prime p and
we localize at p, then for a « Y*Dpsn

0 : . p>2and nodd
% ¥ ,
alfx) = falx) %T‘TP g la) (] xi)p -3 xip) p > 2 and n even

1, gladl ¥ x.x,) p=2

2 ¥ 13 1§

{all unindexed sums are over 1 = 1,...,k).

Proof. This 4is an immediate consequence of Proposition II.2.2. //

In the rest of this section we shall use the spectral sequence of $6 together
with the filtered meps cbtained from §5 to describe the behaviour of homotopy
operations in the Adams spectral sequence. Let us adopt the following notations.
let x ¢ mY be detected by X ¢ Byl ©

ring theory E. Iet P be the sequence

{8,Y), the Adams spectral sequence based on a

I)ESSn + Dzs-lsn “ eer ‘D}‘Sn « g%

isn =W K sP (P} 45 the extended power of &°

based on the i-skeleton W; of the standard free = W complex (W2i—1 = Szi"l). By
Theorem 5.2, ED_(x) induces compatible maps

where w ig eyclie of order p and B

D (x) E
DiSn T » DiY i,p8
m m S5

Yps—i

(if E*Yj is uyE projective for each j), and hence, by 6.1(1ii), a homomorphisn

P (8,8) » £ (8,1

of spectral sequences provided the domein spectral sequence exists. Similarly,
smashing with Y and multiplying, we have compatlble maps

i
(DS Ay — Y

and, hence, & homomorphism

%
Plxr: B (S, B A1) —¥E, (8,7).
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ﬂ.progosition 7.5. 1If E*Dinlsn > E*Disn is a nxE split monomorphism for each

- . *%
" i < ps then the spectral sequence Er (5,F) exists and E2(8,19) is free over

. 3.1 %%
Ez‘S'S) or: generators e ¢ Elz)s J"pS+i)I](.":‘>,,,B ¥, Similarly, Er (S,paY) exists and
Ez{s,ﬁ A Y} is free over Eé(S,Y} on the images of the e; under the map induced by

the wnit & + Y.

Proof. The cofiber of D?lr”ls“ > s gs Wy e 2P L P g E*Disn is a

free wyE module. Thus, Theorem 6.1(i) implies that the spectral sequence exists and

.

t b4 - -
15 %S, 802 0 1 00 (s,870"0P,
J
LI | -’ -
E; d :%‘ np SP(S,S).

HH

@
J
0

e let e; be the generator in Eg’ (5,5) for the j = ps-i summand. //

We think of ey a8 the np+i cell of DﬁSn, or alternatively, as

ei @ i Q 20 @ L (this is its name in the cellular chains of D"Sn).

Note that & satisfies the hypotheses of the proposition when E = HZp. Recall
the function v from 2.4 (w(2j + &) = (-2)3 (1)),

Theorem 7.6. Assume in sddition to the hypotheses of 7.5, that ExY iz 1uE
projective. Then § (x) sends e 1o dyle; ® ). Thus, when p = 2, Plx) sends ey
to PYP(X) and when p > 2, Plx) sends (-1)jv(n)ei to 5EP3§' if 1= (2i-n){p-1)-¢
and to 0 if 1 does not have this form.

Proof. The definition of ? (x) implies that T?(x){ei) is the composite

Gap+l ey Wy A Sn{p} 1'\§‘P) wi Ay (p} Eiags ¥
W, W, 8,1 ps-i,1 "
i-1 i-1 ’ *
We choose as generator e; the map
A
gt g 2T o)
W
i-1

in which ey e ny(W;/W; ;) = 74 is the usual generator. Thus P(x)(e;] is exactly
the map which Corellary 5.4 asserts represents Q*(ei @)xp). //

Since P (%) ammihilates elements e; with 1 not of the form (2j-n}(p-l)-¢, we
will dgnore them too. In V.52 we will see that this amounts to restricting

attention to a wedge summand of D“Sn which is p-equivalent to sps“.



126

. .
Convergence of the spectral sequence Er(s, B te n*D?; Sn implies that any -
a ¢ 7,00%"  is detected by an element § ae € E,(8,8), ay ¢ EyiS,8).
Applying D(x), we find that o (%) is detected by § akq:*(ek@a ¥, Similax"ly, i.‘or
o e Y*DPS§ detected by § a8, € E,(S,PAY), 2y e Ey(8,1), except that if ¥ is
m . 8.0
not bounded below we have no guarantee thet E. {8, RaY) will converge ic Y*Dﬁ 8.

*
Gorollary 7.7. Tf « ¢ Y,D PPs” is detected by | ayey in Ex(S,1p a¥) then o’ (x)
is detected by | akP]‘:+n ¥ ifp=2orby § (-?{}'3\3(11)“151}5351’3 X if p> 2 and
¥k
K = (25-n}(p-Li-c.

The map P(x) :{E:*(S, DAY} » {E;*{S,Y)} also ensbles us to translate

differentials in {Er(S,@AY)} into differentials on Steenrod operatione.

Corollary 7.8. If d,laey) = a3k, in Ep(S, 2 A ¥) then

k+n = ki
dr(aP x) = a,?P x }f p =2 and

i TR - PO
1 {-1) laiB}“Plx ifp>2z2,

dr‘(aE;E:P'j x)

where k = (2§-n)(p-1)-¢ and k; = {(2j;-n){p-l)-e;. Ia particular, if aey is &
permanent eycle, then so is aPE™ % (if p = 2) or agfRix {if p > 2).

Mote that Corollary 7.8 only applies io permanent cyeles X. Much more general
resuits will be obtained in chapter VI.

The next result says that in the ordinary mod p Adams spectral sequence
(E = HZP), a homotopy operation cannot lower filiration.

Propegition 7.9. Iet E = HZP. If x5 ¢ mxY has filtration sy and
n

Il
ae Y, (D, S A seeab, 85
iy j

} then a*{xl,...,xk) hag filtration at least
k

S}. + wes 4 Sk.
Proof. First, it suffices to show that
X DY Y
DJ s JY :
* .
lifts to Y5, for them o {xy,...,%,) will factor through

Y A ereAY AT —»Y  AY—>Y
51 x "

To obtain the 1ifting we need to faetor Qij > DéY as the composite of s maps which

e are zero in homology. But this is easy. The factorization
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Dij > DéYS—-l > aen 3 DJY} + DjY

suffices sinee the natural isomorphism

Hy(DyX) = H*{zj;H*X(j))

and the fact that HeX; . + HyY; is zero imply that H*DéYi a7 H*DjYi ig =zero for
each i. //

Note that the propesition will hold in the E Adams spectral sequence whenever E

iz sueh that if EyX s+ EyY ig zero then E*DJX > E*DJY is also zero. The spectral
sequence

only gives us this on an associated graded t_o E*DJ-K ang E*DJY. I have no reason to
believe or disbelieve the result for gemeral E.

Remark 7.10. There are two variants of P which are also useful. First, taking into

account the fact that all of DgSn will be mapped into Y = Yy by the eomposite

DSX1 T DY “DY—€*—>Y
TI' T8 T

we can replace D’};SS22 in B by all of Dpsn, giving B':
D& « DPSTIG PRI L L it « g

We still get ?(x):EI.(S o). Ep(S,Y) for any x ¢ wy¥. To get Eo(S,R') from
s (n+s)p n @ 3
E;(5,8) simply replace the summand (8,8 ) by Eyi8,5 Ln{p-1)+ps}’ which can
be obtalned (through a range of dimensions) from Mahowald's tables [59] when p = 2.
Mehowald's tables have the virtue that ithey are derived from the cellular filtration
of the stunted projective spsee, so that elements are named by giving an element of

EE{S,S) and the cell on which it occurs. Thus Theorem 7.6 and Corollaries 7.7 and

7.8 can be used with E.{S,®') as easily as with E.(5,®).

The other variant of ¥ requires that E = HZP' It takes account of Proposition
7.9 by putting everything into filtrations between s snd ps, rather than 0 and ps
a8 o' does, That is, S " is the sequence

D s evempd o plp-tielg 0 plP o g0
™ ) ki3 " T

with Dn.‘s""l in filtrations O through 2. Its By term is similar to Ey{8, B'). It has
a copy of EQ{S,S) for each eell from np to np + {p-1) - 1 together with an copy of
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-

ectral sequence E (S, ®") is optimal in the sense that
(n+sHp-1 The sp 4 EptS,

E2{S,§:nL
it has all homotopy operations (unlike Er(s,§3) which only uses the bottom ps cells
of D&} and puts them inte as high a filtration as they will go universally.

"

y)e

CHAPTER V .

THE HOMOTOPY GROUPS OF K, RING SPECTRA

By Robert R. Bruner

4l Explieit homotopy operations and relaiions

' This section contains statements of our resulis on homotopy oyerationé as well
as some applications of these resultis. The proofs depend on material in 832 and will
be given in §3.

Note that, aside from the computations in n,5 at the end of this section, all
the resulis here apply %o the homolopy of any H, ring spectrum Y. ILet g:DPY + ¥
denote the structure map.

The order of results in this section Is:

relation to other operations,
particular operations and relations,
Cartan formulas,

ecomputations in myS,

remarks,

In order not to interrupt the main flow of ideas, we have deferred a number of
remarks until the end of the section.

Throughout this section let Er(X,Y) be the ordinary med p Adams spectrsl
sequence converging to [X,Yly, and let E.(5,0) be the speciral sequence of IV §6
based on ordinary mod p homology. Let 8@ be the sequence

. 3 1 0
O = {z}ps“ cer % Dpsn RRITIE - R Dps“}.

From the spectral sequence Er(S,DW we obtain an isomorphism between an associated
graded of n*nps“ and E_({S,D):

EmD ) = 2 (8,R).

*
write E9(a) for the imege in Ei’ (S,B) of an elementhen*DpSn of filtration . By
IV.7.5, E5(8,0) is free over £,(5,3) on generators ey corresponding to the cells of
Dpsn. By 2.9 below, a more econvenient basis over EZ{S,S) is given by the elements
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gnd _ 3
B7PY = (-1} v(n)eJQ“E“n(P“l)

'farticular operations and relations .

%
Hereafter, if 0 ¢E _{5,0D) and xen Y, let o(x} = {a (x)EEO(u) = @}. Clearly,

where e =G or L (e =0 if p = 2), q = 2(p-1) {g =1 if p = 2}, Jg-e > n(p-1) and v . ‘
" the indeterminaey in e(x), defined to be

ig the function defined in IV.2.4 (v = 1 if p = 2}. Thus, E%{¢} can be written as a
linear combination of the Be?g with coefficients in Ezts,s). Recall the operation

a*: LM “NY associated to each element oe nNDpS“.

#

md(e(x)) = {a (x) - 8 (x) %) = o = B(s)},

is the set of values of all homotopy operations on x whose corresponding element in

Relation of the a* to other operations 'Ew(s,xg) hag higher filtration than does o.

¥ .
Proposition 1.1. If 1:8°F » DPSn is the natural mep then 1 (x) = x¥ and . Proposition 1.5 (Kahn, Milgram): The following are equivalent:

PPop=2

P20 = (P p>2andn =2
0 p>2and n odd

(1) 8°pd acts on Y

{i1} e; ¢ E_(8,0), 1 = jg-e-n(p~1)
{iii) B;Sn is redueible
(iv) if p = 2 then n = -i-1 (20(1i}y;
if p>2 then g = 0 and n = 2%,

Propoosition 1.2. Iet himy » Hy be the Hurewicz homomorphism. If Eoa) = 85PJ then o} (P$(i))‘

ho a* = BEQj o h, where SSQJ is the Dyer-Lashof opera;iun defined in III.1.

or ¢ = 1 and j

The functions ¢ and y ayre defined in 2.5 and 2.11 below.
1 B = ¥ aj,EBSPE, with each a; ¢ E,(8,8) and E'QEQ(S,Y), we let

i
E ) (%) = § 8 SBEPJ(E). Lefinition 1.6. If p = 2, let fg = 2, B) = n, B, = v and let g, be 2 generator of
H)

Im J in dimension Sa*zbul, where j = 4a+tb and 0 < b < 3. If p > 2, let ag = P, and

Proposition 1.3. (Kahn, Milgram) If xem,Y is detected by X ¢E,(5,Y), then at(x) let a; be a generator of Im J in dimension jq-1.

2
is detected by Eo(u}(i)-
: Theorem 1.7 (Toda, Barratt, Mahowald, Cooley}: Let p = 2. If x en,¥ and

To gee the reiation to Toda brackets, suppose we have compressed o into the J = 4a+b, 0 < b < 3, then

i.n s 3 ~ np+i s .

that it projects to & on the top cell § + lLet

np+i skeleton DPS and that it proj o T 33 ox° =0 if nz2 - 8a- 2b -1 (23+l)
a;-l(x) ® Dp(x)ED;'lsn and let ej e mppey 30p & be the attaching mep of the np+i

2 and Sj o Pn*l(x} = ux2 for some o 6“83+2bs if nz0 {2} and
nz2l-ga-2P -2 (204,

Proposition 1.4. ?*(X} €< @, Cs ) gDéml(x) >. The set of all such o' {x) is & coset
of D2 Hx) o mon i

A wa Theorem 1.8. let p > 2 and x en,Y. Iet ap(a) denote the exponent of p in the prime

factorization of a. If n = 2k-1 then
Note: We will frequently find further that (a) = ag®p where 1 = jg-e-n(p-1) and 5
(-1)dv(n}a detects &. Then aj © BFX = 0 if j =0
P2l (@ = Pl () = ag (%), or § > 0 and ey lkrj) = j-1.
If n = 2k then

so that u* is detected by Toda brackets in essentially the same fashion as by

a, © 8Pk+1x = ax’ for some a
Steenrod operations in £,(5,Y). J

T(5+1)a-2"
it § =0

or j » C and sp(k+j+1) = j-t.
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Theovem 1.9. The operations listed in Tables 1.1 and 1.3 exist on m, and satisfy . TABLE 1.2 .
the relatione listed in Tables 1.2 and 1.4. In Tables 1.1 and 1.3 the columns
lsbelied "indeterminacy" list generators for the indeterminacy of each operation, Relations among operatiocns on m, for p > 2
and the columns labelled "TP*“ list the values of
. P L .
TP*.NNDI)@ - nNsn # "N-—nps n relations
thereby indicating the deviation from additivity of the given operation (by IV.7.4). n = 2k-1 paPY = phoPX = pg P = 0
(k+1)oq gP¥ = 0
TABLE 1.1 _—
n = 2k-1 ppPE*L = Pk
Cperations on w, for p > 2
n ¥ = -1 (p} alstﬂ £ 0 mod aZSPk
. R . = 2kul ptl - pE
n operations indeterminacy Tk n phpf £ 0 mod app
k = -2 {p}
n = 2k-1 ap¥ 0 0
noP* 0 0 n = 2k Koy PE = pgp*l
g~ 0 ' o (k+2)ay gt = 0
n = k-1 n = 2k pepk*2 = —hOPk*'l mod azpk
ppi+t hop¥ 0 Xz 2 (p)
ks -1 (p}
n e 2k-1 nggPE"t oy BPE 0
x=-2 (p) ppk*2 g P and 0
hoPk+1 (if it exists)
n = 2k PX 0 p!
BPkﬂ alPk maltiple of ay
hOPk+1 ang multiple of aj
n = 2k gp¥*2 Pt and multiple of ay
k= -2 (p) ayPE
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TABLE 1.3 TABLE 1.4 )

Operations on forp=2 Relations among operations for p = 2

n operations indeterminacy Tox
T 50 (4) 26" .
nz0 (4) pit 29" 2 2n PP s 2Pt
1
Pl P n
" =0 (8) 23 -y P2
pi+3 23 pht multiple of v e 1
n P2 2n P42 0 multipte of v 20P™2 < yn P72 = 0
n=1l (4} Pn 0 0 = 4 (8) 2?n+3 = han+2 + vt
h, PO+ 2P 2 npP*3 a PP
1 o 0 or g Pn+2 2
e 2pRte 0 or n? vy = v
han""j 2h1Pn+5, vpn 0 or ve g1 (4} 2" = 0 2han*5 = h?pn“'
h%Pn+4 Zhipn-'.zi‘, VZPD 0 or \)2 zhlpll+} = ﬁan 2h§Pn'+4 = h:BLPrl+3
P and3, V0 0 or v? 252 o X =
n Pt -
nzl (8} Pn+6 2Pn+6 0 or v i 1 0
=1 (8) nFe = 0
nz2 (4) o 2p1 2 2an+2 =0
pil ap® 0 n:6 +5
2P0 = han
ny P4 2n, PIv4 0 Ay T
p2 3 P2 0 ) woony
1 1 upp.+2 -0
P 2n 2P o
i
n,B*3 VPP 0 or v? =2 (4) 2P < np? 2n, PP = plpnt3
- an} =0 thpmj _ hipxuz
1
= +5 pots 0
nz 2 (8) Pn 2 Aan=G 2hipn+2—0
ns3 (4 Pt 0 0 z 2 (8) 297% - han+4
nyptt 0 0 or n? AP - g P
+3 +3
by P 2y P 0 =6 (8) w1 -
2 n+2 +1
han n?,hlpn 0 2h2Pn+3 N
+2
thn © 0 nhanH* = 0 mod van
n =3 (8) P4 2pAt4 0
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n=3 (4 2" = 0 on P73 - p2p2 Carten Formulas .
- 1 1 N .
-~ 2042 _ 2. vl
nP =0 2han =7 hll’n . For later computations we need the Carten formulas for the first operation
2hlpn+1 =0 2h29n*2 =0 above the p¥® power.
- 0+ onv3 -
nz 3 (8) 2F = hlP proposition 1.10. Iet » = 2, xew, ¥, yen,V. Assume n+m is even. Then
a4 = n 2
2 _ 2
nh, P = 7P P52 o 2P . megyz D =m=o (2)
2
: +1 .
nz7(8) v = 0 : P ) = {8, () nz3(4) orms 3 (4)
+ 2.2
nhlp“ 3.0 Sn,m(x'y) Yooy ey nzmzl (4)
nhQPn‘2 =0
where Sn,m:"n R Wp ¥ Wolnamyen is an operation such that
(s, ) = PPl . prrlpe
F

=
S
<3
=}
I
B
]

1 {4)

and ZSn,m{x,y) =

a n

HE
N

{(4) ormz 3 {4},

© and where e m is an integer depending only on n and m.
L E

Proposition 1.11. Let p > 2, x enn‘.{ and y ¢ nyY. Then
(i} if n = 2j and m = 2k,

P9 (xyy = gpd P + xPept(y) L
¥y

where d,  1s an integer depending only on n and m.
2

(31) if n=2) end m = 2k.]1,

gpd ¥ (xy) = xPerE(y)

(iii) if n

2j~1 and m = 2k-1,

3Pj+k(xy) = Sj ’k(x,y)

where Sé,k : ?’Ejmzy X Ty o

0 ., k x -
tnat 065, ) = gl o PE e P o gPt and ps; xy) = o

Y » 1’2(5+k)p-3x is an operation such
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Computations

Our final results contain extensions to all M, ring spectrs of classieal
results about u,8 due to Toda, Barratt, Mshowald, Gray and Milgram, as well as some
low dimensional caloulations ab the prime 2.

let = denote equality up to multiplicatieon by a unit.

Proposition 1.12. If p = 2 then pli2) = N

Proposition 1.13. If p > 2 then BPl{p) z %y andﬁﬁ?pnz(ul) = By

Combined with the Cartan formulas 1.10 and 1.11, these yield the following
results.

Proposition 1.14. let xen Y andn = 2j. If p = 2 then FFl(2x) = qx%. If p > 2
then st*}(px) 3 ulxp and BPJ+P"1(a1X) = lep_ The indeterminaey of each is O.

Corollary 1.15, Iet xem¥. If p =2, n# 1 (4) and 2x = 0, then axe = 0.
If p>2and px = O then ¢qxP = 0. If p > 2 and ayx = O then g4xP = 0. In

g2 = 0.

particular, oy By

In the next proposition, the statement "an(x) = y mod A" means that A

is the indeterminacy of aPd when applied to x. If the indeterminacy is not
mentioned, it is O.

Propogition 1.16. The following hold in my8 localized at 2.

(1) Pl(n) = o2
(11) P2 = v&, np*u) = no or T, niPP0) = 0.
(ii1)  P°, n1P4, hlPé, h§P5, and h2P5 annihilate 2v and 4v.
(1v) 7%, #7, n%°, ena n2p° amninilate 7.
* #*
v) Plo) = o2, nplo) =0 orn + g,
* ¥ —
hlplﬂ{u) =y mod <2y > + <pu>,
2.9 * ¥ -
hlP (¢} = 2y mod <4v > + <nu>.
w1 #720) = 0, npP20) = 0, 027200 = o,

* * —
hlPlO(Zc) = 2v  mod <4w > + <np>,

* -
h§P9{25} =4y mod <ap>.
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(vii} P, b, P%, 1%P7 and n,P” apninilate 4o,

* —_—
h}P10(4o) = 4y mod <npr .

‘Remarks: These are listed by the result %o which they refer.
- Rewar:s

{1.4}: The indeterminacy of the Toda bracket <&, Cis gDé—l(x)> in Proposition

: i-1 i-1.n > . %, .
.1:4 is aDP {(x) o "NDp g+ ("np+iY) o a, while the indeterminacy of o (x) is

oniy gg;“l(x) o “ND;—lsn. This reflects the fact that o (%) uses the canonical

;nazl‘homotopy D;(x} of E%"l(x} o e;, whereas the Toda bracket allows any null
:homotopy of ED;"}(X) oc, .

{1.8): Since =

——— b

: q-2 ig the first nongero homotopy group of S in a dimension
‘eongruent to -2 mod g, we get '

ay8P % = 0
for j < p~! satisfying the hypotheses of {1.8}.

(1.9):

given in Tables 1.1 through 1.4 generste all the operations and relations over uxS.
0 {4) and p = 2:

(i) In the range of dimensions listed, the operations and relations

For examples, when n =

nPn and nan are nonzero operations because the relations listed do
not force them %o be 0;

(2}

(b} +*he relation Ahan+2 = 0 follows from the listed relation

2n P2 = 2pntl

and is therefore omitted;

{e) the redundant operation_han+2 is included because the relation

2pP*3 = p, P02

which makes it redundant reflects a universalliy hidden extension:

v

Tit2 ///

P

A

2
2n+3

2n+2

hgP™*3 = 0 1In %, and 2P%x  is detected by nyP""%x,
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(i1}

interesting.

0 (4) and p =

Tonsala® = %y @ Zge

The operations of degree n+3 for n =z
If n 30 (8) then by [59]
vP" and P22 with relations

2 are particularly
It is generated by

2P3 = p P2

AP = o PRTR s 2P,

and

If n = 4 (8) then [59] gives w2n+3D28n = 24_C) Z1g 8nd it is generated by han+2 {of

order 4) and P*3 (of order 16) with relations

2n, P2 = vl
2P0 - P02 4
403 = p2pntl oy pypn
S OEIE

(1ii) ©Eniries in the Tp¥ column sueh as “0 or n2" indicate that we have not
ealeulated < Suchk entries simply list the elements of zx3 in the relevant

dimension.

e
Fven this limited information is useful in  Proposition 1.16.

(1.10) and {1.11):

(p(P™)

let v: @ + @& @ (L be the diagonal of the Steenrod algebra
=y eh, 1

G .
E(a) = § 8k, ae E,(8,8), 4 eaq

then
0 =
E (8, (a)) = ] aiw(Ai).
This defines &4{a) and, bhence, the formula for a*(xy), modulo higher filtration in

B (8,00

{(1.15): This proof that ay Bp = 0 giffers from Toda's in that Toda views the
product in myS as composition and studies (Sn\J & l) while we view it as the
smash product and study DPSnJ\DPSm. Toda shows that

T n+i 14 np+q
D (S e gt e
P( s PO .
and
enP+PQ'1 .

p_{s® ) 5 5P,
1 1

Thus, if px = 0 or ajx = O then a1xP = 0 or 8;xP = 0, respectively. The proof glven

in 1.15 uges the values of the operations on p and &, rather then the structure of

Dp of their cofibers.
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fSegal [491 saw that the Cartan formula for homotopy operations should provide a

Pféof'that “1é$ =-0, but his explicit formulas were incorrect.

P
1 1
mechinery of homotopy operations but does require that we have calculated enocugh of

There is still another proof that o = () which uses virtually none of the

.iﬂ*s to ¥mow that the p q~3 gtem is either Q0 or £ Given this, the relation

-
pﬁ?p P,
from Table 1.2 implies that o 311’ = 0.

:;ggmgggwglgz; This is a quick survey of results on homotopy operations which are not
Toda [106] shows thAb the extended powers propagate several

= 0 then gxP = Omod @) for 1 < & < p. 4s

ineluded here.

relations. For example, if <ay,p,x>

sorollaries he shows that ﬁst = 0 and the g, are nilpotent, foreshadowing Nishida's
proof, a few years later, that all positive dimensional elements of 7yS are

nilpotent.

Gray [36] obtained results similar to 1.15 using homotopy operations which are

- agsoelativity or commutativity obstructions for ring spectra.

Oka and Toda [92] have extensive information on the cell structure of

PP{SQ‘JP en+1} which they uge, in particular, to show that yq # O. k
n+l

. &
\le

: operations which can be iterated %o yleld infinite families of elemenis in =,3,

Milgram [80] also uses extended powers D2{Sn }  to define homotopy

'fpresumably related to the elements detected by K-theory.

Cooley, in his thesis [30],
and %o derive 1.7 as well as the relation ex* = 0 if x ey, D E 2,3,7 (8), which is

uses extended powers to compute some Toda brackets

Cnot in 1.7,

Milgram {79 and 811 computes the Coker J part of the operations on 1gS and n98
© using Steenrod operations in E,(S,S).

© §2. Extended powers of spheres

In this section we collect the resulis on extended powers of spheres which are
. needed to prove the results of §1. They will also be essential to our resulis on
differentials in the next chapter. ¥Firsit, we recall the values of the K and J
groups of lens spaces. Then, we identify the spectra Disn, m  ¢yelie, as the
suspension spectra of stunted lens spaces and determine when they are stably redue-
ible or coredueible. Also, we show that, after localiming at p, DpSn is a wedge

summand of Dﬂsn, which gives a simple cell strueture to Dpsn.
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Throughout this section, let p be a prime, let n zp be the p-3ylow subgroup
generated by the p-cycle (1 2e-.p), and let wE be the k-skeleton of a contractible w

or L (Definitions 2.1 snd 2.7 provide the n free COW complexes

bos .
which we shall use most frequently.)

free CW complex W.

The results for p = 2 are snslogous to the results for odd primes, but are

. J(;z) ¢ J(I
denote the restrictions of these elements to iZk
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22k+1

}, and let ¢

£-1 RHEEL) | et £3%4 58 ané ¢ also

We collect some results from [47], 148] and [58] in the following theorem.

=2k =2k+l .
: . et L be the inel <
sufficiently simpler that we state them separately. We begin with odd primes. Theorem 2.3 » T e the inelusion and let <x> denote the syclie group
.:generated by %.
. ~2k+l 22k .

pefinition 2.1. et p > 2 and let p = exp{241l/p). let z set on the unit sphere ey 1% xu(E )+ KUL™)  is an 1somorphism and
gRk+l - gl by letting & generator of s send (zi} to (pzy). Iet fﬁ(izk) - <> ® <az> ® eor <C‘p_1> )

~2k+l | 2k+1 o

L =S/, (1) RO 5 B(E%%) is en epimorphisn,

w2k ~2k+1 » y y

B = {lgg,eensmy] e | 2y 1& real end > O}, ROz - (175 @ [,

~ntk ~n+k -1 " . ] .
ang Ln /L and 1" 1s projeciion onto the first summand under this isomorphism.

k-1 .
where izo,...,z§1 denotes the equivalence class gik(zo,...,zk) and T, iz (111) ?(ﬁ2k) = <rlg)> = <¢ - 2> and has order p[k/(P‘1)§
embedded in iz by setting Zy = 0. We call Ih & stunted lens space.
| 1L - 157K @ 3sh
Each representetion of m on ¢E*2 without trivial subrepresentations ylelds a %
d i° i roject i 1
free n action on S25'1 and a corresponding lens space SP5*l/r, Since they are all an is projection onto the first summand under this isomorphism.
. Meo, Jlgg) = ¢ for i = 1,2,...,p=1.
stably equivalent we have simply chosen our favorite. Note, however, that the
others reappear briefly in the proof of Proposition 2.4, Proof. This is all in 147), [48] and [58] except Hgy) = ¢, which follows from the
It 18 easy to see that in in-l is an open n cell. Thus in+k has one cell ¢ Adams conjecture:
o w o : i i

in each dimension between n and n+k inelusive. Note that L? =% and i = (Ln)+ J(;i} = JrE" = Jry £ = Jrg = . /)

the union of I° and a disjoint basepoint.
o *
Since T" = 5°/x H (i“;zp)

the Steenrod operations are specified by

is & K(n,1), = B(x} @ P{px}, with |x| = 1, end

plixS(pn)d) = (i)xe{sx)jﬂ(p'n .

The isomorphisms

Ientk

Hiiﬁ*”k — B e g

o
for n < 1 < n+k then determine H Lg*k ag an Clp module.

pefinition 2.2. Iet p > 2 and let w act on C by muitiplication by p. Ilet broot
- Proo,
£ ¢KU(I?¥*Y) be the bundie Proof.
S2k+1 % C S2k+1 xﬂ{O} _ i?k+l ,
o . Llg) =
let ;= r(gi) £K0(12k+1) where r:XU » KO forgets complex struecture, let

: bundles over L
* (proved in [81]) identifies all such spectra.
?p to be a prime.

© fheorem Z.4.

" be ignored.

action given by a..

The extended powers ksn are suspension spectra of Thom spaces of complex

wk/n. Thus Theorem 2.3 ensures us that the following theorem
Note that its proof does not require

If § >0, the Thom complex of r + sz over I° satisfies

wzrﬁ28+k

I Tr +sz) =3 g

-

The contribuiion of the trivial r dimensional fibration is obvious and msy

We will aectually prove a much more precise result. If o is an n-

 dimensional representation of 7, we let BMa) and $1(q) denote B* and $% with «

If the actlon is free on 821 we obtain & closed manifold

Sn"l{a)/n. I1f o and g are itwo such representations of dimension n and X

- respectively, let o|L{B) be the bundle
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41

-1 (g x, Bla) LT x_ 10} = Lig). (111) If e=0or 1, k> eand n = 7 {p¥'¥)) then

. . : 2n+k 2{n-r) =2r+k
We e¢laim that there is a homeomorphism ﬁzg ve =8 ) L2r+£ .

Tla|L(g)) 2 L{g @ a)/Lla), g1

. ~b >
{iv) La and L-b-l are {-1) dual spectra.

vwhere L{a) 1s embedded in L(g @ &) as the last n coordinates. This will imply
Theorem 2.4 for odd ¥k (since L{g) is odd dimensionsl, p being odd). The even case -

(vl Ife=0orlandkje then Iooir

(k) 2nte
is odd and 2n+k¢l = O (p¥'E)),

ig reducible iff either k = ¢ or k

will follow by removing the top cell on each side, since the homeomorphism will he

celluiar if we give the Thom complex T(a|L{8)) the natural cell siructure eompatible

Proof .+ If n > 0 then D Sn W x Sn(p) =3 T(z‘ryk where vy is the restriction
with that of L(8).

1o 'f.k of ‘the bundle over ° o= Bn induced by the regular representation of .

- : _. : = e B + s = p=lie Th 2.
To establish the claim, let f: S {B) X Bia) + Sn+k 1(6 @ al/s be indueed Since yx = 1 * 51+ * tyy Jloyy) = 0+ mg (where 2m = p-1}. By Theorem 2.4,

by the natural inclusion S851(g) x BMa) » If1+k(6 @ x) - {0} followed by the neni{p-1)+k

._ R {CYRIED S At
radial retraction BV - {0} » -1, It is easy to check that f is one-to-one and -
maps onto everything except the copy of Lla) embedded as the last n coordinates,
Just as essily, one sees that f sends the zero seetion of aiL(g) to the embedding of.
L{g) as the first k coordinates. It follows that a|L{g) is the normal bundle of

this embedding L{g) + L(g @ «) and that its Thom complex is L{8 @ a)/Lia). //

T <0 then, by [Egquiv, VI.5.3 and 5.4]
W 2P L (P L Nt ny, )
it T
for sufficiently large N, and since Jinyy) = n + nmg, we find that

we x P) L s N®ninen & nmg) = 3RF nip-1)+k

The fact that ¢ e J {ﬁk) hag finite order enables us to define stunted lens {p-1)

spectra in positive and negative dimensions.
by Definition 2.5 and Theorems 2.4 and 2.3.(iii}. This proves (1).

: ~on+k ® ok . .
Definition 2.5. Let ¢{k) = [k/2(p~1}}. If n is any inieger, e = G or 1, and k > g, : By Theorem 2.4, L 2n = g T{ag|L7). By [15], £TMinz) is coredueible if and
let ' only if J(nz) =0, 8o 'the fn‘st half of {i1) follows by Theorem 2.3.(iii). For

Zgﬁ:k = Ez(n‘r)g“’fg::k the second part of {1i) we need only note that the Bockstein ig nonzero on el gp
e £
(x} k> 1.
for rsn (p’# ) such that r > Q. (x)
To prove (1ii}, note that Jing) = rg) 1f n= r {p¥'%)) by Theorem
~ntk . 2.3.{4dd}.
The following result shows that the spectrum L is well-defined up to

- . +k -
To prove (iv), first consider ‘]T%ln with kX odd. By Theorem 2.4,
i2n+k

equivalence in h 4. Reeall that an n-dimensional complex ¥ is reducible if

X/Xr""1 = 8" and the projection X + &7 has a right inverse. Dually, an {n-1)-
connecied complex X is coreducible if ¥ » 9" and the inelusion & + X has a left
inverse. Iet W = §°, let q:W + I %be the quotient map and let wE = ”l("f;k) . Then
we may define D];X = Wk X, X(P).

~k
=z T(nz;{L Yo Since k is odd, L is a closed manifold. By considering the
fibration
1 ok . cP[k/2},

ST+ L
ol
we see that the tangent bundle of L is ([k/2] + 1}z - 1. Atiyah's duality

Theorem 2.6, Let S be the p-local n-sphere apectrum. Then theorem [15, Theorem 3.3] implies that the (-1} dual of i2n+k is

(i) nLn {p-1)+k T - (nelk/2] + 1lg) = W;ﬁ ; 10 To prove (iv) for the other three possible
n{p-1) ) ; combinations of odd or even top and bottom eells, we use the duality between
(i1} fzmk is ecoreducible iff n =z O (p‘p(k)) while L2n+k is inclusion of the bottom cell of a complex and projection onio the top cell of its

2n+l

coreducible iff k = 1. - dual.,



146 147

Finelly, (v) foliows from (1i} and (iv} by the duality between reductions ang Proof' By the remark preceding the theorem, the first statement in (i) can be

; - -« o0 o + o
bbreviated to D g an nlp- 11; The transfer (& sz)(p) + I Br splits off L” and
as wedge summands of L and L

coreductions. /r

regpectively. Similarly, the
Tntp ( 1) p-1} D ¥ ¥

Now we present the analogs of 2.1 through 2.6 for DpSn instead of DﬁSn . Siﬁce' I.,msfer splits of £ Dpsn as a wedge sumzna.nd of D, s, The maps

the transfer splits I)PSn off as a wedge summand of sﬁsn, we can use thls as a shorf-

cut to the resuits we need. Let X(P) dencte the p-lcecalization of a spectrum or . D Sn —-—t—-“' D §1 = E (p 1) -~——l~:-L-P Enl’;(p—l)
space X. The following result is proved in [7]. snd

| o t2 n: i2 yil
Proposition 2.7. There is a CW spectrum L with one cell in each nonnegative z L1'z(p—l} L i;:(;f)--l) = Dn§ DpS 4

dimension congruent to 0 or -1 module 2(p-1}, such that L = (5~ Bz )(p)

where by and t, are transfers, and 1 and i, are induced by the ineciusion m C zp are

‘inverse eguivalences because their composites induce isomorphisms in mod p homology.

Definition 2.8. Let L¥ be the k-skeleton of L and let In © = U%/™1 arn>o, -

Ifn<0,g=0ori, and k > g, let Lg?ﬁk = zQ(n-—r)Lgi]z for r = n (p‘l’(k)} such .This proves (1}. Now {ii)-{v} follows from 2.6 and {i}. [/
that r > O. :
The preceding theorem does not assert that Wlc D<2 gl(p} = anmg i;ﬂg where
n+k n+kK D
Note that n and k are not wiquely determined by L as they are by T'n - For wk is the k-skeleton of a contractible free zp space, because this is not true. In
exanple, L;l Lg‘ see = 10 where g = 2{p-1), since L hag no cells in dimensions (P
1.2 q-2 q— : general, Wk s S™P7 will have hemology in dimension np+k which gees 4o 0 in Dpsn
F 3rre; e w
b
.: and in ¥ Ln{p-—l)-i-}s Since we are only interested in homology whieh is nonzero in
Theorem 2.9. Iet & be the p-local n-sphere spectrum and let q = 2(p-1). Then : ni{p-1} °
(1) Dp.s2j . zzJLf;q and DPSQJ“l 23“11{’]" 1+ e maps D& > D& and o, s Lﬁég“ﬂ*k is more useful to us then is WEwx_ gR(P!.
sntk ntk . . .
Ln * Ln induced by the inclusion = C I:P are projections onto wedge Therefore we will let Dllis nnggmBﬂ{, rather than Wk s SD{P}.
summends . P
The preceding theorem also shows that we may ignore the distinetion between

n+k ~Itk . ~n+k

Loy Jatk \ ep s o w(x) . Javk .
(311} It is coreducidble iff j = C (p }, while Lj is coredueible and iy without harm. We ugsed 2% eng D"Sn a8 & stepping stane to

19 g-1
iff ¥ = - information about D}?Sn because J theory only gives information about coreducibility
p11;(114-213)) of Thom complexes, and we need Atiysh's S-duality theorem to eonvert this to infor-
mation about reducibility. The S-duvality theorem of Atiyan only applies to Thom

; complexes of bundles over manifolds so camnot be used on bundles over the skeleta of

(441) If e =0 or 1 and iz j ( then
Jark _ _Uj-iYq ig+k
EﬁQre =z LiQ-e

.

sz, or over the even skeleta of Br. Convenlently, the odd@ skeleta of Br are
© manifolds {if we use a lens space for Br). To dbtaln analogous information sbout

(iv) If ¢ ané § are O or 1 then L}q:é is («1) dual to 1-3%te-1 .
Ja-e . D" for nonprime r, a similar technique works. First, we split D.S" off of p 8"

~ig+s-1

" Jark ; ;
(vl If e = 0orl then L.]'q—-e has a reducible jqrk cell iff elther using the transfer, where v C I, is a p-Sylow subgroup. Then the structure of v (a

k#g=0or k=1ig-1and i+j 20 (pi+3"l) . Cartesian product of iterated wreath products of #) suggests manifolds mapping to Br
" which we can use Just as the odd skeleta of Brn are used here.

Note: Part (i} shows that botiom dimensions of the form jg-e, ¢ = O or 1, are more We now turn to the analogs of 2.1 through 2.6 for p = 2.

natural in this conmtext than jq+e. This acecounts for the exponent P{k+2¢) in (iii),
where y(k} might be expected.
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Definition 2.10. Iet n 2 O, let = = Iy act antipodally on ! and let

N

and PR L MR

We call P§+k a stunted projeciive space. Let & in KO(P®) be the canonical real .
line bundle and let x = £-1 e KO{P™).

Bemarks. (1) If p = 2 we will agree to let I™ and T* mean F* and let L M nd
tn+k mean Pn = so that uniform statements of results for all primes can be glven.
The P? and ?n - notation will still appear frequently because many of the rTesults

are not the same for even and odd primes.

{2) It is easy to see that PP L ig an open n-cell so that Pﬁ+k has one
cell in each dimension between n and n+k inelusgive. 8inee P” = S”/Z2 is & K(4,,1},
H'{P";25) = P{x} with |x| = 1 and

sq’xd = (3 ]xl+J.
The lsomorphisms

Hlpﬁ*k Pt o ol

*
for n < i < n+k thus determine H P2+k ag an 02 medule.

Theorem 2.11. Let ¢(n) be the number of integers j congruent to 0,1,2, or 4 mod 8
such that 0 < j < n. Then KO(P®) = <x> and has order 20(0), Furthermore,

J:KO(P™) » J(F™)

is an isomorphisn.

Proof. KO{F™) is computed in [1]. The computations there and the Adams conjecture
imply the last statement. 1/

Theorem 2.12. If s > O the Thom complex of r+sf over PU satisfies

(e + sg) = sz:+n.

Proof. The proof of Propogition 2.4 can essily be adapted to prove this as well.

As for odd primes, we can now define stunted projective spectrs starting and
ending in any positive or negative dimensions.

148

Defiﬁiticn 2.13, For k > O and any n let

ntk _ ner e r+k
Pn =1 "I Pr

fé} any r R (2¢{k}), r > 0.

The following result shows that P2+k ig well defined up to equivelence in

4. Iet S nave the antipodal action of 5. We define DE X = 8% x(),

sheoren 2.14. Let & be the 2-loeal n-sphere spectrum. Then
Theorel <.ig.

k n n+k
{1) 28
(1i) Pﬁ k ig coreducible if end only if n = C (2¢(k))
(131) If n = m (2¢0%)) tnen ?ﬁ*k = zn“mP$+k
(iv} Pb and P g % are (-1} dual spectra

{v) PE *K 44 reducible if and only if n+k+l = 0 (otkly,

Proof (1) follows for n > O from Theorem 2.12 once we observe that the regular

. representation Y is 1 + g. For n < O we have

ko ok on, o -
DZS = Dz(z 8) = 5 E TN + nyk)
by Vv1.5.3 and VI.5.4 of [Equivl, for sufficientiy large N. Hence Dgs“ = LP
for n < 0 also, again by 2.12.

Parts (i1) through (v) follow exactly as in 2.6. In {iv) we use the fact that
P is a closed manifold with iangent bundie (n+l)e -~ 1. //

The last results in this section identify the top dimensional component of any
attaching map of DPSn by combining Theorems 2.6 and 2.14 with Milner's result on
Thom compiexes of sphere bundies over suspensions., First we must define the maps
under congideration. 4s in §1, @ = 2{p-l) and e =0 or 1 {g=1and ¢ = 0 if

=2},

befinition 2.15., Define a function Yy by

vp(n) = max{v|§,;_v+1 is reducible}.

let v = Vp(n) and define ap(n) €my,_15 to be 1™ of the composite

n-1

n-v n-v
)

— L — S

in whieh the first map is & 1ift{ of %the ataching map of the n cell and the second is
projection onto the tep cell of IV,
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The indeterminascy in the definitlon of ap (n) is the kernel of the homomorphlsm jen b* is tﬁe collapse onto the top cell and a 1s as before. The lemma is
1

induced on w, , by the inclusion of the bottom cell of L . ifiﬁl when v =1 so we may assume v > 1 and hence, that n is odd. ILet y be the

dle ~(n+1)g if p = 2 and ~}(p-1)g if p > 2 over LV, Them L' 7] Tle Tty). By the
eflﬂltlon of v, y is trivial over 1¥-1 but not over LY. fthis implies ¥ = n v where
/Lv—l = 8¥ is the collapsing map and 0 # v KO0(8"). By {851, T(v) has
.attachxpg map J(v}. Thus, the inclusions of the fiber g1 snte T(y} and T(v)

We will often omit the subseripi p for typographical simplicity. The notatien
v and a are intended to be mnemonic: v stands for "veetor field number" and g
stands for "atiaching mep". Actually, v is not quite the wector field number as

defined by fdams [11}; v2(n) is p{n~1) in Adams' notation. The funciion vp tells ugh 3
induce & map (¥) of cofiber sequences with a = J(v). Since v is greater than 1, it

1 éven when p > 2 by 3.2. Thus, 2.3.(iii} and 2.9.(1) when p > 2, and 2.11 when
: .2, 4mply that the kernel of TV » g(LV_l) is Zp. Hence Tly) generates it,
eing monzerc. Since (a) Tlv), ae T(s¥) must generate 3(SV}GD Z(p).\ //

how far we can compress each of the attaching maps of L”. The atiaching map of the:
n cell factors through -V 5r and only if L el is reducible. Thus, it faetoré:
through IV but not through I* V"%, where v = vp(n}. By the definition of v i(n), '
ap(n) is nenzerc. We cbtain a good hold on vp and ap from the following two lemmas,.:
Let ep{j) be the exponent of p in the prime factorization of j. ] "
In the notation of 1.6, Propositions 2.16 and 2.17 are summariged by the
Proposition 2.16. If p > 2 then, with q = 2(p-1),

1 €

2, (d) % 8
aP(jq)
el = e ()

[}
[en]

82(j+1}

vp(jq“s} = ]

I
[
N

gqfl + sp(j)) £

If p = 2 then vylj) = 8a + 2b, where e5(j+1) = 4a *+ D and 0 < b £ 3. .
= denotes equality up to multiplication by a unit of Z{p).
Propesition 2.17. If vp{n} = 1 then ap(n) is the map of degree p. If vp(n) > 1

. then ap(n) ® 1 generates Im J @ Z(P) in dimension vp(n}—l.
‘§3, Proofs for section 1 and other caleulations

Proof of 2.16. Theorem 2.14.(v) shows that v,(j) is the maximum s such
that ¢5(j+1) = ¢(s-1). The formuls for volj) follows easily from this. Theorem
2.9.{v} shows that if p > 2 then vP(jq) = 1 while v_{jq-1} is the maximum s such

P
that ep{jq) = y{s-1). The formula for v?(j g-g) follows immediately. //

This sectlon primarily consisis of proofs of results of §l with the additional
fiecessary results (3.1-3.4) interspersed. Note, however, that the spectral sequence
‘cherts in Figures 3.1 to 3.9 can be very useful in eonjunction with Theorem 1.10
éinee they show where in the Adams spectral sequence the elemenis detecting the

Proof of 2.17., letn = jg-e, v = VP(n) and a = ap(n). We wish to construct a map ‘Tesulis of homotopy operations must lie.

of cofiber sequences

Sn—l Ln:l Lﬁ . & Proof of 1.1. 1*(x) = ¥P by IV.7.2.(1i1). Cleariy, ©a) = 2y @)1§ = &y, SO the
\l T ] ‘gecond statement iz immediate from the definition:
b I
- — end o (34
o 1 _ a GV - o r geP («1)¢vin)e

Ja~e-nip~1)"°

where Ca = S8V, ,e? b is the inclusion of the bottom cell, and a @ 1 generates Proof of 1.2. Recall from III §1 that the homology operations are defined by
Y ‘

In J & Z{p). By S-duslity and Theorems 2.9.(iv) and 2.14.(iv), 1t is equivalent %o

0x = z*(eJ_n@:xz) i p =
construet a map of cofiber sequences

and 850x = £, ((-1)9vtn)e, . ®xP) 1fp > 2.
~g-n(p-1)
8P g YR -1 PR Lv—n~1 S S—n~1 Jg~e-nip

-1t -11~1
~n=-1

I |

G § *—— (g #———— 3

To prove 1.2 we simply calculate. If p = 2 and £0(a) = PJ then
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hu*(x)

fa (x)]*(tN) M. To show . 0 x2 = 0, where Bj & Ty 15, we need only show that P i

1
is ‘redueible ahd Pn is not, .since this implies that the n+v cell is attached

g*DP(XJ%“*{‘IQ} anly to the n cell of Pn ¥ and Proposition 2.17 implies that the attaching map is

‘generator of Im J in ﬁv“ls. If j =4a + Db then v = 8a + 20, sa 2.14.(v) implies

g*Dp(x)%\‘(e._’n ® 131) _
J inat n must satisfy

= g le,  ®n(x)?)
*' " j-n n+8+2%z.1 (2

= th(x) .
and o+ 8a + 2° £ -1 (2:’+1).
The proof is essentially the same when p > 2. . 7/ .';t.‘o show B‘ o Pn+lx is & maltiple of x2 we must show that PE:\{ 1 is not-
_ n+v+l . .
Proof of 1,3. This 1s Just the naturality of the spectral sequence EAS,8). /) 1 eduelble, but Poo is redueible, for then the ‘top cell will be attached to the
eelis carrying ¥ and P**1x, The rest of the proof is the same as in the first

Proof of 1.4. Consider the following commutative dlagrasm, in which the row is the : :_c'ase. //
cofiber sequence of c; and o' is & 1ift of « to DS'.

/N

18“ e D tgp . gnetd

i
EDi 1\ ’/;

%
Clearly o (%) = EDP(x)o: = ED;(XM' and this lies in the Toda bracket

‘proof of 1.8. To show that %y © Bka =0, for xe uyf and n = 2k~1, is trivial

.{;her: J = 0. Simply note that Lf:é_l is a mod p Moore spectrum. When J > 0 we must
{k+3)q-1 {x+])g-1
ghow qu is reducible, while Ll{q—-l

k+j 2 0 (p9~1) but x+] £ 0 (pd).

is not. By 2.9.(v) we need

Snp+i-1 ! jo+l
When n = 2%, the relation cz'} o BT Tx o m g 0O 2 for some o is algo trivial

when j = 0. We need only note that chpc; is a mod p Moore spectrum. For ] > O,

we must show that L]((];I‘é)wq -1 1s reducible, but ij;fl)?q'}“ is not. By 2.9.{v)

we must have k+j+1 = 0 (pd™1) but k+j+l 2 0 (pI).

When n = 2k, if 'we try tc show “j 1) xP = 0 by this teehnique we find we must

assume k+j = 0 (pj"l) and k+§ # 0 (pd=1) , 80 that no infermation is available.

. i1 ; ~

<a,ci,gD; {x)>. If a and g both 1lift to I};Sn and project to a on snp+i, then
. - ¥

a - 8 1ifts to s}f I g0 that o (x) - 8'(x) 4s in gD Hx) o ﬁNDi “1gn,

Conversely, if v ¢ ﬁND1 1Sn then o + v also lifss 4o DPS and projeets to a' on

anpHd 7/ Before we compute the first few homotopy groups of D?Sn (anéd hence the first
few homotopy operstions), we descrlibe the attaching maps of the first few cells.
Exact definitions of the meps uged in the following proposition can be found in the

Proof of 1.5, By definition, 8%pd ig defined on L if and oniy if ey is a perzna_nent. .
proof .

eycle in E_(8,48). Thus {i) and (i1} are equivalent. let £; be P truncated at the
npti cell. The map of speciral sequences E.(S, By) + E.(S, P4y inguced by the

projection D g o g% senas e; to the ldentity msp of §%P*1, 1 D;S is Proposition 3.1. let p = 2.

reducible t.hen there is a mep back which splits E.(8, gy opp E.(8, 8;), forcing (i) If n =1 (4) then P;WB = Snu em}\’ ‘Sn+2u~ en+3
ey to be a permanent cycle. Conversely, if ey is & permaneni cycle then any map g 2

ing it wi ; (11) If n =2 (4) then PP3 - vl &Py 8P
detecting it will be a reductfion. Thus (ii) and (iii) are equivalent. Finally, - n M2 n

(ii1) and (iv) are equivalent by Theorems 2.6.(v), 2.9.0v) and 2,14.{v)}. //

[E]
]

‘ +3 7 n+l 2 n+3
3 (4) then Pg s WJo® Urze e

0 {4) then p“n"3 R u?’e""2 v g3,

(i11) If m

{ivi Ifn
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Proof. Mueh of the structure of PE+3 is determined by ng“ and Sq2 in H*Pnn+3.  We i somorphlsm of Tyq+2q-2° Thus the attaching map of the Jg+2q-1_cell factors through

will assume this information and fill in the rest. Suppose n = O {4). Then 2,14
implies P;ﬂ} is both reducible and coreducible, so only the middle two cells az-e:_-'
attached. When n = 1 (4), collapsing the bottom cell of the previous case yields .
P;:Q = & Ugenﬂvsn *2. Computing Sql and Sq2 shows en+3 is attaehed to .’3n+2 by a
map of degree 2, and is attached to the Moore spectrum by a map which projecis to n

'SJQ*‘(lrl and iz’ determined to be -(j+2)a; by computing pl.

Collapsing the bottom cell and redefining j we find that

: Jﬁl*q"l S'jq”lu oLt U AL g long exact homotopy sequence of

S,jq~l L:]} 3?‘ -1 shows that the attaching map of the jgqg cell is determined by iis

on 8%, this projection induces an epimorphism pr.ojections orto &9 and 91991, computing PL and p shows these to be ~juq and p

sespectively. /
- non+l o+l respec
24 = nmzts Us® ) W'Hn_‘.gS # 22. :

“

n+l 'Di-agrams of the cohomology with Sql and Sq2 or B and Pl indicated are

Therefore, the attaching mep is a generator & of -::mZ(Snu @

o ).

convenient mnemonic devices. For p = 2 we have

EERE

For p » 2, we have

When n z 2 (4), we start with P;”g = &P, gt a2 o2, The long exact
homotopy sequence of s"v Sml + Pﬁ+2 shows that the inclusion Sm}‘ > PE+2

induces an isomorphism on Trepe Since Sc}_2 is nonzero on Hn+1P§+3, the n+3 cell 1a:

attached by the map

which we also eall n.

Finally, when n = 3 (4), we start with P Sn\_jz U en+2. The map

Pg » 810 2 ynten collapses the bottom celz induces on 'rn+2 a monomorphism

n+2 - 7+l +2
ToupPn = Ly @ L2, @2 = w ST @ S

which sends (a,b) o (a,2b). Computing Sql and qu shows that the attaching map of (j*2)g-1 Jarq 3

. ~da
the n+3 cell is (0,1) ¢ nn+2Pg*2, which projects to the map of degree 2 on 2. We -{J*2)ay 1
simply call this map 2. // ' jarq . ]

an q
. -{j+1)a
P "’v}“l
Proposition 3.2. Ilet p > 2. R
&4

(1) pderea-l | gia, giara-l U oLl U od2t2g-1 ‘
Jq "3“ * p “(3+2)°‘1 We can also think of these diagrams as indicating cells by dots and attaching meps

by lines, apd this is how we have labelled the diagrams for p > 2.

@) L Tl U wer ) dere

daq-1 -{jl)ay ~Juy 5 The spectral sequence E.(S, @) will ensble us to glean a maximal amount of

information from Propositions 3.1 and 3.2, We begin with p = 2. BReeall, from [66],

the initial nt of the HZ, Adams spectral sequence for wyS.
- Proof. Recall that the first three nonzero homotopy groups of 8 loealized at p are © 8l segme 2 P q *

3 = Z, el Zp generated by oy, and Tpge1 = Zp generated by as. Thus

- j — %3
Lﬂ.g*‘l Lo g9, 9L iy the only possibility. Computing g and PL in H Lﬁé’“q
shows that ng 1 Séqv S,]q+q-1 -,]%)+p jq a, Finally, the long exact homotopy

sequence of S.]q,.s,]q+q~l ¥ ngﬂl shows that the inelusion of &J2*q-1 induces an
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0
R
3 ¢y /
s 2 13 ’///9/’/,/’°
B! o By n, by
ol 1
o 1 2 3 4 5 6 7 8 9
tes >

Vertical lines represent multiplication by hyy, detecting the map of degree 2, and

diagonals represent multiplication by hl, detecting n. We shall only use the first

8 stems (t-s < 8). Iet P be the sequence

+8 +7 +1
Py e By s e BT e B

{omitting the ™ from D;Su = nPgﬂ means a class in E.(8,®) will have stem
degree equal %o the smount by which the corresponding homotopy operation raises
degrees.)

Proposition V.7.5 says that E;(35,8) is free over E,(5,5) on generators in each
degree from n to n+k., Write x{i) for the element of E5{S,8) which is xe E5{5,8) In

the i summend, if i 2> n. Iet x{i} mean 0 if 1 < n.

Theorem 3.3. In E.(3,8), for t-s <6,
dox(1) = bgx(i-1)  if 120 (21,
dgx(i) = mx(i-2)  if 1=0,1 (43,
and dﬁx(i) = hox{i-4) if 1 8 0,1,2,3  (8).

In the same range, E_(5,8) is giver by Figures 3.1 through 3.4.
Note: Dotted vertlesl lines indlcate "hidden extensions". That is, they represent
multiplications by 2 which cause an increase of more than 1 in filtration.
Similarly, dotted diagonals indicate the effect of muliipiieation by n when this
causes an increase in filtration of more than 1. See the proof of 1.9 for their

derivation.
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2
hz{n)
. ; hz(f‘)
N
1 i
1(n) § E h%(n’rl)
1in+1) nytme2)) S
i 3 /
N, \
poe L e b, (n+3)
i l”
1{n+3} \
n n+l n+2 nt+3 ont4 n+5 n+b
nz 0 (4) *) hit by dsll(n+7)) iff n = 4 (8)
¥%) 2 times 1(p+3) is hyin+2) if n= 0 (8}
Figure 3.1 and it is “h1(n+2) + h2(n)“ ifns 4 (8)
¥¥%) if n =z 4 (8)
2 2
hl{n) hz(n)
' *
: By lt\\
b (a#l) / 13 (1+3)
1n) 10 ; ]
] roX% H
'i },’ ‘ hg{n+2) :
1(n+2) 02 (n+4)
¢
* I?i(mﬁ)
1(n+6)
n n+l n+a n+3 n+d n+4 nth
nz1 {4) ¥} differentlal iff n = 5 (8)

Flgure 3.2

**) if n z 5 (8)
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s

2
l T hz(n)

[ 2
3 '
’//,/’,T hztn} hz{F+2) E
1(n) e h, (n+1) E i
[) 1
1{n+) hi('n+3} |
1 1
M E hy(n+3)
h1(?+4) ;/
} SRR
Vs
1(n+5)
n n+l n+2 n+3 n+4 n+5 n+b
=2 (4) ¥} differential iff n = 6 (&)
¥} ifnzé6 (8)
Figure 3.3 %) ifnz2 (8)
' n2(n)
| r
i s~
t ’
hz(n) E /,'
1(n) b (0+1) ne(n+2) S *
15 ;.
* ; h,(n+2)
]
(n4~ } /’
. 2 %
3 ,’
P/ hz(n+4)
i/
lin+4)
n n+i n+2 n+3 n+4 n+5 n+b
n oz 3 (4) ¥) differentisl if n =z 7 (8)

¥} if nz 3 (8)
Figure 3.4

Proof of 3.3: The differentials listed correspond to attaching meps which can be

91"

!

Py

1t

B

detected by Sqb, 8¢° and Sq%, and they hold in the spectral sequences for ga', B
below
g, ela— gl x
Si.‘zwn ei -— S‘E"—z EEE] sinz - %

5"!
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' Thé‘differential doxl(i) = hoxli-1) if 1 = 0 (2} is immediate, sinee 1{i) ¢ E,

“and by dimensional considerations dy1{i) = hy(i-1} is the only possible d, on 1(i}.
“The module structure over E,(85,8) now gives dyx(i) = hgxli-l).

The d3 differential is siightly more complicated. There are two cases. If
18 1 (4) then the i1 cell is not altached to the i-1 cell, but is attached to the

"4-2 cell by n; dqal{i) = hy(i-2} follows as for d,, and this implies d3x{i) = hyx{i-2).
11{ iz 0 (4) then 1(1) ¢ E3 sinee dy1{i} = hy(1-1). However, the map of spectral
sequences induced by £ + ﬁb

A Si—ZV Si—} Lh+gei Si»zv Si-l Si--2
o Si"'z Un@i Si-»E — 12

ghows that elements of EB(S C ) must satisfy d3x{1} = hyx(i-2) + k where k is the
xernel of Eq(S, &) o= E4(8, £"), that is, k must have the form y{i-1). By inspection
k¥ must be O in the dimensions considered. HNow, by truncating B at the i cell, then
collapsing the 1-3 skelebcn we can compare EB(S,a) to EB(S,C }. Agein we have

3? djx(i) = myx(i-2) + k, where k is now a sum of elements coming from the i-3 cell or
© below. The first possidility is when n 2 0 (4). We must decide between dghl(n+4) =

n?(n+2) and dghy(ned) = WP (Me2) + y(nel). et PR, BYL, mp™*2, ang P**3 denote
elements detected by 1{n), l(n+*l}, hy(n+2), and 1(n+3), respectively. Compering
with hhhowald‘s ealeulations [591, we find that 2 o Pn+3 h1§n+2 or

h ?n oy o Pn depending on n mod 8. Composing with n ylelds noh Pm'2 = 0.
But if d3hl(n+4} were h (n+2} + h (n+1) we would have n o hlP B2 v o P,
Therefore we must have d3h1(n+4) = h 2(n+2). The same argument, -with minor varia-
tiong, finishes all the d3 differentlais

Finally, the d5 differentials follow by similar comparisons with E5(S pm.
all but one case, there is nothing in filtrations less than or equal to the filtra-
tion of h,ox{i-4) so the comparison with E5(3, P} is suffieient. ?he one remaining
case is when n = 1 (4) Here hz(n+3) iies between hz{n+4} and h (n). $Since the
n+4 cell is not attached to the n+3 cell, the dghy(ned) = h (n) is right here also.

There are no further possible differentials by inspection. The hidden exten~
sions here are all evident from Meshowald's computation in {59] of the Adams spectral
sequence of P:. //

Note. The spectral sequence E.(3,R) has far more hidden extensions than ET{S,P;)

since the cells are spread apart in EP(EL £) wheress they all oceur In the same
filtration in E, (S P }. By IV.7.6, the same hidden extensions oceur smong the
elements generated by the BEPéx for a fixed x.
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Proof of 1.9 when p = 2: A permament cycle x{i) corresponds to en operation xph,.

Thus, Table 1.3 is simply a list of the elements of E_(S, §), omitting most of thos

which are multiples by elements of myS of other elements of F_(S, #). The inde-
terminacy of an operation eonsists of those elements In ihe seme stem and higher
filtration, so it too can be read off Figures 3.1 through 3.4. With the exception
of 1x{P") and 12*(Pn+1), the values of 1ox listed are the only elements of xS in
the relevant dimension. Since my D,S" = Z, when n 1s odd, 1o4x(P®) = 0 in this case
When n is even, 12890, DQSn induces an isomorphism of w,,. By I1.1.10, the
composite 11,:D,8" + DS is multiplication by 2 on Hy, = Ton- Thus to4(P7) = 2.
To ealeulate 12*(Pn+1), first suppose 1 = 2 {4).. By Theorem 3.3, wnp4aDaST = O.
Therefore, nP%*1 = 0 and hence nrz*(Pn+l) = 0. This forees 12*{Pn+1) t0 be 0, not
0 (4}, Theorem 3.3 gives “2n+1923n = Zg C)Zz with generators Pn+l and
nPY. By IL.2.8, 12*(Pn+1) is not zerc and hence must be n.

n. Whenn =

Determining the relations in Teble 1.4 asmounts to determining the 43S module
gtructure of 3*3283, The Indeterminacy of the operations in Tsble 1.3 induces a
similar indeterminacy in the relations of Table 1.4. The relations are to be
interpreted as asserting equality modulo ¥he sum of the indeterminacies of the two
gldes.
some cholee of representatives. The E_ terms in Theorem 3.3 force the following
thirieen relations:

2F% = 0 n= 1,3 (4)

by PP = g nzl (4

P2 = g nzl (8

vE*2 & o ns5 (8)

49PR =0 nz2 (4)

A = g nz2 (4

vP*L - g nzé (8)
Bt =0

2n P = g nz3 {4)
2,2 = g
PR = 0

ny F*3 = o n=7 (8
nthn+2 =0

Another eighteen relstions follow by consldering the attaching meps given in -
Proposition 3.1, the speetral sequences in Theorem 3.3 and the reducibility and

coreducibility given in Theorem 2.14. These are

Thus, In order to prove that they hold, we need only show that they hold for
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2% = g ”
’ nz0 (4)
20 PV = 2507
nP*3 = 0 ]
23 = p P2 nz 0 {8)
2uPn+3 ® vhan+2 =0 I
2P%3 = ny P2 4 PR )
npit3 = yptl L 1 =4 (8) \
uhan+2 = van
A
2p*2 = p 171 n ozl (4)
n?n*z = { )
n=1(8
6 _ 5
pPP*R = yptt n =5 {8)
aptl . pn ne2 (4)
275 o pRt4
i nsz2 (8
nPR*3 = thn*B
nny P4 2 0 mod v2PR nzé (8)
2PU4 - p, pot3
1 = 3 (8)
pOth o p, pUY2 e
n = hy

fFor example, when n = ¢ (8}, the attaching map of the n+4 cell gives 2p2*3 hiPn+2.
'jThen 2ypR*3 = uhi?n+2 must be either 0 or v2P® by the E_ term in Pigure 3.1. But
?§+7 is coreducible, so VR is impossible. Similarly, when n s 4 (&), the
‘attaching map of the n+4 cell gives 2P°*3 = h1Pn+2 + vP*, (Note that, since pi*3
fis coreducible, vP? need not be considered a part of the indeterminacy of 2Pn+% or
P2} e 20P73 = b P2+ yZP0,  But vB™*3 is elther O or vAPY by the E,

“term in Figure 3.1. Thus 2vP®*3 = 0 and hence vhan+2 = PR = 2P0,

Four more reiations come from the fact that =

+1y &
: mz(snuzen ) = Z,, so that the
‘composite of 2 and

a map which projeets to n on 8n+1, 1lifts to n2 on §*. These are

Pl = 2pn

2h1Pn+5 = pipRt4 nEl 4
By

2n P4 = h%?‘” noz2 (4)

2n, P73 = h§1>n+2 nz3 (4
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The relations

anZpPt4 = p2p3

1

nzl (4)
3 < o
2h§Pn+3 = hiPn+2 52 )

202 3.0l
2han . han n

nh2Pn+2 v?'Pn

3 {4)
3 {8}

HH

=
1]

are the only possibilities consistent with Mahowald's caleulations [59] {note that
these are not hidden extensions in his spectral sequence).

Finally, the relation 2212?“+3 = P when 1 = 6 {8) follows by comparison with
the speeiral seqguence for the cofiber of the inclusion Pﬁii + Pn“*. In the

a : pa+2
eofiber, 2p*3 < vP" is obvieus from the attaching maps. /7 :
Now consider the odd primary case. Recall, from [55}, that, in degrees less ps
than pg~2, the HZP Adams spectrsl sequence has elements :
i i3 34 pe-q+2
By € E2 detecting p*, 1 = 0,1,2,...,
1,q pe=-qQ+i
ho ¢ EE’ detecting aq € Tg-1» .
and €51 eE;’iqﬂ"l detecting oy €Tiquls for 2 21 < p. ‘
ps~2q+l
Iet ® be the sequence
n{p-1)+ps n{p-1}+ps-1 s ni{p-1)+1 n{p~1}
La(p-1) Lacp-1) e e g La(p-1)
Since I;{p-l) has eells only in dimensions n{p-1} and greater which are ccngruen‘b' .
to O or -1 med q, E2{S, B) is free over Ez{S,S) on generators in those degrees.
Write x(j,e) for the element of Ep(S, B) which is x E4(8,8) in the jq-e sumand, if :
ja~& > nip-1). We agree to let x(j,e) = 0 if jq-¢ < n{p-1). ps+2
Theorem 3.4, In E.{S,P), dy(x{(],0)) = an{J,l} and s
éapnl(x(é,l)) = =Jhgxl(j=-1,1).
In low dimensions Ezp(s, #) is given by Figures 3.5 through 3.9. pe-qrl

Notes: (1) The dotted arrows %o the left represent possible d2p differentials

which we have not computed. This is why the theorem only elaims to give E2p(s, 8.
The indicated dzp is the only possible remaining differential in the range listed.
This is true for dimensional reasons except when n = 2k-1 and k 5 -2 {p}. Here the

: ;ex%ension.

medns that px
B éxtension is trivial.

£ jy modulo higher filtrations.
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: gfe detected by * and “;, the notetion

by e
(-2

g_s's:i.;aili‘by that d4p_2(1(k+2 ,1)) is nonzero 1g excluded by the. fact that L
is reducible when k = -2 (p} by Theorem 2.9.v).

‘(2) Dashed vertical lines represent hidden extensions.

{k+2)q-1
q-1

Precisely, if x and ¥

0f course, if j is O this means the
We replace ] by a guestion mark if we have not settled the

: gltlk,())
| o ;
1(k,0) : |
-2 2
By (K+1,1) E
l{k:+1,1) ho{:k+1,€))
i-1
1(1%:+2,1)
kq {k+1)g-1 {k+2}q-2 {k+2)g-1
Figure 3.5 n=2k, k= -2 (p)
. g}{sk’(})
1 h,(k,0) !
1{k,0) ‘i é
X 12
! :
1(x+1,1) by (k+1,0)
kq {%+1)q~1 (k+2)g~1
Figure 3.6 n=2k, k-2 (p)
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..

pe-3p+5

ps-3p+4

pa-5pt+é

ps-p+4

ps-p+2

pe-3p+4
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gi{k,l}
hylk,2) w_ gl(ﬁ,O)
1(k,1) ho(k,0) . |
~
-2 AN
: oo
1{k+1,1) o (k+1,0)
kg1 (k+1)qel (k+1)g-1 {k+2)q-1 (k+2)q-2
Figure 3.7 n = 2k-l, k= -1 (p)
g.1%,1)
1 >
LR
: \ gl(k,O}
i \ 1
Lo :
1(k,1) ho{k,o) E? ‘\\? :
i X H
i * "
! N 7
1 LY N
HE K '
by (k+1,1) ‘\ ;
.
ho{?+l,0)
+
bl
;
1(x+2,1)
kg-1 (k+1)g-1 {k+2}g-2 (k+2)g-1
Figure 3.8 n=2k1, kz -2 (p)
g (k1) g, (k,0)
1{%,1) ho(k,G) 1,77
AN :
2N, i
~ 1
\\ 1
ho{k+l,0)
kg-1 {(k+i)g-1 (k+2)qmz {k+2)g~1
Figure 3.9 n=2k-1, k#~Lor -2 (p)
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i?§9£ﬂ9f~2¢é’ The differentials follow from the attaching maps in Proposition 3.2

just as 3.3 follows from 3.1. Appiying them gives the values of EQP(S,jD} listed in
Figures 3.5 through 3.9. The indicated hldden extensions all come from the
attaching maps of the even cells of Ln{pwl)' /7

Proof of 1.9 when p > 2: A permanent cycle x{Jj,e} corresponds to a homotopy
operation %8P, Thus Table 1.1 3s a list of those elements in Figures 3.5 through

* 3,9 which must be permanent cycles by Theorem 3.4. The indeterminacy is obtained

from Figures 3.4 through 3.9 as for p = Z., The values of Tyt listed are the only
elements of 148 in the relevent dimensions, sxcept for rp*(Pk) = pl, which" follows
from II.1.10.

The relations in Table 1.2 are all determined by the attaching maps from
proposition 3.2. /f/ '

Proof of 1.10. By IV. 7.3.{v), to determine Pn+m+1(xy) we musi caleulate the image
of FU L ons emys1 Do under 5, :wyD,S" T 5 5, (D,S” aDST). We need only
consider

1:,n+zn+2 . Pn+2 2

A
n+m n Pm

2 2

for dimensional reasons. If En,m is the skeletal filtration of P:+ ~ Pg'+ , then
Ea(s,brhng is generated over E,(5,5) by elements 1(j,k) withn ¢ j 2 n+2 and

m % k < m+2 corresponding to the cells of P§+2 and ﬁ:+2 in an cbvicus fashion. The
attaching maps of P§+2 and Pﬁ*z determine the differentials in low dimensions from
which we get Ew(s,ﬁbn,m}. The extension questions in To(pem)+1 BTE also determined
by P§+2 and ?$+2 when n = mz 0 {2}, Whennizms1 (2) we need the fact that the
top eell of the smesh product of two mod 2 Moore spaces is attached to the bottom
cell by n, to seittle the extension question. We conclude that if n z m = C {2) then

To(nem)+] 35 generated by patlpn  phpm*l ang PP® with relations

r .
0 nz0 {4)
2L
nPan nz 2 (4)
“
0 mz 0 {4)
end 2P -
1‘ nP Pt w2 (4) .

If n=ms=1 (2) then myipepys 18 generated by an element we call Sn,m which is
detected by 1l(n+l,m} + 1{n,m+}) with the relation

3ormz 3 (4)

<
=]
Hi

=1 {4) .

]
“d
0
=]
15l
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From the image of Sn,m in E (8, n,m) we can see that

0 _ ¥l +1
(s, ) = PR P

oof'ﬁf i.14. This is now lmmediate:
Prooi Of Z-nn

P+l (2x)

pli2)x? + 4P"1(x) + 400nnx2

-

Finally 6*(Pn*m+l) is determined modulc the kernel of the Hurewicz homomorphism by

commubativity of the following diagram, in which the i hi 1!
v ° g ! @ isomorphisms are Tnom ‘gince 2Pn+1{x) is either Q or nx2 by 1.10. Similariy,

iscmorphisms

84 Iy = eplio)aP hia!

n*D28n+m w*DZSn/\Dgsm gPY T(px} = P {plx® + pPBP (x) + dOnalppxp

lh lh = g p)x® + P e Pl ()
é s
n+m ¥ I 2 a P
H,D,8 " —— H.D s aDg" l
2 L 2
it By it “eince pePI*Hx) = jogPd(x). Finally 8PP M ayx) = L (ay) = 3Pp . The
H*Bzg H*(BZ2 x Bzz) . indeterminecy is always zero because where 1t is not automatically zero it is 4nx2

. . or PPayxPe  //
Sinee nPPPR generates the kernel of the Hurewicsz homomorphism we are done. yré

:Proof of 1.15. If p = 2 then nx2 = 0 by Theorem 1.10 when n = 3 (4) (even if

2% # 0) while 0 = F**1(2x) = nx® by Proposition 1.14 when n = 0 (2). If

p > 2 then ¥ = 0 if n is odd, while if n = 2j, Proposition 1.14 implies that

0= BP3+1(px) = alxp and O = BPJ+P“1(a1x) = lep. When x = g1 the second of these
formulas is azﬁlf =0. //

Proof of 1.11. The commutative diagram sbove shows thet the Hurewicz homomorphism
must map the Cartan formula for a homotopy operation into the Cartan formula for its
Hurewicz image. Case (i), n = 2j and m = 2k, follows by an argument formally iden-
tical to, but easier than, the proof of 1.10 when n 2 m = O {2). Case {ii} is imme-
diate from the homology Cartan formula because in this case we're in the Hurewlcs

dimension. G i just in th . =Em = .
enaon ase (1i1) follows just as @ proof of 1.10 when n = m = 3 (4} 1/ Proof of 1.16. Several of the computaiions follow frem PM{x) = %% if

¥ em,, others from

n 4:1‘-5:“12:“13:
zero from Theorem 1.10 or because they lie in filtrations whieh are C. We will

1 0. 8imilarly, seversl indeterminacles are
Proof of 1.12. In E,(3,8), Sql{ho} = Iy by [3]. Therefore, P~{(2)

ne //

1 prove the remainder of the resuits.
Procf of 1.13. By definition gP*{p) is a unit times the composite _
Since P4(h,) = h . P4(v} is detected by hih, so is either ng or w. By 1.10,
1 D_(p) 20 13

2p-3 8P P 4
3 D8 D s = S
P P ?

h?Ps(v) = 2h1P6{u) = 0 sinee 2myn = 0. -Similarly, h1P4(2u) = 0 by caleulating
1. . _ Steenrod operations in Ext. Sinee 12*(hlP6) = Q, we get hlPé(Zv) & 2h1P6(uJ =0,
where BP- is the inelusion of the 2p-3 cell. By II.1l.§, Dp(p) = 1Ty

I1.2.8, T, © 8P1 # 0. S8ince Eip ® 1, the composite and hence ﬁPltp} are nONZerc.
The fact that BPp_l{al) = By fellows from the fact that in the Adams spectrai
sequence, BPp_l{hG} = bi using the notation of [66]. The latter can be compuied

directly from the definition of BPP"l using the definitions

mod p, and by .
and since 12*(h2P5) = 0, we get h2P5(2v) = 2h2P5(v) = 0, By 1.10,

hiPs(av) = 2h1P6(2u) = () alse. The operations on 4v can all be caleulated from the
*
(20)% = 20" (2v).

Since 2myy = 0, the relations HoP°(v') = 2h1P1°(u2} and hgps{v?‘) = %P7ty

*
addisivity rule a*(4u} = 2q {2v) + 12*(a)

2
_ 1 _ 1,5 oy, .PL).P]

n,o= e l, br o= = {1,387 g¢ ]
0 1 1 i+j£p«1? w1187 18

force these elements to be O mod O.

Since Pg(hB) = h4, hlPS{a) ig detected by h1h4 2o must be n* or n* + np. Since
in the bar construction. Alternaiively, we may refer to Liulevicius' computation 3.9 2 8 2 g 3
(55, pp. 26, 0] using 166, II-6.6] to translate it into our notation.  // 2y P7 = A" PY and n*h PYo) is detected by hih, = hghzhz,' 1t follows that

P%(c) 1is detected by hghph,. Since 2h pe - hi?g 1t follows that hP'0(¢) 1s

1
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detected by myhy. Thus hPOg) = vF or ¥ + i modulo <2v®>, which is its CHAPTER VI

Indeterminacy, and similarly for H2P7(o).

Sinee P7(20) = 402 = 0, we have

THE ADAMS SPECTRAL SEQUENCE of H_ RING SPECTRA

by Roheri R. Bruner

0
h198(2u) = 2h198{a) + { or 32 =0+ 0 =20, In this chapter we show how to use an H_ ring structure on a spectrum Y 1o pro-
n2 ©auee formulas for differentials in the Adams spectral sequence of myY. We shall

:.confine attention to the Adams spectral sequence based on mod p homology, although

The remaining operations are sdditive except for - 14 i clear that similar results will hold in generalized Adems spectral séguences

~ ag well.
0 The differentials have itwo parts. The first 1is the reflection in the Adams
h198(45) N 2h1?8{2°} + dor 402 <0+0=0. // gpectral sequence of relations in homotopy like those in Chapter V. For example,
n2 when X ¢ wnY and n = 1 (4), there is no homotopy operation P*1y since the n+l cell

of ?: iz atiached to the n cell by a degree 2 map. In the Adams spectral seguence
there is a Steenrod operation Sqn*l X ~and a differential dESqm'E X = hOSqn X

= hdie. Therefore hé;z =0 1n E_, This In itself only implies that 2x% has
filtration greater than that of hdx‘ in the Adams spectral sequence, but by

examining its origin as & homotopy operation we see that 2x2 = 0, Thus, the

. formulag we produce for differentials are most effective when combined with the
results about homotopy operations in Chapter V. The differeniial dZSqn+3 Y=
hGSqn+2 T, still assuming n = 1 {4}, 1s a perfeet illustration of this. The
corresponding relation in homotopy is 2Pn+2x = han+1x where han+1 is an indecom-
posable'homotopy operation detected by hISqn+1 in the Adams spectral sequence. The

differential on Sqn+3r represented geometrically is the sum of maps representing
hOqu+2i'and hlsqn+zi; but since hISq?*Lf‘has filtration one greater

Sqn+1§ T
Sqn + 2;

s %

than does hOSqP+2x; it does not appear in the differential. This reflects a hidden
extension in the Adams spectrel seguence: 2PB+2x appears to be 0 in the Adams
spectral sequence {i.e. hOSqn+2¥‘= 0 in E_) only because of the filtration shift.
In fact, 2P0y« hanﬁl » The moral of this is just the obvious fact mentioned
gbove: the differentisls should not be considered in isolation but should e
corbined with the hombtopy operations of Chapter V. ®urther examples will be given
in section 1.

The second part of the differentials arises when we conslder Steenrod opera-

tions on elements that are not permanent eyeles. If x In filtration s survives
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until Er we can make x into a permanent cycle by truncating the spectral Sequenée at
filtration s+r. Thus the differentials of the type just discussed apply to x wntil
we get to E.. However, by analyzing the contribution of d.x we can show that it
will not affect the differentials on g°Mx undil Epr-p+l where it contributes
35derx. Thus the differentials of the first type appiy far beyond the range in
which we are justified in pretending that x is a permanent cyele. (To be precise we
should note that drx can cccasionally affect differentials on BEPJX through a tarﬁ

-1 . ‘
containing xP~td.x in Eq.) i

The first results of this type were established by D. S. Xabn [45] who showed
(2

that the H  ring map gz:w Xy & ) + 8 (obtained through coreductions of stunted -
2

projective spaces) could be filtered to obialn maps representing the results of

Steenrod operations in ExtA(ZZ’ZZ) and that some differentials were implied by this.

Milgram {81} extended Kahn's work to the odd primery case and introduced the

spectral sequence of IV.6 which is by far the most effective tool for computing the

firgt part of the differential. His work was confined to the range in whieh it is
possible to aet as if one is operating on a permanent cyele. HNonetheless he was
sble to use the resulting formulas for differentials to subsiantially shorten
Mghowald and Tangora's caleuwlation {61] of the first 45 stems at the prime 2 and to
eaich a mistake in their caleulstion. The next step was taken by Makinen [62], who
showed how tc ineorporate the contrivutlon of d x in the differentials on & Ix for
P = 2. Unfortunately, he apparently did not apply his formulas to the known ecalcu~

lations of the stable stems, for one of his most interesting formulas (published in -

1973},
dBqux = hS¢ Px + sddx  ifmoz 1 (4},

combined with Milgram’s calculation of Steenrod operations [81], Implies that d3e1 =
hit, contradicting Theorem 8.6.6 of Mahowald and Tangora [61]. This application was
left for the author to discover in 1983. Note that the differential is oud of
Milgram's renge sinee a nonzero d.x prevents us from caleulating dBqux unless we
incorporate terms invelving d.x. The argument in [61] that e is a permanent cycle
is an intricate one, involving the existence of wvarious Toda brackets, while the
proof that dBSqu @ hlsq;"zx + Sqqdzx if n =1 (4} is relatively straightforward.
This appears to be convineing evidence that the H_ siruecture in the form of Steenrod
operations in Ext is e powerful computational tool.

One other piece of related work is the thesis of Clifford Cooley [30]. He
obtains formulss similar to Milgram's [61] by using the spectral sequence comnecting
homcmorphism for & cofiber seguence of stunited projective spaces to reduce them to
dq's which he gets from a lambde algebra resolution of the cohomelogy of the
appropriate stunted projective speee. Oalculating differentials this way or by the

gpectral sequence of IV.6 is probably a matter of indifference. The most
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intééeéting aspecet of Cooley's thesis is thaet he works unstably, examining the
iﬁferaction of “the Steenrod operations and the EHP sequence. As in all other
sarlier work on thie subjeet he views the H_ ring structure in terms of coreductions

“of stunted projective spaces. The interaction of the Steenrod operations and the

EP sequence had been discovered by William Singer [97] using the algebraic EHF
sequence obitained from the lawbda algebra.

In the work at hand, we exiend the ideass of Makinen to the odd primary case to

uéﬁtain comprehensive formulas for the first nontrivial differential on BEij, which

we state in §1. These apply toc the mod p Adams speciral sequence of any H  ring
spectrum. The remainder of §1 consisis of caleulations using these formulas in the
Adams spectral sequence of a sphere, including the differentisl discussed above.

These are intended to illustrate especlally the interaction between the homotopy

“pperations and the differentials, specifically to cbtain better formulas in partie-

ylar cases than hold in general. One of these is d3r = hldg, which forces hi to be

a permanent eyele. This is the shortest proof we know of this fact.

In §§2 and 3 we describe the natural I, equivariant cell decomposition of

»
{zX)(p) and use it to relate extended powers of X and of §X.

In 84 we start the proof of the formulas in §1, using the results of §§2 and 3.

._Wé also prove thet the geometry splits naturally into three cases, which we deal
Cwith one at a time in the remaining §§5-7.

1. Differentials in the Adams spectral sequence

In this section we state our theorems concerning differentials, explain some of

- the subtleties involved in understanding what they are really saying, and calculate

some examples in order to iliustrate their use and demonsirate thelr power.

g,nt+s

Localize everything at p. Let Y e an H_ ring spectrum. Iet Er’ {3,Y) =

' m,1 be the Adems spectiral sequence based on ordinary med p homology. We shell adopt
© the following shorthand notation for differentials. If A is in filtration s and Bl

:'and By are in filtrations 841y and s+ry respectively, then

+ B

dgh = B, * B,

: means that d;d = 0 for 1 < min(ry,r,) and

drlA = B} if T, <1y
4.4 = By + By if ry =r =1, and
d, A= B2 if v > 1y
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¥ote. This does not mean that this differentisl is necessarily nonzero. Nor (io.es_'
it mean that if B¢ happens tec be 0, then dTZA = By regardless of whether ry > rq or
not. More likely, }31 is zero because it comes from a map which lifts to filtraticn’

Taken :_ndiv:l.dually, the terms qud x and a.xd x do not always appear to survive long
nough for qux to be able to hiit them. For .example, when r > f+k+l, the
different:l,al dr+§‘+ksq»jx = axd x is preceded by the differential d. (axd %) = ald rx}z,
which would have prevented axdrx from surviving untii Er+k+f’ hed it noi happened
that a still earlier differential (df+k+lsq3 dpx = ‘;“er12) had already hit a(drx)z.
This is completely typieal. The formula dyh = B; + By, as used here, carries with

gt+r;+l or more and, hence, B) could conceivably lead to a nonzero dr1+lA' The poin{-, :
is that you ecan't tell what B; is contributing to the differentlal if all you know
is thet it is zero in filtration s+ry. However, when we explicitly state that

T = 0 in Theorem 1.2 we mean that it is to be treated as having filtration .

P ‘14 the claim that the right-hand side will survive long enough for this differential

1—,5 oecur, and even shows the "eocconspirator® which will make this possible when it

The geometry behind the formula A = By % B, will make it clear exactly what . seems superfieially false.

2 ; .
the formula can and cannot tell you. The formula means that for some g > mex(ry s qu ’
A is represented by a map whose bowndary splits into a sum ﬁl + “Eg . BO’ where each. The other point 1llustrated by this example occurs when drx and xdrx are

e rmaT. 1 > fHk+l, he giff i
Bi lifts to filtration s+rl, and where Bl and B2 represent By and B, respeetively. pe ent cyeles and T 1. Then the differential d

r+k+f8qjx = Exdrx reflects

@ hidden extension: ;(xdrx) is zerc in E_ because of a filtration shift. It is

I+ is irrelevant what BO represents because "81 B2 lies in a lower filtration.
Faetually detecied by qu drx. Relations among homotopy operations typleally cause

This is fortunate, since in general BO is very complicated. In particular cases

e 3 -
however, we can often analyze B{) in order to get more complete information about guch phenamena. Note that the cell which carries Sg'x 1s also the cel) which pro

dyh. For exauples of this, see Proposition 1.17(ii) (%he formula d3r0 - hl dg) and duces the relation in homotopy. In a suitably relative sense this is the meaning

1 1" 1 i
Proposition 1.6. of all differentials in the Adame spectral sequence {"relative" because the terms

in a relation corresponding to a differential will typleally be relatlive homotopy

Two remaining points about the formula are best made using examples. The clagses which do not survive to E_ fto become absolute homotopy classes}.

formulas we will shortly prove say that, under appropriste circumstances,

8,n+s
VYe can now state our main theorems. Assume glven x GE o

- element BERix (as usual, e = O and P =8¢0 If p = 2). Let

and consider the
j = j >
d*Sq x = 5y érx + axdrx

and a,8q0d x = "é{“(drx)2 j-n p=2

- 2j - -1)- > 2
where a ¢ E (8,8}, The slgebra structure alsc implies ihat -m)p-ll-e p ’

" go that 8%Fx eglz’s“ksP‘n"S), which lies in the k+np stem. Using the functions v,
" and 2y of V.2.15, V.2.16 and V.2.17 we define v = vp{km{p—l)) and
‘a8 = ap(km(p—-l)) €5, 15, Recall that a 1is the top component of an attaching mep

= = ol 2
dplaxd x) = ald.x)”.
If the fiitration of Sq;jx is s, then the filtration of Scﬁ d.x is s+2r-1, while that

of ;xdrx is s+r+f+k {f is the filtration of a and k will be defined shortiy).

The three ways these differentisls can combine are illustrated below of a stunted lens space after the attaghlng map has been compressed into the lowest

& possible skeleton. Let

r<f ekl r=f ekl Fof ekl 2 T (s,8)
aldx)? alax)?) aldx)? \detect a (this defines f as well). Recall that a, eE-’" detects the map of
k3 a "\ :degree p when p > 2.
LN ) v Nk
\ d Y
r .
\\ ;xdrx dr\\ SqJ dyx © Theorem 1.1. There exists sn element TP eEz (3,¥} such that
A A
G 2 ) _ (1) if 2 then dySalx = 8fd x ¥ T
fektly axd, x + 8¢ d,x - axd,x P = * r¥ 22
\ (i1) if p > 2 then
Sq¥ dx Cpix = D . . D1 ;
a drrestc * \dapoy dpepeic Qpypy VX = dpyyx® = gt dgx A 2
2r-1 Pd pﬁ . N
s daPPx = agPx if 2 >n, and
sqix S x - Sgdx

+
3

A48 x = nstdrx 3
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2
Theorem 1.2. . . - o . hh because the first operation is always the. square. If we let
v +1 op 2r-2 < v <
> ExtH ¥ be 5¢7*5 on Ext®P*S | then Proposition 11.10 of [68] shows that in
T, = ¢ axd x v = k+1 2 . .
r the cobar construction S[x1§~--[xJ] = {Xll---lx.}- Sinee h, is represented by
—J-v ~ d .
asq’ 'x v=k or (v<kandv <10) Loof :
1 151 1, it folleows that Sq hn 8(h,} = hyyqp. For dimensicnal reasons, the Cartan
If p > 2 then g
S F forpula reduces to S{xy) = S(x)S(y). Thus, to show (ii} we need only show byhy = 0,
0 v>k+th or pr-p <v<k 3 2 2
he = N h2, and h h2 = 0. These oceur in such low dimenslons that they may be
e — p-1 hy = fgar- 0
T = { (-1)7 ax® "d x v = k+} : . .
p 'checked fhy hand". In fact, only the first and third must be done this way since
(-1)%" -1 ~'PJ"9—1 X .v<kand v < pg. v 2h . 2.2 ’
1 - 5q {hohl = h + h The relation hnhn¢3 = {) follows similarly from
. ' : s : n+3
where e is the exponent of p in the prime factorizaticn of j. .hG 3 s@ (h0h2) G. The only nonzerc operation on h§+2 is qu n?§+2 = hi@B
: Sy s 2.2
gince (ii) implies that h4 { } = 0. The relation h h = O then
Note. When p > 2, k and v have opposite parity so that v = k never occurs. 5 2hn+2 hn+lhn+3 SN 0 "n+2
follows by induetion from 3 = 0. Finally, h0 hn = ¢ follows by inductlon from
Theorems 1.1 and 1.2 give complete information on the first possible nonzero :h%hl = 0 gince
differential except when : za(hznh ) hgn*lh
0 n’ 0 Tmtl t

pq < v < min{k,pr-p+l} if p > 2,

or 10 < v < minlk,2r-1) ifpe= As is well known, the preceding proposition implies the Hopf invariant cone

differentials.
The sketch of the proof given in Section 4 should make 1t clear what the obstruction :

iz in these cases. We do have some partial information which we colleet in the

- 2
Corollary 1.5. d = h for all n > O.
following theorem. At 2hn+1 oftn

. Proof. By Thecrems 1.1 and 1.2 we find that
Theorem 1.3. If p > 2 and v > g then d; gPlx = ¢ if 1 < v+2 < pr-p+l, while

dpr*p+lﬁPJx = —SPJdrx if v %2> pr-ptl. If p =2 and v > 8 then diqux =0
if 1 < y+2 ¢ 2r-1, while 4 Sqdx = Squ x if v+2 > 2r-1.
2r-1

211 21’} . 2
duhpyg = dx8Q” by = 597 dahy + Bghy
2
Cothab b = hghy

I
since Sq? dzhn ig in filtration 4. {It follows, of course, that

s a N - s hohn L hghz

To apply these resulis we must know the values of the Steenrod operations in
E2 EXtA_ ZP,H*Y) For our examples we will concentrate primarily on p = 2 and

SO asince this is a case in whieh there are many nontrivial examples. We cannot
resist also showing how useful the Steenrod operationé are in the purely aigebrale
tagk of determining the products in Ext.

Il
We begin with the elements n EE%’Z "1 qual to the S5q° . Parts (i) and (iii)

of the following propositon may also be found in [88].

The next result shows how we may use ‘the relation with homotopy operations to
get stronger resulis then the differentials themselves give.

Proposition 1.6. hg“h4 and h2h4 are permanent cycles.

T n . 9
Proposition 1.4. (i) (Adams [31) qu by = hy,q and sqz —lhn " h%. Proof. Since hlh4 = Sq (hOhB) it is carried by the 9-ceil of P7. The sttaching

) map is n, to the 7-cell, and hence its boundary is n(20)2 0. Similarly, h2h4 =
) ] (i1} (Adams {2]) hphy,, =0, hﬂ+g4_‘h2hn+1 and hh .= 0. 0(h1h3 , 80 hohy is carried by the 10-cell of P8 . & V(89\J2 %), The 9-cell
h_n’2 h_{n+2} 2 P o carries P?(no), which has order 2 by the Cartan formuls in Theorem V.1.10. Thus,
(1) (ovikov (91) ¥l =0, B 12, =0 ang, it > 0, W n = 0.

the boundary of the l0-cell maps to O and h2h4 1s a permaneni cycle.
Forn>=2, h_0N2"n} h_{n+1)}

Also h_i h_{i+k}2 h_{i+k+3}=0, and h_i"2 h_{i+k+1}/2 h_{i+k+4} = 0, for i >= 0, k >= 3. (Novi



Robert Bruner


For n >=2,  h_0^{2^n} h_{n+1}

Also h_i h_{i+k}^2 h_{i+k+3}=0, and h_i^2 h_{i+k+1}^2 h_{i+k+4} = 0, for i >= 0, k >= 3. (Novikov)  

Robert Bruner
h_n^2 h_{n+2}

Robert Bruner

Robert Bruner
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Before turning to other families of elements we should note that the Hopf n = t-g Name Massey product -
invariant one differentials of Corollary 1.5 account for only a few of the non- 2
N 3 8 e <hl,h0,h2>
trivial differentials on the hoh .« In faet, Proposition 1.4 implies
n+i . 2 2
i 141,2 2 i 4 14 4o hg.Baahghe”
d,nh = ho RS is O if i+l > 2P7°. (n the other hand, hih £ 0 for
270 n+l 0 "n O n+l 2.2
o 4 17 ey <hg,h,hy >
i < 22*!) and from the known order of Im J, there must be higher differentials om 272 °
many of the héhnﬂ which survive to E3' Tt seems diffieult to determine these 4 18 - o <h0’h3’h2>
higher differentials in terms of the Steenrod operaticns, though Milgram ([81] has - ' 4 20 gy  mmeeee-
indicated that it may be possidble with a sufficlently good hold on the chain level - 2.,2.2.2
6 3¢ T <h0,h3,h3,h0>
operations. More dissppointing is the fact that it doesn't seem possible %o pro-
pagate these higher differentials. That is, even if we accept as given a differ- 7 » "o <hashp,To>
. . _ 5 3
ential like dB‘n(}h4 = bydp, we don't seem to get any information on d3h0h5. 6 36 o -
The operation we esll S in Propoaition 1.4 will be very useful so we colleet | 5 3 ¥ <h3,h4,d0>
its properties before proF:eedlng. 6 128 Yo <hg:hi'h3>
Proposition 1.7. If S = Sq*®:mxs®M*S o Ext2(0%8) tnen TABLE 1.1
. .2 2
{1) Six1|--- Exﬁ = [X1E “ixkl in the e"b*’lr construction Alse, note that the elements Mahowald and Tangora eall r,m,%,x and y, we are

(i1} S{xy) = {x)S{y) alling ry,, mg, 1o, X end ¥5. The reason for the subscript will be apparent from

(4i1) qu ay = Squ”n"sx I*.the following definition.

(1v) B, Xg,een, %> € <5Xg, By ,004,3%,> Definition 1.8, If 1 > O and a e {¢,d,e,f,g,r,m,t,x,¥}, let ag = a and

Proof. {i) is Proposition 11.10 of [68], while (ii) and {iii} are immediate from 8447 = Sag.
the Cartan and Adem relations since all the other terms must be 0 for dimensional
reasons. Part (iv) is proved in [781. Applying Proposition 1.7{iv) we find immediately that
cy € <hi+l’hi’h§+2)
For our remaining sample calculations we will explore the consequences of the
. 2 2
squaring operations on the elements c,, dn, eg and fy. The key elements we will be die mi’hi+2’hi’hi+2>
concerned with are collected in Table 1.l along with Massey produci representations. 5 o
With the exception of f.‘o and Yo the Massey products have no indeterminacy. ' ey ¢ <hi’hi+3’hi+l ’h:i.>
2.2
£y e<hihy gbs 0>
2.2 2 2
e (hi’hi+3’hi+3’hi>

By € By ohyy,7y>
¥y e <hyyg,hy,,,457
and

4.2
Jy€ mi’hifa#’hiﬂ) .

However, we shall not make any use of these Massey produet representations here.
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From the calculations of Mukohda (88| or Milgram [81] we collect the values gf TheSe relations are grouped as follows: (i) holds because the relevant bidegree iz

the Steenrod operations on op,dy,6q and fO‘ The following sbbreviation will be veiy 0 or is not annihilated by by, &8 multiples of hy must be; (ii) follows from [103]

convenient: if x ¢Ext TS let So¥(x) = (8%, S, . .,8¢0"%x) = (%,...,80) sinee, again by [103], there are no elements of lower welght in the given bidegrees;
(ii1) now follows either by applying Steenrod operations to relations in (i) and
* -
Theorem 1.9. Sq ey = (cg,hoeo,fo,cl} {(ii) or by the ssme argument as (ii}. (The point is that the relations in {iii} are

¥ 2 dependent on those in (i} and (ii) under the action of the Steenrod algebra.)
Sq do = {dG,O,ro,O,dl) : ‘

sq*ee = (eg,mg,to,xo,el} Cgopollery .12, (i) hyeq = 0, hyney = 0, hy g0y = 0, hy qey = 0, hyyafy = 0,
¥ . hi+1ri -= O, hi+1mi # 0, N
Sq fO = (0 hBrO’yG‘O’fi) s 5 5

(1) e = hyady, hypdy = byey, hygey = Bty Byl = Dgs s

The indeterminacy in the Massey product representations of £y and ¥y suggests'  hi+2ti = 24,1804
: AN _ 2
(iii} hi+4fi = Q, hi+jdi

Proof These are immediate from Proposition 1.11 since S is a ring homomorphism by

that we should define them by the squaring operations above:

13

) 22
0 hyyq8y = Dyy oy Byl = By¥s, By fy = Byey

= SqucG and  y5 = quofo.

Applying Proposition 1.7.{iii} we immediately obtain the follewing corollary. Proposition 1.7(ii).

. Corollary 1.10. Sq*ci _ (ci, hlel'fi’ 1+1) A comparison of the preceding propositiorn and corollary will show that if we

% yiew the periodicity operator as a Massey product

8q di = (d ,0, Ty 0 d1+l)

r+l

LI T 2

8q ei = (e 3m ti’xl’el*l) Prx o= <hr+2’h0 $E>
*®

Sq°fy = (O'hi+3ri’yi=o’fi+1}‘

then we have only Milgram's theorem (Proposition 1.7.{iv)} to use in calculating

Before computing the differentials that this corollary implies, it will be S{PTx), and this generslly leaves us with too mueh indeterminacy. For example,

useful to cbtain a number of relations in Ext. This also gives us an opportunity 1o Plhzhg = 02 so S(PlhihB) = scg = ci_ On the other hand, S(?lhlhB) =

. . . Th
iliustrate how powerful the Steenrod operatlons are in propagating relations e S<h3,hg,hlh3>£ <h 0,h h4> - 0 modulo indeterminacy which is divisible by h4

= nR .
course, since c1 # 0, it follows that h2h4g = ¢y since ha{hzg) is the only

of
relations we will assume known are all calculated by Tangora [103] by means of the

May speetral sequence. In genmeral, this technique only yields relations modulo
terms of lower welght. However, the particular relations we need do not suffer from  posgible nongero element divisible by‘hé, This example shows that to caleulate
this ambiguity, since there sre no terms of lower weight in their bidegree. S(Prx), we need another representation of P'x. It also shows that the Massey

© product representation can lead to useful information (although in this case the

Proposition 1.11  {i) hpeg = O, hgen = O, hgeg = 9, hyey = 0, nqfy = 0, : product h2h4g 2 was already true in the associlated graded). Accordingly, we

h = 0. h =0 . provide the folaOW1ng formula for the interaction of the Sq and the periodieity
17 ® Y Mg = P

homomorphisms P,

. 2 .2 _ 2
(11} cp = hidn, Body = heey, hiey = hgfy Dot = Bgy, B Plh
- R oo bl s,t a+i,2% s
hatg = ¢1871- Pr0p081tion 1.13. Let Sqi = 5 tExt + Ext . Modulic the ideal generated
{iii) hgro =0, h4f0 o, thO = 0, hyd; = 4g}, =0, hu, = hgyd* by {hr+l’ h,5:88)%,+04,8¢;%} we have

L o2
hOfl & hle}.




181

180
r she Mﬁhowald and Tangora [61l] found (i}-{iii) by other techniques. Barratt,
G i<z a;;;&ald and Tangora [20} alse found (iv), {vii), and {ix) by other techniques.
Squr-lx = Miiéram i81] found (i} and (ii} by using the Steenrod operations. Mukohda [88]
r+l e :
prsq rx + <hi+l’hg »Sq . x> 1 s 9%, Found (iv)-{vi) and {(ix), partly by using the Steenrod operations and the cobar
i-2 i-2" -1 - g

sonstruction, and partly by means of a minimal resolution.

If i = 0, the indeterminacy (of Sgn = S) is gensrated by h and Sgax.
4] P+ 0O . .

proof. Given {i1), (1) follows because hDhBrO = hgxo # 0, from which it follows

Cera . . . . 20

that hgrg # 0. The only possibility is hgrg = sy. To prove (i1}, apply S9° to the

1

Proof. This is & special case of Milgram's general result [78], which, for three:

fold Massey products says ation hydy = hgep. To prove (iii), apply Sq19 1o the relation

i hleo.”-thO and use the fact that hymy = 0. To prove (iv), apply 5¢?L to the
Sq,.b S :
% ) 9° ] relation hndn # hpyey and use the fact that hgel = 0. To prove (v), apply Sq21 to
Sqi<a,b,c>c:{i(Sqia,...,Sqoa), E ‘. . . : :> s the relation hiey = hyfy and use (iv) to show that h%xo = hi(h%dl) = 0. To prove
Sqib vae Sqob Sqic i}, appiy Sq22 to the relation hyey = hpfy to show that hoxg = h%e} + h%fl, and

apply Proposition 1.11.(iii) to show that this is O. For (vii), we apply Sq*° %o
ngey = O- Similarly, Sq°! applied to hyfg = O yielas (viii). Finally, (ix) follows
by applying S¢°% to the relation hye = hggy to get nfg, = hyxy + bje), and noting

since Sqahg = h? =0 forn > 4, Sqnhg = hgn, and Sqihg = 0 otherwise.
that h%el = hy{kyfy) = 0. The caleultion of Sq24{h0gl) is possible because Sq?4gl @

32 by definition, while Sq23g1 = { for dimensional reasons.

13

g .2 2 .4 : s .
Corollary 1.14. <h4,h0,h3> = P2h3 = horo with no indeterminacy.
cs lh2 I
Proef. By Propositiom 1.11, P 5 hodo. By Theorem 1.9 we have

16 2 4 2 2 2

Now we examine the differentlials implied by the sguaring operations in the o.
_ o . f ot et 2.2 _ :
Sq hoéo = horo * hldc = hOrG’ gince hydg must be divisible by hy so hidg = 0. By 

*
ai’ e; and £y families. The results we obtain for t-s 2 45 are all new. In the :
‘range 1-8 < 45 they are due to May [66], Maunder {65], Mahowald and Tangora [611],
Milgram [81] and Barratt, Mahowald and Tangora [20] with the exception of dgeq =
hyt, which is new and corrects a mistake in [20]. As noted by Milgram [81l} the
roof's using Steenrod operations are usually far simpler and more direct than the

_6riginaz proofs. In addision, when they replace proofs which relied on prior

Proposition 1.13, S¢0pln? = Sq,P'h2 = FPL° with indeterminacy generated by b and
2 £ 3 g 3

h4. For dimensional reasons the indeterminacy is O.

Combining Proposition 1.1l with Theorem 1.9 we can produce a rumber of

relations in Ext which do not hold In the associated graded caleulated by Tangora. knowledge of the relevant homotopy groups we obtain independent verification of the

caleulation of those homotopy groups.

Proposition 1.15. {i} hgry = sy and hence hiry = 84 s nts ) )
. 5 s If x cEF’ , let us write x e (s,n) or xe {s,n}, for convenience. Theorems
(i1} hBrO = hyty + Dy and hence By qfy = hy by + 0fxy 1.1, 1.2 and 1.3 imply that
(ii1)  hged = nfx, and hence  hy,ef = 0 if i > 0
P 5 G v > k+l or 2r-2 < v < k
{iv)  h5d; = byxg and hence h§qds = hyxy g . . _
. d*Sqqx = Squrx + axdrx v = k+1
{v)  bhyyg = haty and hernce hy 1¥q = Doty -
asSg” % v=%or {v <k and v < 10}
{vi}  hpxy =0 and hence Dyupxy = 0
e in v = b oip 14 = phath 7
(vii) myf; = h%ez and hence nyf; = h§_1°i+1 where k 5 j=n, v = 8a + 2V if j+l = 2 {0dd}, and a detects a generator of Im J
ax in g, 45",
{viti) |hpyy =0 and hence hyupv; = O v-1
We start with 1 ch famili i : = ).
(4x) hBXO - h%gz and hence hi+3xi - h§g1+2 e gtart wi g general cbservation sbout families (a4} with ag,; S(al) If

a; €{s,ny) then

ng +s = 2{ng g ¢+ g} = 2i{n0 + 8.
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If N is the integer such that 2Bl ¢ gip < 2N then the differentials on the eleménﬁs
Sani depend on the congruenee class of n; modulo 2N, Clearly, n; = -¢ modulo 2N if
1 > N. Thus, the differentials on all but the first N members of sueh & family

follow & pattern which depends only on the filtration in which the family lives.

Consider the c; family. We have cpe (3,8}, so in general ey e(3,21.11~3).

Proposition 1.16. (i} ey ¢E_ while dgey = hyfy 4 for i 2> 2

{ii) d,fy = h3en, £, €E., and df, = hyy, , for i > 2
2*0 o~ *1 TS i 1911 -
(1i1) dgef = ndhy,ors o for 1 > 2

2 . y .
Note. We will show shortly that d2h0yi~1 = hOhi+2ri-1' This, together with (iii)

<
implies that. dBGi = Q.
Coroliary 1.17. doepy = c% and ve, # 0, where 94 is the Arf invariant one element

detected by hZ.

Proef. Since cpe (3,81, Sq*ce = (c%,hoeo,fg,cl) ile carried by

xspé1= sty ", ®)u 5™, Therefore ¢ X and a,f, = hde,. Applylng

Proposition 1.1l we find that dghey = dhofy = hdeg = hidg = hye§, from which it

follows that d2e0 = c%.

1}

Since ¢q €(3,19) , Sq*cl = (c%,hlel,fl,cz} is carried by 219P23

19
39 41

8%, e n ey L, %, herefore aye, = hgfy and 40y = hyef = nynddy = O,

A

so that fyq¢ E5 for dimensional reasops. Sinee ¢ = <h3,h2,h§> and ¢, fﬁ%, the Toda

bracket <a,v,08,> does not exlst. We shall show in the next proposition that h
so that 8, exists. OSince gv = 0, it follows that vo, £ 0.

45 Ew

Now assume for induction that dqey = and that i > 2.

‘\555\555\-~“‘--_

2
oty
relevant information in the following table.

h_0f {i-1}.
) §o2 — :
j (mod 4) quci ) (hofi—l) k v a
2 2
1 it hoPyanTso1 0 2 by
2
2 hyey TS N S 1 1 hy
3 £y MYy 2 24 -
2
& Ce4q Bty 3 1 hg

We can arrange the
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e 2 .2
I4 follows that d3ci = hOhi+2ri-l’

héfé;‘ This completes the inductive step and finishes the proof of Propositon 1.16

2 - -
dzhiei = ho(li, dBfi = 111}'1_1 and d2ci-t~1 =

‘and. Corollary 1.17 Note that we have omitted dphse; from the statement of the
:pfoposition beeause it will follow from our caleuwlation of dse; below.

‘Proposition 1.18. (1) dyk = hydd
' 2
(11) dqrg = hydy and b e,
(1i1) =z €Ey for i 21
{iv) d;e¢Ey for 121 i
Mahowald and Tangora show

‘Note.

(61} that &; is actuelly in K, not just E;. Also,
the proof given here that hie E,

is much simpler than the proof in [61].

14?18

147 which

“Proof. Since dp € (4,14), sq*do = (dg, 0, vy, 0, d;) is carried by &
has attaching maps as shown

18 d

1
17
16 Ty
15

2
14 dO

FNow 63h0h4 = hodb implies hod% = () in E4. The only possibility is that dok =
‘ny@f. This implies thet 2uyq = O. Since the boundary of the 16 cell carries hydg
‘plus twice sometning, we get d4qro = hydf. Nothing is left for h? to hit, so hi ¢E_.
Finelly, dp(d;)} = k0 = 0 80 4y ¢ E;.  Now assume for induction thet i > 1 and

fdie E3. The terms qud3di in the differentials on ngdi will not contribute unitil
7E5, so will no% affect the proof of (iii} and (iv). Since Sq*di = (d%,o,ri,o,di+l)
‘we find that dory = hpeC = 0 and dyldy,q) = hpe0 = 0, proving {(iii) and (iv) and
'completing the inductioﬁ.

- Proposition 1.19. (i) dzmo = hoeg, tO eEll and dje1 = hyty
. ) } _

of ¢ B, dgny = 5¢%%nptg, daty = By,
2
i

(4i4) d3x1 = hymy and does = hoxq.

: . Lol I

(113} If 1 > 2 and n = 27-21 ~ 4 then dBe e hOeixi~} + Sqnhoximl,
: = a.ntl = - a.nt -

3 d3mi = 897 “hgxg .1, doby = hgmy, d3xi = Sg Bhoxim}, and doeqy = hgxg 4.

. Proof . By Corcllary 1.17, The information needed to calculate the

Z Al
d2eo = Cfe

© differentials on the queo iz most conveniently presented in a table.


h_0 f_{i-1}
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s 3 g 2

d Sadeg k v & quc(} eonclusion

17 ef 0 2 ny 0 apf=o0
2.2 = 2

19 to 2 4 hQ 0 dBtO =90

21 e 4 2 ny 0 dgey = Iyt

We omit d3e02 and dzxo = 0 from the proposition because they also follow simply. fc,
Similarly, since 15 is in E4 it must be in Ej; for dimensi

dimensional reasons.

reasons. Thus (i) is proved.

Since djey = hytg, the term Safhyto will contrivute to dsSale; if Sqle; lives

that long. Again, the informetion is most convenlently organized into a table.
J quel k v a . conclugion
o 2 2
28 eq 0 1 Iy 6,67 = bgeyhyty = O
39 my 1 8 hy dgny = 8a¥nt,
40 ty 2 1 by daty = hemg
41 % 3 2 by dgxy = Bymy
42 e, A& 1 Ty dyes = Ng¥q

All of (ii) foliows immediately . Now assume for induction that dpe; = hpx, , and
Again we organize the information in tabular form.

iz 2.
that e; € (4,n},.

let n = 2Y.21 - 4's0 .

ona

i85

Noté that three of the 5 entries in the above table satisfy v = k+l. The
fe}ap_oﬁﬁiﬂg differentials therefore contain terms of the form gxérx, specifically

xi 3 in ‘ this instance.

Oniy one of the differentials on the qufi is interesting.

M. For 211 1 » 0, dy¥y = hohy,q74-

O'f"; The- terms in d*qux involving d.x do not contribute %o dzsqjx.

f-.'n':= gi-22 - 4 so that fy €{4,n) then Sqn+1fi = hy4qPy and Sqn+2fi = y4o Since
“is even the proposition follows immediately. -

This completes our sampler. We have caleulated only about one fourth of the
; farentials found by Mahowald and Tangors, but they include some of the most
"i‘f‘ieult. The remaining differentials follow more or less directily from those
al wiated here just as in Mahowald and Tangora's original paper [61].

Extended Powers of Cells

In order to study Steenrod operations on elements of the Adems speetral

vence which are not permanent cyeles, we need a relative version of the extended
ower construction. The extended power functor Em x_ xP), for v ¢ iy, factors as
he compesite of the functors

X > x(®)

and Y e Ty uﬂY

f we replace X by a pair (X,A} then X(P) is replaced by a length p+l filtration
{p} J e ) AP o 4 spectra and we may apply En x_ (27} to this termwise. The
esulting diagram is the relativization which we need. While the formaliem applies

J quei ¥ v T conclusion to any pair (X,A), we will confine attention to pairs {CX,X}, where CX is the cone
n X, both for notational simplicity and becsause the pth power of such a pair has
2

b e a 1 hg 63‘% = h%eixi_l * Sqnhoxi_l pecial properties which we shall exploit. In partioular, note that lemme 2.4 is
n+i m; 1 2 hy dBmi = Sqn+1h0xi-1 he geometric analog of the fact that a trivial one-dimensional representation

.8plits off the permutation representation of w ( zp on BP. Most of this section is
n+2 t'l 2 1 h{) dzt- = homi 2 R

1 ‘devoted to this fact and its consequences.
n+ x 4 h dox; = Sq™2nx
3 i 3 2 Epes ¢ 0*1-1 An element x6 Ej’ms(X,Y} ean be represented by & map of pairs
e 83y 4 L kg dpes47 = Ng¥y
(CX,X} — (Ys’Ys*rr)'

This establishes (iil) and completes the induetion.

‘Extended powers of {CX,%) can be used to construet a map representing BEij. The
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We will complete what we have begun in (iv) and {v) above in lemma 3.5,

final bit of the section establishes the facts about extended powers whiech w111 ;
enable us to construct and analyze such a map. : hich-shows that

=V gAP-iy(p)

We shell work first in the category of based w-spaces and based n-maps and thé‘ (p-i,i-1}
H

homotopy category of based m-spaces and z-homotopy classes of based w-maps with wéak_'

R . 1
R it t of this section. ILet I and 5* have trivial @
equivaiences inverted. The resulis are then transferred to the category of =n-specty The next lemma is the key result o *

1%

etions so that 1f X 1s a ©_ space or spectrum then CX = XAl and 1X = XASl are

by small smash produects, desuspensions, and colimits. P

Let I be the unit interval. We choose O as the basepoint, justifying our

choice by the resuliing simplicity of the formulas in the proof of Lemma 2.4. For ama 2.4. There are natural equivariant equivalences Ig(X) = Crp(X) and

n s . i Lemmd &3
space or speetrum X, let CX = X Al. The 1somc>r1%hasm Xz Aa{0,1} and the 2:1‘1(3) . (xx)(p) such that the triangle .
cofibration {0,1i} € I induce a cofibration X + CX with cofiber IX. CI‘l(X)

r, (%) IR
Definition 2.1. For a space X, define a Ep-space r; (X} by  mtes . oy FO(X)

:fircof. By definition and by 2.2(i) we may assume X = SO. We define a I

_homeomorphism I‘O(SG) + crltso) by

LX) = {e A eerhc e () P) | at least & of the c. lie in X}.
i 1 P 3 P

If X is a spectrum, define a £, spectrum ra(X) = x(P) A ri(SO}.
1 %

't,lA ean At ——w (-_E}MA... ;\%p—)a t

lemma 2.2. (i} For & space X, ri(X) is naturally and EP equivariantly homecmorphic P

to x(Pla l‘i(SO). where t = max{t;}. The inverse homeomorphism is glven by

(11} py{E™%)

[k

£°r; (X} if X is a space. .
i {tlA aee Atp) At l“**"ttl*\ ttgA A“t.tp .

{(311) 13,5 (X) » T3 (X) is a Z-cofibration. (o)

Commutativity of the triangle is immediate. The equivalence zr{X) = (LX) P

i follows since EI‘]_(X) ] CI'}-(X)/I‘]_(X) 4 rO(X)/rlm ] (E:X)(P}, the latter equivalence

C by 2.2(iv}.

(iv) ri{X)/ri+l{X) is equivalent to the wedge of all (i,p-1) permutations
of x‘i)'\{zx} (p-1), particular, if {p) is the permutation

representation of £_ on BP then rolX1/r (%) = (zx) (P} 2 gi2ixip)

? Lemne 2.5. For any w xp and any n-free 7 space W, there are natural equivalences

= ylp).
and I'p(X) z X

w % I‘O{X) = C{W L I‘l(X})

(v} rqlX) = Plg(p) g £, spaces or spectra, where 521 has the 1. action

1%

- ()
inherited fram the p-cell ry(s) = 1(P), and B e T (X)) 2 W (2X)

such that the following trisngle commutes.

Wk T.(X)
% "1
e w7, 00

Proof. (i) foliows immediately from ihe shuffle map
A v sne ees
(xl tl)l\ '\{xpﬂ ‘tp) Frromei {xlh A-xp) h(tlh A‘hp) .

{ii} is a consequence of the commutation of * and smash products.

(iii) follows for spectra if it holds for spaces. By {i) it holds for spaces
if it holds for Y, For SO, it follows because ri(SG) is the (p-i} skeleton of a (W
decomposition of I‘O(SO} = 1Pl

Proof. By Lemma 2.4, Ww [glX) = W& (T9{X)AT) and by I.1.2.(11)
W NE(P}(X)AIJ = (W " E‘l(X))A I=0w " I‘l(X)}. The second equivalence follows

iR

similarly. Commutativity of the trisangle follows from naturality wiih respect to

Similarly, (iv) holds in genersl if it holds for SO, for which it is immediate. 0,1} C 1
, .

(v} follows from the fact that I‘ltso) is the boundary of the p-gell I‘O(So}.
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In the remainder of this section we shall resirict attention to the speeciay E 'The. only question is whether we should get ?El - %“2 cr its negative. We

case of interest in section 4. The general case presents no additionel dif f':‘.cuiti'e' 'ﬁdosé f‘a - fa for consistency with the Barrsti-Puppe sequence signs. The point

but iz notationally more cumbersome. 4 that a3 is a homotopy inverse to the map from Ci{z) to A which collapses CX,

let n C zp be cyclic of order p and let W = S° with the cell structure whicﬁ_;
mekes G W = W, the uswal Z(w] resolution of Z. Iet WX be the k-skeleton of W,
As in V 2, Wk/w iz the lens space Lk, and, by I.l.3.{ii), if i‘ i(Sn"l) then’
Wkpc r /Wk -1 L Ly = Ekl‘i By lemmas 2.2 and 2.5 we then have the following

eorollary of Theorems V.2.6 and V.2.14.

tmd the orientations on the two cones are determined by this fact.

Returning to the special case which prompied these generalities, let
§1P+k"2 » Wt % Ty Dbe the attaching map of the top cell of wk LR Thlr:m
disgram (2.1) becomes diagram (2.2) below.

. - n-}. {(n-1)(p-1)+k

Corollary 2.6: we o T = i (1-1) (p-1) SR HPrE-1

\ &
-1 +n{p-1}+k a
and Wa o=t . -1 \
0 ni{p-1} L Y a W N Y
np+k-1 p+k~1
Now note ithat Iemma 2.5 also implies that Wk ® Ty () Wk 1 r, is the s

cofiber of the inclugion Wkal Nn S W‘k ko I By Corollary 2.6 or by lemma 2.2

and I.1.3.(11) it follows that

W oW p . giRvRel
51 0 )

1

\ 8.3
&5 wk’l w T L8 wk ® T uwk'l T
@0 g 1 ™

“forellary 2.8. Let B - Y and =:Y » ¥/B be as in Lemma 2.7. For any map
ﬁ‘:(wk " I‘luwk"l ® Wt "o 1) » (¥,B) we have nf&3 ] fa - fa in
“np+k~1(Y/B) .

Te get this equivalence in a maximally useful form, first conslider a more general ki I‘0"
situation. In order ito analyze the Barratt-Puppe sequence of & map a:A +» X one
constructs the diagram below.

let v = vp(n(p-l}+k) in the notation of Definition V.2.15, so that

—1;'( r
i

ae 1 factors through Wk"'v % ., Tye Then we may replace the front

np+k-~2
face of diagram (2.2} by

A %,
(2.1 \ ifa) | = ch =

X l CA
cA ————— A ififa)) W p W, e PE
&3 % 1 T 1
az\‘cx N-—c'( ) = X\, CA ox | A
HalE Ay U4 (g
WY o p W5V ko ePPER
In diagram (2.1) the front and back squares are pushouts, &g 1s an equivalence, 7 "0 z O™

ay = 0a = aal, a) is the obvious natural inclusion, and the maps &, i(a), and
agli(i(a)) are the beginning of the cofiber sequence of a. The following obvious

‘ in which the np+k-1 cell is attached by a Llift of a. This gives us a version of
fact about such diagrams will be used repeatedly.

Corollary 2.8 in which f need only map wk-v &, Ty into B and the map 'f_a—z factors

through WV we Toe
lemms 2.7. Iet B+ Y be a cofibration and let w:¥ »+ ¥/B be the natural map. For

any map
f:(Ci{a),X) » (¥,B),

ve have nfa, = 'fg."l - ?32 in [IA,Y/B), where fﬂé«i is the map A + Y/B induced by
(fa;,fal:{CA,A) » (¥,B).
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§3. Chain lLevel Caleculations (.':iii) If p > 2 then ty = (~1Y™%1xP  and .
' = mixPL el - 1)eP tax
In this section we define and study certain elements in the cellular cha}_ns & ‘l"P"1 mix®dx + (m-1)1{a )0
-1 : i m .
W r4{8%7). In sections 5-7 they will belused to Investigate the homotopy gz‘oup where m= {(p-1)/2 and Q= {as1) § 1671,
of variocus pairs of subspaces of W L I‘O(§ '« Here we use them to determine iy im]

efi‘ect in homology of 2 compression (lift} of ‘the natural map wE " 1" (sh-1y

ok Sn"'l} ;»roof. i) and (ii) are easy caleulations, by induction on i for d{t,} and
N .

d(‘t‘fg e using (a” LN = 0 = N(a™2-1) and &s + sd = 1.
Let ry = ri(sn~1}. Give ¢ = C(&1) the cell structure with one n-cell x ang

one (n-1}-cell dx. Let Cy{?) denote ecellular chains and Cy(?;R) = C4(?) ® R. Then
Cylg = <x,dx>P, the p-feid tensor product of copies of Cyle™) = <x,dx>, and

In [68,Theoren 3.1] 1t is shown that t, = {(~1"1xP and that
(m-l)IPxp"ldx, where P =g + @3 4 vee P72, Since P =m + (aF - 1)Q,

ii} follows.

c.r 1 < np-j R
0 - : +
o, - . : emma 3.3. If p » 2, then in Gyl ™l e, 1y
0 i > np-j {"1)iei® d(xz) n#il(2)
We shall find 1t convenient to omit the tensor product sign in writing elements of e ® dx2 -
-1 _ L i+l s
C*I‘j, 80 that, for example, xP™"dx denctes XP @ +»+ @ x® dx. Let W= with: (_“1)1%@ d(xz) - 2e1® xdx n = i (2)
the usual w-equivariant cell structure. Then CyW is the minimal resolution W of %
over Zlwl. Let ' Proof. We have dfej) = {a + (-1 )ey ; and d(x®) = dx x + (-1)" x dx. Therefore
.Wj J <k
- i+] i+l 2
Wik, = dle; g ® xdx) = (@ + (-1}7 ey @ zdx + (-1)7 ey, @ dx
0 ik

i+l i+l

ey ® xdx + (=1} i+1@d:-c‘?,

#

ei® dx x + (-1)
x X from which we obiain
g0 that W(k) = C (W), where W* is the k-skeleton of W. Them by I1.2.1, :
k -
G 1)) = w(K) @) G, -

& ax® ~ («l}lei ® dx x - e, ® xdx
Iet o be the p-cycle (1 2 ««» p} in 5 ¢ =

.

p? and et 7 and zp act on i+l
CxFy by permuting factors. Following {68, Theorem 3.1] we define elements
'ti € C*I‘O as follows. Define a contracting homotopy for C*I'O by sl(ax) = 0

and sl(adx) = { 1)|a|ax.

= (b, @ atx®) - 1+ (DT Me; @ xax .

Lemze 3.4. Ilet p > 2. If i is odd then, in c*(w”P“1 X Ty),

i

e P
Definition 3.1. If p =2, let tg= &, 4 = xdx, and ty = x°. If p > 2, let Sipy @ A < (- ale; @ )
le+a+a2+o--+apl, Let

. to = dxp > t}_ = dXP-}-X,

= -1
toy = slla™ = 1)ty; 4), and

If 1 is even then, in C*{Wj’@_1 x ),

e . s A @ % .
a +p-1 i+p-j~1
taian = Siltyy). o ? !

p-i
®af ~ (-1)™ i & @ ") -p ] (-2l
=

Hence, for any i,
Lemma 3.2. (1) If p = 2 then d{ty) = (a + {(~1)M)%; and d{ty) = t4.

¢ p @ af ~ 1™l e, @ 4P

{i1) If p > 2 then d(%,) = tg,
Aty = e - 1ty
and  d{ty;,,) = Nt,, if 1> 0.

m o,k 1, Z).
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Proof. By Lemma 3.1 and the definition of M we find that if i is even 'Iahén

Nlej, o1 @by * 8y g @55 q)  Jodd, § 71
d(eiw“i @ tj) = T(ei*rp—j-l@ tj " €4api @ tj—z) 1 even
Nei+pm2 ® tl + eii'pml & ‘r.o j=1
and if i is odd then
Teiipg1 @t e @, jodd, §#1
é(ei-!-p—j @ tj} = Nei*p-»j—-l ® tj + Tei+p-,j ® tj-l j even
Teiapa ®Y = %51 B J=1y

where Nm1+a*a2+---ﬁ~gp—l and T = ¢ - 1,

Suppose i is odd. We define

(-1)3"14
1

o o=

=

®1ap-2j+l @ Pa5o1 7 Ciupooy @ Tyl

J

A routine caleulation then shows that
dle) = —ef, Bty + (-1 @W

and hence, by lemma 3.2.{ii) and (iii)

©iap1 ® b~ (- @My = (-1 @ate) = (-1™ " nl e @ alx”).

This establishes the result for odd i.

Now suppose 1 is even. We define

n s
= -1)9-1
¢ = kLT ey oy @ tps ¥ eiipager @ tp5)

j=1
where M = ap—2 + ZaP"B + ses + [p-2)a + (p-1}. One easily checks that

N="TM+p =M +p. A routine calculation then shows that

"\
1@t +p ]
J'—‘
m
- -1, ® Nty ) s

-0
1

dle) = e

14p- tap-2] @ Y2501 7 Crappj1 ® tpy)

from which the result follows for even i by Iemma 3.2.(i1) and (iii) just as for
odd 1,
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'.'}‘_n order to prove the compression result {Lemma 3.6) we need to show that,

lgﬁéring the By actlon, Ty(x} is just a wedge of suspensions of X{p) .

o T - -1, (p)
e 3.5. Inhd or nd, rx) = VPP
Jegi oo P (p~i,i-1)

Proof . Again let
— 0 - ny . . s
= 148 }o Since Iy = @ P is contractible, Cyl'y is exact. It follows that

By Definition 2.1 and Lemma 2.2.(i) we may assume X = SC.

Iy
Cxly 18 exact except in dimension np-i ané that

Thus an—iri is free gbelian, being a subgroup of the free abelian group cnp-iPO'

By the Hurewicz and Whitehead theorems Iy iz a wedge of np-1 spheres. Splitting

C*ro into short exact seguences shows that

rank H + rank H

p-iT1 bp-i-1Fgey = OOk G

np-il0 ~ tp-1,1).

{Reeall (a,b} = {a+b}l/aibl). Since an-lrl has rank 1 by Lemma 2.2(v}, we see by

“induetion on i that
rank an-iri = {p~i,i-1}.

We are now prepared to prove the key result.

The natural inclusien Wl+1 ®x T wi‘”l e I‘j

: Lemma 3.6. x Tyel + .

is homotopic to a map

it i \ R o oewitp-l i
_.e.w L rj+l + W K I‘J.. In integral homology e = ee a:W “nrp > W woTy
i satisfies
S (1) oyley 1 ® (@0)P) = (-1 Mnte, @ A(x*)  if p > 2 and 1 is odd,

s 2y . i 2 . - R
- (i1) e*(ei+} @ (dx)™) = {-1) ey ® d(x™} ifp=2and n ¢ i (2),

where we denmote homclogy classes by representative cyeles. In mod p homology, (1)
- and (1i) hold for &1l i and n. In integral homology e:WP—1 " rp > WO “ Iy =Ty

satisfies

)m-l

i s Dy _ i

(iid) e*(e‘p“2 ® (dx)*) = (-1 Te, ® '1:.13"2 if p > 2.

Proof. The map compresses because w1+1“" ?j +1 is np+i-j dimensional while
Wlﬂun Pj/Wi " I‘j = \/Snp““‘j 1 by the preceding lemma. In order to evaluate ey,

firgt agsupe p > 2 and consider the commutative trisngle,
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wi+P--1 w T fepréSthEd by & map of (Bkro, ﬁk'lro k}f#?l) into the Adams resoluton of our Hj

" Ling spectrum Y. Thus, we must study 1ifts of the boundary D¥'ry LD¥r) in order
%o compute d*BEPJx. Since Dkrl is homotopy equivalent to the stunted lens space
~1)+k . 1 -1 k. k-1, _  kenp-1
EQLEE§_1) and Dkro is the cone on DTy, D~ Tawbr, = Ekrz/D r, =38 .
.Now ak+P”1rp is also a stunted lens space and the natural inclusion

._Dk+p—lrp . Dk-bpml

in which the unlabelled maps are the natural inclusions. In mod p homology the
vertical map ls an isomorphism, so it suffices io note that L factors through Dkri (Lemma 3.6). fThe resulting map
ei+p—1¢® AP ~ (—l)mﬂ+mm!ejnq9 a(xP) by 3.4. Now assume 1 is odd. The veriical
map is the quotient map 2 » Zp, and the med p case implies ey is correct W to a

multiple of p. The indeterminaey of the 1ift from Wi+1 ®o T

Dk+9“1pp +.Dk?l is equivalent 3o the cofiber of the inclusion of the botiom eell of

BK*P*EfP. Thus Dkrl/Dk"'lI‘z = k+p—1rp/Dk+p—2r?. The top cell of DK+P“1F§ carries

i
0o Wk T
" the element BEPJdrx and this is where this term comes from. The other term comes in

1 1

consists of maps

pecause we are given & map of Dk'lgc\x Dk?l, not Dkrl/Dk"lrl, into the Adams

w1+p~1 “ﬂ rp c Snp+1~l b snp+1--1 a, “n rl

resoiution. Thus we must find another cell whose boundary is the same as the

in which ¢ is projection onto the top cell, b is arbitrary, and a is the attaching boundary of the top eell of §kr1 or Dk+p“lrp’ and we must 1if% it until 1t detects

wap of the np+i cell. On integral homology ¢y is the identity and a, is muliiplica~
tion by p. Thus it is possible to choose the 1ift e such that ey is as stated in

an element in homotopy or until it has filtration higher than that of 3SPJdrx.

Since Diro E CDirl, we can simply cone off the atiaching mep of the top cell of Dkr1
as long as this cell is nontrivially attached. This produces the terms Efj'vx,
Eb?d'e“lx and aOBEJx. If the %top cell of DkI‘l ig unattached, the top cell of

: Dk+p"lrP may still be attached to the cell Dp—2rp_ There is a nullbomotopy of this
cell in 'y which carries xp“ldrx. This is the source of the terms Exp"ldrx.

integral homology. (This is a general fact about maps obiained by cellular approxi .

mation, but we oniy need it here so do not bother with the' general statement.)
The argument for p = 2 is exaetly analogous to that just given.

Finally, when the top cell of Dk+P"lrp is unattached, it carries the entire

§4. Reduction to three cages boundary.

There are two complications %o the above picture. First, the map Dk+P“1PP >
DkP1 is a 1ift of the natural ineclusion §k+p-lrp > Dk*p“lrl and does not commite
with the maps into the Adams resoluiion until we pass to a lower filtration. This

In this section we start with an overview of the proof, then establish
notations which we shall use in the remainder of this chapter, and finally stert the
proof of Thecrems 1.1, 1.2 and 1.3 by showing that it splits into three parts and by neceasitates extra work at some poinis. Second, the atiaching map ataches the top

proving some results which will be used in all three. cell to the whole lens spaee, noi just to the cell carrying pi~Vx or st"e‘lx. As

If 7, = rj{sn—l) as in Section 2, we would like to prove Theorems 1.1, 1.2 and the filtration of o increases, the possibility arises that a piece of the attaching

J
1.3 by doing appropriaie caleulations in a spectral sequence E,(3, @) where 22 is an

inverse sequence constructed from the W =y I'.'s. However, there are technical

difficulties which have prevented this. If a proof can be constructed along these
lines, it should immediately imply that TP {see Theorem 1.2) is 2 linesr combinatlion
of a%pi~iy and xp'k(drx)k for various §, 1 and k, with coefficients in E,(S,S8). The
coefficient of the lowest filiration iterm would be a, and the deterpination of the
other coefficients would give complete information on the first possible nonzero

differential on aEPx.

map which sttaches to a lower cell will show up in a lower filiration than the term
 wP Yy or wpP®-ly., This possibility accounts for the cases in which we da not

have complete information.

Now let us establish notation to be used In this eand the remaining sections.
As in section 1 we assume given a p-local H_ ring specirum ¥ and an element
X e Ei’n+S{S,Y}, the E, term of the ordinary Adams spectral seque?ce converging to
tyf. We wish to describe the firsi nmontrivial differential on 8Py in terms of x
and dyx. {Bere & = 0 if p = 2.) Heecall from §1 the definition

The proof we give runs as follows. The spectrum W’uz rj is a wedge summand
of W " P.,.n C L. cyelic of order p. In a very convenielt abuse of notation, we
will write D'r, for the np + i-§ skeleton of this summand. There is & homotopy

equivalence of (eI, E*OP-1y iy (DkPO}Dk"lro n{Dkrl). The element gtPVx is

j=n D=2

{(2j-n}p-1} - e p>2
let


Sigma^{n-1}
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s
~ PPN BP‘}X
Y YO"F'—Yl“"‘Yz“"‘

(—1)jv{n}¢*(ek® ) p>2

2 -
be an Adams resolution of ¥ and let qux = tyle, ® x7) p =2

(p) _ (@) _ -
Y ~¥O = Fo-i— F1 '5‘2-t—»~ vos

;j*he following relative version of Corollary IV.5.4 gives us maps which represent
tnese elements. In it we let { be the cobar construction C(Zp,/(p,H*Y) so that
;S’MS 2o Yo/ Youq) 2 m{¥, Yo, ) and let W= Cy(W) zo that Wk = C (W)

“k(wk/wk"l) Y ,",k(wk ’W}S"l) .

ve its p™ power as in IV.4. Represent x by a map (e®,8%°1) . (Y, ¥gsp) and let -

Ty = ri(s““ll be the i*® filtration of Iy = ™ as in Definition 2.1. Recall that

[}#3

the spectrum W % ry is a wedge summand of W x Ty where ¢ C EP is ecyelie of

order p. In the remainder of this chapter, Dkl‘i will denote the np+k-i skeleton of -
this sumpand. Let ue use £ generically to denote the composites '

lemma 4.2. If e ¢ ‘Wk is represenited hy e ¢ ﬁk(wk,wk‘l) then ¢y (e @ xp) is
~represented by the composite

o
Zik,ps+:i.1"(:L . xp}:Dkri * wk % Ty 7 W Mo F§S+ir * Yps+ir—}s ? (enp+k—’snp+k-2)” - —‘Pi{i@ i —)« e (Yps—k’YpS—k'fl)
the maps of pairs and unions consiructed from them, and their compogites with the (ek:er ek . uskw} x .I‘ ) )
maps Ij T Yj + We will use the following consequence of Lemms 3.6 repeatedliy. o’ 2 0
Recall that e is defined in lemma 3.6. e 1

£
-3
Lemma 4.1. The following diasgram commubes. o I'(}’Wk # rluwk x Tp)

- u
pk*P lrp —s Dkr1
-1 -],
[g e ® I'O,Wk x I‘luwk "o Iry) ——1—;—-;)—»- (w % Fps’wk x Fps+ruwk ® Fps)

g T

Y

patr-k where u is the passage to orbits map.
Yps+pr-—k—];»+1 Eps+r-lc-l

Note: If e ¢ My is a Zix] generator (e.g. e = aiek for some 1) then the vertieal
composite in the diagram is an equivalence by the same argument which was used 1o

Proof. 1In the diagram below, the triasngle commutes because r > 1 d th
e g ’ € = e © construet diagrams (2.1) and (2.2).

quadrilateral commutes by Lemma 3.6.

X+, Y Proof. This is simply the relative version of Corollary IV.5.4. The natural
I B R LEASUAR
I'J *1 P F3 isomorphism wy(X,A) 2 w,(X/4} for cofibrations A + X enable one to pass freely
l l between this version and the absolute version of IV.5.4.
Yps+{,j +1)p-k-1 1'cpsd»j vk

\ l

Yps* (J+3)e-k-2 Ypstj rmk-1

We shall refer to the boundary of the map in lemms 4.2 so frequently that we
give it a name.

P P+k_1
The lemme follows by composing the diagrams for j = 1,2,...,p-1. Definition 4.3. Iet 3% ¢ “npi-}gmlypsm}g-i-l be the r@s;‘;riction to 5% of the map
D -
oxlep @ *F) of Lemma 4.2‘. Let 4 € "np*k-—lm rbT

image

O} be the mep with Hurewlez .
In IV.2 we constructed a chain homomorphism ¢: W ® CP + {, where is the

cobar construction, which we used to construct Steenrod operations, and in IV.5 we

showed that £ Induces such a homemorphism, In particular, Definition IV.2.4 says
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,5;; ja +e, £=0,1,3,4, then Ui{s) » 8z + ¢ if ¢ # 4, 82 + 7 1f & = 4. This

0 k=0 or k odd, p> 2
0 kn odd p=2 {pmediately lmplies the lemma.
¥ N
k 3 : ry .
-y %k @)d(xp) ' pek"l(g < O # X even, p>2 We apply this to prove the following three lemmas. As in 81 let v be
2 v.(k + n(p~1}), and let f be the Adams filtration of the gemerator of Im J in

("1)352@'1:—1 ® x k+n even, p = 2 P
i

0
: “v-—ls :

Lemma 4 .4. {1} a9 = gxl(1}

‘lemma 4.6. Assume p > 2. If v = k+1 and f > r-1 then pr-p-k+1 < 2r-1.
{i1) 1 is an equivalence -~

(1ii) Orienting the top cell of Dkrl correctly, the homotopy class 1. Proof: Equivalently, we must show k > (p~2}(r-1). By lemma 4.5

econtaing the map ag of diagram (2.2}. k+1

v
f <=
- q q

Proof (i} holds because we are in the Hurewiez dimension of DkflkJ Dkﬂlre « gAPtk-1 -

s - . . Thus ¥+1 > gqf > gq{r-1) and hence it is sufficient %o show that
g0 the Hurewiez image of 1 is sufficient to determine i, and its Hurewicz image is - = )

the boundary of the cell ey ® xP. Statement (i1) is immediate from the Hurewies

isomorphism, and statement {iii) is immediate from the fact that 84 is an
equivalence.

:'q(r~l) -1 > {p-2¥{r-1). This is immediate since v > l.

Lemma 4.7. Either min{pr-p+l,v+{} < vir-l or T = p=2and v=1or2.

. Proof. Suppose p > 2. Then f g v/q. If pr-p+l > vir-1l then
The differentials on P x are glven by the successive lifts of (1M win)as

when p > 2, and of 3¢ when p = 2. Corollary 2.8 and the diseussion following it
show that the attaching maps of lens spaces, and hence elements of Im J, enter into
the question of 1ifting this boundary. In the remainder of this section we
establish various facts about the mmerical relations between %he filirations and
dimensions involved, the last of which will enable us to split our proof into three
very natural speeial cases.

v ¢ {p~-1}(r-1) + 1 and hence

f < E%L *-% < r-l.

Now suppose p = 2. We must show that if r > v then f < r-1. It suffices to

show T < v-1. This follows from Lemma 4.5 except when v = 1,2, or 4. In these

cases f = 1 so the lemma holds when v = 4. If v =1 or 2 then £ < r-l1 unless
r = 2. This completes the 1emma..

lemms 4.5. 1If p > 2, the generator of Im J in dimension jq-1 has filtration < j.
If p = 2 the generator of Im J in dimension 8a+e (g = 0,1,3,7) has filiration <
bate if ¢ # 7, and < 4atd if £ = 7.

Lemme 4.8. Exactly one of the following holds;
{a) v >k + p=1,

{b) v =%+l and if p > 2 then n is even,
Proof. The vanishing theorem for Ext L (Zp,Zp) says that Ext5% = ¢ ir

D {e¢) v < k.
0 < t-8 < U{s), where U{s) = qe-2 if p > 2 and

Proof. There is nothing to prove if p = 2, so assume p > 2. We must show that if

ga - 1 =0 k <v € ktp-l then v = k¢l and n is even. Recall that k = (2j-n)(p-1)-e and

ga b 1 - v = vp{k+n(pm13) = vp(2j(p—1)—a). If ¢ = Othen v =1, Hence X = O end n = 2} so
Ul4a+g) = thet {(b) holds as required. If ¢ = 1 then v = gl + ep(j)). Dividing the

8a + 2 g ® 2 inequalities k < v < k#p-1 by p-1 yields

8a + 3 €= 3

: 1 3 - _._E_ + 1
2i-n~ 5:T-< 2(1+ep(3)) < 2j-n ~

if p» 2 by {4] and {56}. First suppose p > 2. The Im J generator in dimension
Jg~l is detected by an element of ExtS:V where t-g = jg-1. Hence jg-1 > #H{s) =
8q-2, which implies j > 8. Now, suppose p = 2. A trivial caleulation shows that if

which has only one solution: 2(1 + ep(é)) = 2j-n. Hence n is even and
v = q{1+ap(j)) = {2j-n)(p-1) = k+l.
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Lemma 4.8 is a consequence of the spiitting of the mod p lens space into weége

; By lemma 4.1, the following disgram commutes.
summands, the summand of interest to us being the ¢ .

P extended power. of a sphere. T4

see the relation, recall that v tells us how far we can compress the atiaching map k+p-1 e b3 Dk k-3
n-1 -n(p-1)+k LI Y DTy > DD T,
of the top cell of W‘k R =% Ln(;)—l) . When v < k, it compresses to )
Wk"v " ?1 and no further. When v > k it is not attached to Wk L rye However, £ £
recall that there are equivalences £
Eps+r-—k
+p-1 _ 01 oen(p-l)+k .
A o= P e ’ ' i
1 : E})s+pr-k—p+l Eps*r“kv*l Epsnkﬂ N
-l oanlp-1)+k
Wk Ko Ty = {’n(p—l)

'.'Because v > ktp-1l, the top cell of D}Hp"lrp is not attached (Corollary 2.6 and
“np+k«-1(Dk+p“1Fp) whose
Hurewicz image is ey, 1 ® axP (it is easy to check that ey, | ® 4xP generates

: an+k—1)' Also, v > k+p-1 > 1 immplies that k is odd if p > 2 and that k+n is odd
if p = 2 by Proposition V.2.16. Combining lemmas 3.6 and 4.4 we find that gy4(p) is
a 1ift of % when p = 2, and of {~1)™* ™ lyiag when p > 2. Applying lemma 4.2 or
Gorollary IV.5.4 we see that £y(p) represents Q*(ekﬁ-pnl @dxp). Thus, if p = 2 we
have

by Corcilary 2.6, and that the top cell of Wk woTy is the image of the top cell

of WPl K Tp by Lemma 3.6. When v > k this cell compresses o WP~? " FP'

The first possibility is that it goes no further, and in this case the wedge summand

“pefinition V.2.15). Thus there exists a reduction p «

of the lens space we are interested in has cells in dimensions n{p-1) and n{p-1)-1
80 that n must be even. By the splitting of the lens space into wedge summands, the
next possibility is v = k+p-1, which would have the top cell of Wk+p-1 ixp S
attached to the botiom eell. In faet this cannot happer{ because the attaching map
is in Im J end thus is not in an even stem. 8o v > k+p-1 is the only possibility if
v > k+l, and this says that top cells of Wlﬁp—1 lxTI rp and Wk = rl are unattached.
This "geometry" explains why the differentials on BePéx are sc different in these
three cases. We shall start with the simplest of the three cases, and proeceed %o
the most complicated.

- i 2
d,, 1'% = gl0) = gle, ., x dx)™= P alx,

“If p > 2, we have

&ppey 809K = (1)) win) (1™ L (o)

. -1

= (-1) {v(n)/m!v(n-1) )P 4 x.

. I% is easy to check thai vin)/m!v(n-1)
~gPd_x,

[H]

(~1)™* pod p so that épr-p+lﬁpjx‘ =
§5. Cese {g}: v > kt+tp~-1

Since v > k+p-1 2 1, it follows that ¢ = 1 if p > 2. Thus Theorems 1.1 and 1.2
sey that

“86. Camse (b): v = k+l

d2r-—1plx = P‘]drx ifp=2

v

: : We will begin by considering p = 2. Theorems 1.1 and 1.2 say that
andé d BP‘Jx = wsPJd x ifp> 2.
pr-p+l ko .
dop 1Pl = derx if 2r-1 <+ 4K,
Theorem 1.3 follows awtomatically from these facts, so these are what we ghall

establish.

dgrvlf’sx « Pldx +axdx Af 2r -1l=r+ £ +k, and

dpypap M = XX if 2r-1 > 7 + £ + k.

Since the filtration f of ¥ is positive and r > 2, Theorem 1.3 follows from Theorems
3.1 and 1.2.

Let N = k#2n-1 and let O ¢ mg(D¥'1r,,1,) be the top cell of D¥*1p, with its

. boundary compressed as far as it will go. Then the Hurewicz imsge
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2n-2

h(Cp) égl ® dx? and 3(32 =g = a2(k+n) € nN_1r2 il 1;3580. Since énd.

= 8
-1 20l 2
I':L/I‘2 = 8 v S by lemma 2.2, the Hurewicz homomorphisms in
o o (Tr,00) b (r,,r,)
2n-1T12T2 By {T1sTs
al )
h
Ton-272 Hon-ala

are isomorphisms. ILet R & Tr2n_3_([‘1,f'2} satisfy n{R) = x dx = eq® x dx in the
notation of §3. Then 3R ¢ Tapeala is an equivalence sinee hi{aR) = dx2 e ® dxz. '

2n-1 . 32n-2 .

lei a also denote (Ca,a} ¢ wyle Let i be the natural inelusion
1:(09,T5) » (D°Mrg,1p) 4f % > 0 end let 4 = 1:(Ty,Ty) » (7,Tp) if k = 0. Let eC,

denote (e,1)4{Cy) ¢ ﬁN{Dkl‘l,I'g)-

Lemma 6.1: ¢ = E*(ECz\_} iRa) in “NY2S-1{+1‘
Proof. First noite that els iRa is defined since 30y = 3{iRa) = a ¢ Ty-1lme By

lemma 4.4, 3¢ = £yleCy s iRa) will follow if eC, «iRa = nN(Dkrlu Dk"ll‘ has

o)
Hurewicz image (--}.)]‘ek ® é(xg), aince v2(k+n) = k+1 impiies that either k+n is odd

- :Dkr1 w

2.7 says that n(e02 w iRa} = e02 € my

Dk"lz‘l. Then h(?ﬁz) = e,h(C,) = (-1}kek®é(x2) by lemma 3.6 (since k+n 1z odd)

or k= 0. If k# 0 then Iy » Dkrl/Dk"lrl is an equivelence and Lemma

DKI'J_/D}‘{“]‘?1 since iRa factors through

and we are done. If k = O then n is even, since vz(n) = 1, and eG2uHaEn2n_1I‘1.

gen—2

- . 2 ‘
Also, a # « 2¢ Ty, o gince h(aCz) = d(el®dx Yy = (uml}eo(& dx2

2 s
= -2@0@ @x”. To compute h(eC, ,Ra}, project to /T, since Hop 107 + Hoy 1T4/T2

is the monomorphism which sends en ® d(xz) to en @ xdx + e @ dx x. By lemma 2.7,

2n-i g s
Tr{@sz Ra):8 Iy > r1/?2 equals e02 - Ra a0

H

h{n{eC,\ s Ra)) h("é‘ﬁg) ~ h{Ha}

2
e*(e1® dx™) + 280®Xd}{

e0_® {dx)x ~ e0® x8x + 2e0® pird

e(‘}® {dx)x + e0® xdx.

Therefore hieCy «s Ra) eq ® d(xz) andé we're done, proving lemma 6.1.
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: i-sincé_g*acz € TxTnginp, Ex(e0y iRa) = £4{eCy) - £4(iRa) in
'ﬂ*(st__k,rl,YzSér). By lemma 4.1 {or 3.6), £x{el;) and £4C, bave the same image
in 1 (Gg 1 Toguap) s Since h(Gy) = ey ® &%, 640y € wel¥pq yipr 1, ¥o0i0,)
represents Pjarx by Lemma 4.2. Similarly, h(R) = eq® x & implies that

gl € my{¥ooin,Yooin,) represents xd x, and hence fy{Ra) € mu(YogumepsTagenp)
rePresents 'Et‘xdrx. This completes case (b) when p = 2.

When p > 2 {and v = k+1) we will treat k = O and k > 0 separately. First

2] and e = 0. Also, £ =1, & « £1(8,9) and

aenyS is the map of degree p. Thus, we must show

8

‘. guppose ¥ = 0. Then v = 0

I, n

dr+1xp = a(}xp"ldrx .

. Heuristieally this is exactly what one would expect from the fact that drxp =
p(xp'lérx). That this is too casual is shown by the fact that we have just proved
(for p = 2) that
2 .
dgx* = hoxdox + X,

The extra term arises because when we 1ift the map representing 2xd,x to the next
filtration, we find also the map representing Pndzx which we added in order to

replace xdox + {dox)x by 2xdsx.
elements can always be lifted to a higher filtration than that in which aoxp‘ldrx
lies.

Thusg, our task for p > 2 is to show the analogous
The following lemms will do this for us.

Lemma 6.2. lThere existe elements

Gl € "np-lrl Y e Trnp_l{glrg,rzuDlrg)

X E'ifnp_l{?l,rz) 2 e“npml(DZFB’Dlrj‘-JDzrl\»)

such that
1 2 2 1. 2
{D TpaerD7,,0 D I’3 I 5‘4),

Clpr+pY+Z in “npml

B{C)) = eq® d{xF), and

h(X) = eq ® P lax.

Froof.
involved, we may define ;,X,Y and Z by thelr Burewiez imeges. Thus G and X are

Since np-l is the Hurewicz dimension of all the spectra or pairs of spectra

given, and we let

- i p-1 1
hiY) = ~e, ® QA(x" ")dx - 7 ey @ tp_2 , and
BZ) = -Zre, N, , .
TR 1
Az in section 3, N = § of and Q = (a+1) § ia®".  We also let M = 7§ 1aP-1-1 ang

i=1




204 205

note that M{a-1) = N-p. Define

1
¢ ==

. m~1 Py -
- by Lemma 3.6. d si dle tq) = 0, it follows that
ST M @, g te, @t ) ¢ % o ® Pt dx -1) "feo ®t, oy 3.6.(111), and since dley » @ 1y s

ap-1

-{(_1}me0 ® %—1!%-2 ® t.O) is a cycle of {ri,DP"zrp). Since ry = and

. 1 2 1 2
in Cy(D Ty D I2sTy D FZVD TB)' By lemma 3.2 1t follows that Dp-»2r = Snp-z’ the Hurewicz homomorphism is onto and R satisfying (1) exists. Now

d(C) = h{Cy) ~ph(X) - ph(¥) - h{Z} “(ii) is obvious since the poundary homomorphism simply projects onto the second

saza s s . -2
whieh shows that Sl = pX + pY + 2. ‘fagtor. Part {iii) is impediate from the fact that ep_2 ® 1p generates anmsz E‘p.

Lemma 6.2 Now we split R into a plece we want and another pleee modulo Ty. .

By Lemmas 4.4 and 6.2, 3¢¢ z:*Yle is the image of £yC ¢ Tf*Yps+r.
aiso implies that

: . i
F’*cl = Pg*x + pg*Y + E*Z ienms 6-4- There exist X ¢ ?TnP__l(I'l,?g) angd Y e Tinp__l{D 1‘2,I‘2} such that

(i)  n(x) = {—1)m'1mleo®xp“}"dx, and
in mglX

pS+r-l’Yps+2r}‘ Since £yY e “*{¥ps+2r~1’1‘(ps~v2r) and (ii)  (i,@)g(R) = iyX + j4Y in u*(DJ“I‘}_,I'g) where

£4Z e "*(Yp5+3r~2’yps+3r-l) it follows that ‘5%01 = PEgX In 7T%(Ypsw--}’Yps+2r) and_. iiry » Dli‘l, j:DzI‘2 *> Dirl and e:Dp'gl‘p > o

that 3¢ = pggX in “*(Yps+1’¥ps+2r)' Lemma 4.2 implies that . .
Proof. We are working in the Hurewiez dimension of all the palrs involved so i3

X,

Exk € "*{Yps+r’Yps+2r) represents xp“ldrx and hence pgyX 1ifts to ny(Y ps+2r)_.

patr+l’ ‘guffices to work in homology. We define X by (i} and define Y by

where it represents aoxp"ldrx. Finally, IV.3.1 implies nYy = (—1)m'1(m-1)iei€@ Qd(xp"l)dx.

o @ " -1
R On celluler chains, the map (i,e):(r;,BP™2r ) » (d'ry,r,) induces the homomorphism

Now suppose that k > 0. Then v = ktl 1s greater than 1 and hence congruent to -
0 mod 2(p-1) by V.2.16. Also by V.2.16, ¢ = 1 and k = {2f-n)(p-1l}-g 1= therefore
odd. Lemma 4.4 then implies 3¢ = £4(1) with h(z} = -e; ® d(xP). The néxt three
lemmas deseribe the pleces into which we will decompese 3¢. In the first we define
an element of Tnp-1 of the cofiber of e:DP"er + Ty, which we think of as an element .
of a relative group nnp_l(rl,Dp“erp). In order to specify the image of such an
element under the Hurewlcz homomorphism, we use the cellular chains of the cofiber
in the guise of the mapping cone of e*:C*DP'“ZI’p + Cyly. That is, we let

1
-2 LN 1
0, F ®Cy 1 I v O fy = G DTy —= O DT /G T,

in which the unlabelled maps are the cbvicus quotient maps. Thus, denoting
equivalence classes by representative elements,

R({1,e),R) yu-t

(-1 eo® tp-—l

= {~1)m“1m1e0® Pl . (»1}‘““1(m-1meo® P lax
ci{rl,Dp‘2rp) =0T ® Ci—le-zyP by Lemm 3.2. Since
with d{a,b) = (d(a) ~ eyx(b}, - d(b)}). dleg ® pr"ldx} - Tep @ pr'ldx S ® Qd(xp“}“}dx,
Lemma 6.3, There exisis Rg nnpul(rl,DP”zrp) such that it follows shat h((i,e)xR) = h(iX + §y¥).

(1) n(R) = (-1 e ® t, 1, ey p ® tg) & Helry,DPr )

{ii} h{3R) = €p-2 ® by = epm2® tdx)}P, ang In our last lemma we splii 3¢ into two pieces moduio Dp“zrp. Let N = k+np-1.

{iii) 3R e w DP-2r  is an equivalence. .
np-2 - - .
P P lemma 6.5. If v = k+1 and k > O, and if Cp € nN(Diﬁp 1FP,D3’ 2I‘P) is the top cell

(h(cp) = Cpipa1 ® 4xP) with its boundary compressed as far as possible, then aCP =
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AFa in my 1 IP?r) and

-1

1 . .
8¢ = (-1} " o E*(eCp s iRa) in &Y

pa-k+1 °

Proof. B8inee v » k+l, the attaching map of the top cell faetors through DP'2r
Since 3R is an equivalence by Lemma 6.3.(iii}, the definition of a = ap{k+n{p_1})
= (R)a = sRa. Now &y N, DX"1PO = Dkrl/Dknzrl and, since k > Q,

Ra factors through I C Dk"érl. Hence, in H*(akrli Dk'lra),

P

ensures that an

# h(eC
(e P)

= e*(e

h(eCp\,fiRa)

Kep-1 ® &)

(—-l)mm!ek ® a(x")

by Lemme 3.6 {since k is

a0 = (-1 %T £y

odd and n is @U@Il).
(espu 1Ha}-

By Lemma 4.4, it follows that

We are now ready to prove Theorems 1.1, 1.2, and 1.3 in this remaining case

{p> 2, v==k+t, and k > 0). We must show that

dxePlx = —BPédrx 3 (-1 E'xp“ldrx.

By lemma 6.5, dx8Mx is obtained by lifting

(-1 pnise = (-1)9"®L

1 N
vin) ol f;*(ecpuma)
from “*(Yps~k+l} to the highest filtration possible. Since E*(eCP) and £y{iRa) have
ecommen boundary in YPS+PP-P+2’ g*(ecp iRa) = g*(ecp) - gx{iRa} in

3*(Yps-k+1’Yps+pr~p+2}' By naturality of £, £4(iRa) is the image of

£.fRa e “*(X’ps+r’x’ps+pr—p+2)-

and by lemma 4.1, g*(eCp} is the image of

£4C

o € T (X

ps+prmk~p+1’¥ps+prwp+2)‘

Lemma 6.4 implies that g4R = g4X in “*{Yps+r—11Yps+2r—l) gince gyY iz in filtration
(Note thet sinee 3R is mapped Into I' by e in 6.4.(11), Lemma 4.1
forees us to work modulo filtration 2r-1, the filtration into which £ maps Dlrg.)

Thus

2r~1 or higher.

g*(ecp&J iRa} = E*Cp - Exfa In “*(Ypsmk+1’xps+2rm1)’

and, since & has filtration f, £y¥a comes from “*{¥§s+r+f’yps+2r)‘ By Lemma 4.6,
either r+f or pr-k-p+l is less than 2r~l, so that at least one of 5*Cp and £,Xa 1z
nontrivial in "*(Yps~k+11Yps+2r—l} in general. Since h{CpJ = ek+p~16§ ax? and

n(x) = (-1)%% nle, ® P 'ax, Temma 4.2 implies that

¢ Lemma 7.l.

L opksn(p)
gk+np-v

207
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g%cp represents (-1) STa1) BPJdrx , and

£,%a represents (-1t Ekp"ldrx.

‘Tt then follows that

(-1 vin)ae

G*Bij

. ] _ +m-1 1
= (—1)‘1 =2y(n) Yl (E*GP - EyXa)

Hi

m-1 win} 1
-1) vin-1} m

gpd a_x - (-1¥v(n) = xp"ldrx .

j . e —~ p-~l
- ﬁPJdrx + {«1}) a & drx

‘gince win)/vin-1} = (-1)" m! (mod p)} and sinece v = k+1 implies Z{e+l}(p-l} =
J(2j-n)}(p-1} so that n =

2(j-e~1} and hence
-1y = (-0t endeetl o e,

This completes case {b}.

§7. Case {e}: v < k.

In thig case the boundary 3¢ splits into a plece which represents the same
operation (Pé or BEFJ) on 4,x and another plece which is an operation of lower
degree applied to x times an atiaching map of a stunted lens space. We begin with
the lemma needed to identify this latter plece exactly. Heeall the spectral
sequence of IV.6, and recall the notations established in §i.

Iet a ¢ ﬂk+np_1gk'vsn(P) be the attaching mep of the top ecell of
and let f be the filiration of pyla) = ap(ken(p-1)), where o :DK-Vgn(p)

is projection onto the top cell. Let P be the seguence
pk-vanlp) . pl-v-ignip) . ... . gol@),

In the spectrsl sequence E.(S,[) the following hold:

(a) 1 < filtle) <71,

(b) 4if filt(a) = f then o is detected by
- k-v-~1
ae, .t L e e

for some ¢y ¢ E2(S,S),
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(¢} ifp=2and v <10 or p>2 and v < pq then filt{a) = £

-‘The. iécmorphisms are isomorphisms because Dk"lf'o = * by lemma 2.4 and because
and o ie detected by ae

] JKHnp-1 . . . ~
P .g}crl/_n rl I i Certainly A exists satisfying 54 = 3Cy. It foliows that

Proof. (a) Sinee gy = O in mod p homology, filt(a) > O. HNote that this fact’
(applied to all the attaching maps of Dkuvsn(p)) ensures that the spectral sequence
can be constructed. Sinece p induces a homomorphism from E.(S,82) to Ex_(S,S}, and
pxla} has filtration £, o must have filtration < f.

MR(A) = 3(h(C)) = (-1 pe,_, ® xP),

showing that h(A) = (-1)¥"lpe, ; ® xP.

To ‘'show that 1 = C; . A, 1t is enough to show h{1) = h(C; wA), since

X k- 1 kmp -1 e :
(b} By IV.6.1(i), every element has the form Diry e DT T . With N = k+np-1, note that HNDR ry = 0. This implies
k-v thet the homomorphism
) e.e. ' ‘ i \
qmg +1 -1 * K k-1 k-1
1=0 HNDkFlu D" le, —= (DT, o DN, DY )

for some ¢y. If filt{e) = f then the element detecting e projects to ¥ in the Adams
is injeetive, so that we need only show ixh{1) = igh(Cy . A}. By Iemms 2.7,
14h(Cy A} = n{Cq}) ~ h(A) and the result follows.

We now have 34 = g 1 = g*(clu A) = 5*01 - £y A modulo Yps+r—k+1 since

spectral sequence of the top cell. Hence Sy =& (In fact this ergucent shows
that if ey ., # O then filt{a) = £ and Cpy = .}

(e) Under the stated hypothesis, a8y iz the only element of filtration ¢ £

k-1
in degree knp-1. 5*(1) ry )¢ X

ps+r-k+1* Applying Lemme 7.1 we find that £ A represents

(- 1) a oy ley ]_@xp} in my (Y pa-k+2 ps+r-k+l) (with agy = hg if p = 2), Sorting
out the constants we find using Definition IV.2.4 that -£y4A coniributes aOBPJ x, if
p> 2, and hOPJ ~ly, i# p = 2, to the differential on Mx. Thus, it remains only to

show that £40; is in a higher filtration than gyh.

To prove Theorems 1.1, 1.2 and 1.3, let us first assume that v = 1. Then k 1s
even and g = 0 if p > 2, and k*n is even Iif p = 2. Theorems 1,1 and 1.2 say that

4,8 x = P Iy if p = 2, and

AP = agePix if p > 2. Lemma 7.3. If i; and i, are the maps

Theorem 1.3 follows from Theorems 1.1 and 1.2 in this case. The first step is to
spiit the element 1 of Definition 4.3 into %wo pieces. Recall that

T, .
(DkI‘l,D I‘l}\ll”
+1 k-1 o+
j: / (0" ry,D7 Ty s DT
i
(‘D)‘I'}L,I)k“lrl \,Dkrg) 2

then there exists X such that 1140q = p(izX).

(1) = (-11(e, @ atP) + pe, | = xP).

Lemma 7.2: If k> v =1and C « Tenp- 1 (D I‘l,D}c Iy} is the top cell, oriented so

that h{¢y) = {-1)¥e @ d(xP), there exists Ae (Dk 11‘ Dk -1 ) sueh that
1 X k+np-1 Q2

h

h(4) = («1}k'zPek,1 @ xP Proof. Since k+np-1 is the Hurewics dimension of the domain and codomain of i,, 1%
suffices to work in homology. First suppose p > 2. We let nE) = e ® xp'ldx,

which is obvicusly a cycle modulo Dk'"zf‘lu Dkrz. Then, in the codomain of i, and iy

) X -1
and 1= CluAe ”k*np-l{g Iy D I’G).

Proof. Iet N = kenp-l. To see that A exists, consider the boundary maps and we have

Dy - P-1
Hurewicz homomorphisms x ® dlx™) " @ Nx” “dx

Te, ® MPLax + pe, ® «Fhax

5 (D5 1y ,Dk 1r } o LD IE  (D°T ,%Dk“lr )
N o N-1 1 3 NIy 1 1 -l p-1
~ @ @M dlx® Tldx + pek® xF Tdx
h h h =z
zpe,® xp_léx,
k-1 k-1 - -1 k k~1
S —
B (D1, 07 ) — 0 ; H (D7, 05 )
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. p-1 .
where N=J a*, T=a-1, and M= ] ia P17l he homology is due to

Je+ l Y1

The i'so.morphisms are isomeorphisms because Dkr'o = ¥ = DO
dley , ® WP dx) and the eongruen%e holds module D° T,/ D T,. This implies 3 )

o by-Llemma 2.4 and (e,e)

is an egquivalence by Lemma 3.6. Thus, we may define A = a‘le*ac To see that 1 is

p*
the image of the claimed elements, it suffices to work in homology, as in Lemma 7.2.
Here, h(eCpu A) = e*h({)p) - n(4) = e*h(Cp) gince HNﬂle“vrl = 0 for dimensicnal

: reasons. By hypothesis, h(Cp) = ey, 1 ® axP, so

Now suppose p = 2. We again let h{X} = e, @ xdx and again this is cbviously a
cycle. By lemma 3.3 we have '

(-1)%e, ® a(x%) ~ ey, @ A + 26, ® xdx +
(-1 "ale, ® aF)  p> 2

H

2ek & xdx,
h{eﬂpu A} =

pE-1

where the congruence holds modulo L N r,. This implies that 1,4Cq = 2i,4X.° "
2 1 1EVL T SRR

(—~1)kek® d(xz) p=2

We can now finish the proof of Theorems 1.1-1.3 for v = 1. By Lemma 7.3, the
image of £4C; in “*(Yps-kﬂ’yps-ki-rﬂ

wth - EX ETi*(YPs—l«:ﬂ-’YpS—“,lsﬂwl) so that g,pk E'ﬁ*(YPS--1{+1=+].’Yps—kﬂ'ﬂ} = 0. Thus

the entire differential is given by -g,A and we are done.

. s = k -
) is sero, since it is the image of £,pX, vy lemma 3.6. Comparing this with h{i)= (-1)%e, ® d(xF) finishes the proof.

Now,
(-9 p o> 2

Epdy o
Now suppose 1 < v < k. Then, since v = vp(km(p—l)], Lemma V.2.16 implies that dyf Py =
¥+n is odd if p = 2 and that k is odd and e = 1 if p > 2. Also, by Definition 4.3, gt p=2
R} = (-1, ® alxP). et N = kemp-1.
80, up to a scalar multiple, our differential is g*(e(}p w A} e “NYps—kﬂ‘ By
Corollary 2.8 and lemms 4.1 we find that

Lemna 7.4. If G, & myl (pk*p-1p DK*P"Z“VFP) is the top cell, oriented so that h(C)
= eyyp-} el &xp then there ex1sts Ag 1rN(D:K 1“'9,13k Ty} such that 3A = e*a(}p and
L€ ﬁN(Dk?]_\)f)k Ero) is the image of

Ex(eC V) = £,e0) - h In T Y penkce1 Y ps-toipv!
( 1)k+zm+m 1 e C o A) p>2 ® E*Cp - Eyh in ?IN(Yps—k+1’Yps-k+r+v«l}'
€ T (Dkf‘ D5y ) - .
N ¢ It fellows from the definition of Cp that £4C., 1ifts to "*(YpSuk+pr-p+l’Yps—k+r+v)'
eczu A p =2 By lemma 4.2, g*Cp represents ¢*(ek+pL1 ® dx*}, which equals g® dx up to a

sealar multiple. When p = 2 this shows that 40, contributes derx to d*Pj ¥. When

: p > 2, the coefficient of BPd d.x is
Proof. To see that A exists consider the following disgram, whose upper square

commites and whose lower square anticommutes. 2j+xvm+m . vin)

{=1} }'i_z -1 (mod p).

vin-llm
x k+p-l~v P 3 (D k+p- 2[, Dk+p-—l~vr )
LY Tp P’ P The eongruence follows from the definition of v, viZa+b) = (-1)%(ml 0 if b =0 or 1,
l z lte,e) and the congruence (m!)2 = (-1 )m"]' {med p}. This almost proves Theorem 1.1, with
S 2y
] . L] un o3
, . - '.[’p consisting of -E A e EN(Yps—k+1’Yps-ki-r+v) plus a possible Yerror term" in
LITR l I' ot TrN(D I‘},D l"z} ﬂN(Yps-ki'rﬂr-E’Yps-nk**rﬂf) coming from the use of Lemme 4.1 above. "Almost" because
this decompesition is only valid modulo filiration ps-k+r+v and we must still show
’ -1 = 1° that either g°PJd,x or T, will be a filtration lower them this in order to finish
k

the proof of Theorem 1.1. To do this, we must identify gy4A. Referring to the

k Ky
TofTy = 3 T (D T/T D Tg/ry)
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diagram in the proof of lemma 7.4, the element Gp in the upper right corner goes +o:
A in the lower left corner if we follow the top snd lef%t arrows, while 1t goes to

k+mm+m
m

(~1) lo P> 2

o p =2,

where o 1s the attaching map of the cell ekcj ¥P, if we follow the bottom and right‘:

arrows. Sinece the lower square anticommutes and since k is odg if p > 2, it follows

that mn+m
n

(-1} la p>2

- p = 2.

Applying Lemma 7.1{a) we see that £,A has filtration less than or equal to ps-k+v+f. _

Lemme 4.7 implies thet, unless r =p = 2 and v =1 or 2, one of g*cp and gyxA will
oeccur in a filtraiion less than ps-k+v*r-1. Thus Theorem 1.1 is proved unless

T =p=v = 2 {ginee v = 1 has already been dealt with}. Applying the rest of Lemma
7.1 we find that

(-1 5 (b*(ekmv & ) p>2
Egh =

& ayle,  ® %) p=2

it v = k (since Dk_vro/rl « P g enly one cell in this case) or if p = 2 and
v <10or if p> 2 and v < pq. Combining constants, we find that T, = Dy and
that T = (-0 2P ir p > 2 (recall that e = £,(i)). The constant in the
odd primary case comes from the faet that v = vp(k+n(p~1)) = v?(Qj(p—l) -1} =
2(p-1}(1+e) by V.2.16, so kv = (2{j-e-1) - n){p~1} ~ 1. This completes the proof
of Theorem 1.2 execept when r = p = v = 2 (a8 ncted sbove) or when pr-p < v < k. In

the latter case, Lemma 7.l.{a) still ensures us that

£ilt(g,A) > ps-k + v+l

> pe-k + pr - p+l

c_).
£11(£,0,)

Hence the term econtribuied to 6*BEPJX by g*Cp gppears alone In this case. This
compietes the proof of Theorem 1.2 except-when r = p = v = 2, Deferring the latter
cage wtil the end, we shall now prove Theorem 1.3. If p = 2 we may assume v > 8,

while if p > 2 we may assume v > q. The attaching map o of Lemma 7.1 must then have
filtration 2 or more. Thisz is so because

{1} all but the top two cells are in filtration 2 or more,

‘e
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o (iif the next to top cell component is the product of a positive dimensional
'element of E5{5,5) {since v > 0) and a eell in filtration 1, so has
filtration at least 2,
{iil) +the top cell component 1ls a permanent cycle (being the image of the
permanent cycle o), hence has filtration at least 2 by the nonexisience

of Hopf invariant one elements in dimension v-1.

T fnds implies that g£y4A has filitration ps-k + v+2 or more. OSince g*cp has filtration
ifps;k + pr - p+l and 3¢ splits into these pieces modulo filtration ps-k + r +v-1, we
have 4;8%PIx = 0 if

N

i < min{v+l,pr-p,v+r-2}

i

min{v+l,pr-p} ,

 the equality holding because v+r-2 < v+l impiies r = 2, so that pr-p = p < v = vir-2
;:by our assumption on v. This proves Theorem l.3.

It remains only t¢ prove Theorems 1.1 and 1.2 when r =p = v = 2. Together,

. . . 2
they say dqPx = Mayx + nyP"%x. Let N = ke2n-1 and let ¢ BT
, € “N{Dk+1r2,Dk‘1r2) be the top cells, oriented so that h{C;) = (-i)kekta &(x?)

and h(cz) = ek‘l‘l @ cixz.

k.
§ TIN(D T 1) and

Lemma 7.5. There existas A e nN(Dkdzro,Dk“zrl} such that 3A = aC1 and

¢ = G A dn my(D8ry o D5l

Proof . Since Dk"grc = ¥ we pay define A = 3"1381

k-2 k-2

pEPp ) 2 -2 (0°72r o, 0"

I‘l}———?#n DT

P
N-1 1 & T

nN(Dkrl, ).

N 1

Clearly, h(4a) = 0, so h(01~yiA} = h(Gl)‘= n1). Thus » = Gy« A,

it follows that

3 = g1 = 5*(01\“'A] =gyl - Egh e 1¥N(Y2s~k+1’¥28~-k+4)'

As before, we wish to replace g*cl by ExC, plus an error term which we can ignore.

The following lemma is what we need in order to do this.

H p*

. k——2r K1
i 3

Lemma 7.6. Let ry w0,

K~1, k-2
I‘ZuD E‘l,

and j:omr
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Dk-2

-1, k-l C
Ty o ;) w1th.

be the natural inclusicns. Then there exists X ¢ nN(D rl,D
positive filtration in the Adams spectral sequence, such that in

T~ km
n (0, D, WD)
(1,11)*01 = (e’i.?)*c?, + (3’1)*}{

2 k-1 k-1

- ¥ . -
Proof. Since p:{Dkl‘l,Dk r, D ?2) »+ {D fl,D rl) is the cofiver of (j,l}, we

1
need only show p*(l,il)*c1 = p,le,l )*C2 in order to establish the existence of X

satisfying
(1,11)*(}l = (e,iz?*c2 + {3,1),X
The filtration of X is necessarily positive because

1 Xkl w2 \) Q1
i r /o, OB Vs

by I.1.3 end lemma 2.2. Since N is the Hurewies dimension of (Dkrl,Dk“lrl) it

suffices to show hipyle,i,)4Co) = hlpy(1,1,)46). This ie immediate from lemma 3.6.
With Lemma 7.6 we can now finish the proof of Theorems 1.1 and 1.2. The

element £xX is in "N(Y23~k+3’Y23—k+4)’ but since X has filtration greater than 0,

gyt = 0 in EN{st_k+3,st_k+4)- Thus 5*01 = g*(i,il)*cl = g*(e,iz)*c2 in

Y By Lemma 4.1, £xle,is)yCy = £x0p In "N(Y25~k+l’Y23—k+4}’ and

1ylY 3.
N' T 28-k+2? 2s-k+4 4
where it represents Pdézx by Iemma 4.2. Finally,

E*Cz 1ifts to “N(Y2S-“k+3’Y2$~k"'4) 2
Exh also 1ifts to my(Yog.j+3:Tpe-k+s) Where 1t represents n P "“x by Lemma 7.1.
Thus ) s

dejX = P‘]dzx + hlPJ— .

CHAPTER VII

H, RING SPECTRA VIA SPACE-LEVEL BOMOTOPY THEORY

J. E. MeClure

Our main goal in this chapter is to show that the spectrum KU representing

‘periodic complex K-theory has an H, structure. The existence of such a structure is

important sinee it will allow us to develop a complete theory of Dyer-Lashof
oberations in K-theory, ineluding the computation of Ky(QX); this program is earried
out in chapter I¥. Of ocourse, we already know that the connective spectrum kXU has
an H, structure since it has an E_ structure by (71, VIII. 2.1]. However, it is not
known whether KJ has an E_ structure, and the distinetion between kU and XU is

“erucial for our work in chepter IX. We therefore require a new method for
-eonstructing I ring specira.

As usual, the case of ordinary ring spectra provides a useful analogy. The
easlest way to give KU & ring structure is to use Whitehead's original theory of
spectra [108]. We use the term "prespectrum" for & sgpectrum in the sense of
Wnitehead [108, p. 2401, reserving the term "spectrum" for the stricter definition

of I81. The Bott periodicity theorem for BU gives rise st once to a prespectrum
T ([108, p. 241]; more work is needed in order to get a spectrum), end the tensor

product of vector bundles gives this prespectrum a ring structure in the sense of
[108, p. 270]. HNow the Whitehead category is not equivalent to the stable category
};3, but it is a quotlent of it, and one can 1ift siructures in this category to
hA as long as ceriain 1im' terms vanish. These lim! terms do vanish for KU and we

obtain the desired ring struciure.

In order to carry this through for H, siruetures we must give the Bott
prespectrum a "Whitehead” H_ structure {(which is fairly easy) and show how to 1ift
it to hd (which is eonsiderablyAmore diffievlt). Our main concern in this chepter
is with the 1lifting process, which is called the eylinder construction and denoted
by Z. We begin in Sections 1 and 2 by giving a careful development of the cases
already mentioned, namely %the passage from prespectra to spectra snd from ring
prespecira to ring specira. Our account is based on that in [67] and [71, TII §3]
but is adapted to sllow generalization to the H_ case to which we turn next. In
section 3 we give a general result allowing construction of maps D“E + ¥ in né from
Prespectrum-level data. Although the basic idea is similar to that of section 2
this situation requires new hypotheses and methods. Section 4 1s a digression which
gives a convenient sufficient condition for the vanishing of the lim; terms
encountered in sections 1, 2, and 3. In sectlon 5 we define B, structures on
prespeetra (for techmicel reasons, these are called Hﬂ structures) snd show that
they 1ift to H_ structures in h& when the relevant lim1 terms vanish. In geetion &
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we observe that spectra obiained in this way actually have Hg structures as defiﬁed
in L.4.3 and that there ig in fact an "approximate equivalence" between Hg
structures on spectra and prespectra. Section 7 gives the application to K- )
theory. The necessary Hg structure on the Bott prespectrum is obtained from the E
structure on kU; a more elementary construction noi depending on E, theory (but
still using the results of this chapter) will be given in VIIIL §4.

Section 8 gives_'f
a technical result which is used in section 3. :

Except for section 8 and one place
in seetion 1 we use only the formal properties of hA and D7¥ given in I$l and 1§82,

This chapter and the next are a revised version of my Ph. D. dissertation.
I would like to take this opportunity to thank my advisor Peter May for his warm
support and encouragement both in the course of this work and in the years sinee. T~
would alsc like to thank my colleagues Caunce Lewis and Anne Norton, my friend
Deborah Harrold, my parents, and a person who wishes to remain anonymous for their
no less valuable support. However, the views expressed in these chapters are my own.

and do not necessarily reflect their opinions.

§l. The Whitehead category and ithe stable category

In this section we describe the relation between the Whitehead category,
dencted wP , and the siable ca%egorw'¥;i o The resulis are well-known, but we give
them in some detail in order to fix notation and because we need particularly
precise statements for our later work.

We begin by defining ;R? . M object T, called a prespectrum, is a sequence of
spaces T; (for i > 0} and maps o, :ZT, » T, in hJ (see I§1; the use of hJ here
is technically convenient but could be avoided by systematic use of CW-
approximations}. If the adjoints Ei:Ti -+ nTi+
g-prespectrum.
f‘i+100i =g, 0 zfi in 1J . This should be compared with the much stricter
definition of morphism in nd given in I81; it is precisely because morphisms in
w¥ are defined in terms of homotopy that this category is a useful intermediate
step between space-level and specirum-level homotopy theory. The set of maps in
w® from T to U is denoted [T,Ul,. If U is an Q-prespectrum then this set is an
abelian group and is equal ic the inverse limit limi[Ti,Ui§ with respeet to the maps

] are wesk equivalences we call T an

A morphism £:T + U is a sequence of maps fi:Ti > Ui such that

ok . -l
(1,0 B lgr.qU ) —de (10U ]~ 2, U
14170141 R PSR PE] 190 32050

There is an evident forgetful functor z: hd + w® . Although there is mo
useful functor in the other direction, there is an "approximetely funciorial®

congtruction Z, called the cylinder construction. This can be defined in several

exists a map F:ZT » ZU induced by f in he sense that the diagram
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'égééhfi&ily equivaient ways (see IS6 of the sequel}. For our purposes it is easiest

aT = Tel z"lx“Ti,
3

" yhere the telescope 1s taken with respect to the maps

-3 e

BT -1

g -3

1L, e
I

~i-1 1T

= I

&2

1Ty T, —=5"

i

i i+l

T

We write 6; for the inclusion $™T; » £*ZT. If £:T » U is any map in w¥ there

~

i SR S

b
L7 Ui

o

2T ——— Gl

I

-1
L Bi

-3
L Gi

commutes for all i > 0. Unfortunately, this map Is not in general unique. To

elarify the situation consider the Milnor lim1 sequence

1.1

0 —1int (27570, 20) — (27,200 — Linmlz 7571, 200 — 0.

1 We

ghall use the notation Zf for this map when this condition is satisfied (and not

Clearly, the map induced by f is unique if and only if the 1im~ term vanishes.

otherwise). We have Z{f o g¢) = Zf o.Zg whenever all three are defined.

The liml term just mentioned is onlyrthe first of many which will arise in our

work. ¥For applications we wish to know when they vanish. This question will be
considered in detail in §4; for the moment we simply remark that for the cases of
interest to us (namely Bott specira and certsin bordism specira) all relevant Limt

terms do in fact vanish.

Although Z is not a functor, it has several useful properties. In fact, one
may think of the pair (2,%Z) as an “approximate adjoint equivalence" between hd and
the full subcategory of fQ-prespecira in WP . The following result makes this

precise.

Theorem 1.1. For each T ¢ w® and E e 1A there exists maps k:T + 2ET and A:ZzE » E

with the following properiies.
A1)

¢ is natural in the sense that 2Zf o ¢ = k o f whenever Zf is
defined.

(i) «k is an equivalence whenever T is an Q-prespectrum.



o

(111} A is patural in the sense that f o A = A o Zgf whenever Zaf is m (2T = my L2 = colim Tyainj? Eﬁ .
defined. 2
— = colim colinm m, . . LT,
{iv) A is an equivalence for all E ¢ hd j PR R T
(v} #x o x is the identity map of zE. -
Y Imap A cofinality argument shows that the inelusion of colim Ty i+ ‘1‘j in the last
(vi) The map 1:[2T,E] » [T,2E], defined by =f = af o x is an isomorphism J

whenever limlEi'"lTi = 0.
{vii) The map Zf, whenever it is defined, is uniquely determined by the
equation t{Zf) = x o f.

group is an isomorphism. If T is an a-prespecirum, then the inclusion

. - “iTk +> co%zm ﬂkmi+j Eﬁ

j¢ en igomorphism and the result follows.

The rest of this section gives the proof of 1.1. In order to construet x and X ‘Next we define 1:%zE + E to be any map obiained by passage to the telescope

we need an alternative deseription of the i-th gpace functor from nd to hi. from the maps

. r ey : z7I"E, - B
Lemma 1.2. There is a natural equivalence Ei = Qg R, If ei denotes the adjoint

mep zwgi > EIE then the following disgrams commute. part (v) is immediate, and {iv) follows from (ii) and (v). For {(iii} it suffices,

by the definition of Zaf, to show that A'l of o x: ZzE + ZzEt is induced by =f,

o 1 @ ~
tE; = IQT'E pzE ¥ InE, i.e., that the diagram
(1} lci l (2} lx o5 lzei zuiszl .

. 8! . 1T R » 1 VRS
L ooecdtl o isi i+l i

14 % 0 ECE PR R . ,

- -
z Bi i ei

For the proof see 187 of the sequel. The fact that such an equivalence exists A £ A

e e o L -1
should not be surprising since it is well-known that the reduced E-cohomology groups

EXX of & based gpace X can be defined either ss [57X, £*E] or as IX,EiI. The
disgrams of Lemma 1.2 (which are adjoinis of each other) simply say that one obtains
the same suspension isomorphism with either of these two definitions.

commutes for all i > 0. This in turn follows from the definition of A and the
ngturality of e;.

1

Given T ¢ w® we can now define x:T + zZT by letiing the 1-th component kq:Ty > For part (vi} consider the lim~ sequence

ZT) . th -l = v i e
(ZT); be the composite o i T, ,E] —= (21,5) Eowyim(z iy T, ,El —= 0.
T, — 01", —» o"shar - (o1,

0 —» 11:;;1[22

The map ?ﬂagrees with ¢ under the isomorphism
We note for later use that the following diagram commutes.

ey 1m(x757T B = linl Ty = {T,4E],

1’1

b2 T ———————mmmwmwvz ZT)

C N

The verificetion that « is in faect a QP? -map is a routine dlagram chase using

and the result follows.

Finally for (vii} we caleulate

t{Zf) = 22f o « m kX o f.

The uniqueness follows from (vi}.
diagram (1) sbove. It is clear that k satisfies 1.1{i); in fact it has the sironger

property that 2F o ¢ = ¢ o £ whenever F:ZT » 2U is induced by f. For part (ii) we-
first compute
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§2. Pairings of specira and prespectra.

In this section we glve a multiplicative version of the vresults of §1 which in :
particular will allow us to produce a ring spectrum in h8 from suitsble input in
w® . Again the resulis are well-known.

For the rest of the chapter we fix an integer 4 > O and comsider prespectra
indexed on nomnegative muliiples of d. This 1s convenient in the present section
(for dealing with Bott spectra) and will be crucial in 3. ‘

let £,8',¥ ¢ hA. By a pairing of E and E' Into F we mean simply a map
¢:EAE' » F. Although the category WP has no smash product, a suitable
prespectrum-~level notion of pairing has been given by Whitehead [108, p. 255]; we
recall i1t here.

Definition 2.1. ILet T,T',U ¢ w® . A pairing :(T,T'} + U consists of a
collection of maps
. 1
vyt T 7 Y

such that the following diagram commutes in nJd for all i,j > 0.

d A oy 1
I 1
ETay™ T4 > Taen)™ Ty
18
n (-1} V3413
8in A ,,fim_ﬂdu iy
di “dj d{i+j} d(i+]+1)
1t
a 1hg, v
T B ' i
Ty A 2°TY, Tas A Thyen) i,3+1

If ¢:EAE' » F is a palring in HS and f‘:f? + E, i":%‘ + E', and g:F » %‘ are
maps in b€ there is an evident pairing

gogo (fafly: %Aﬁ L f‘.
Similarly, if :(T,7'} + ¥ is = pairing in WP and i‘:’]? + T, i"::f‘ + T', =and
g:U » U are maps in w® there is a composite pairing

g oo (£,£0:(T,T) » 0.

Next we show how to 1lift pairings from w® tohd . I pi{T,T'} » U is a
pairing ‘then ZT A ZT' is equivalent to
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s
Tel & z ('E'diA T('ﬁ)

gnd we can obtain an induced pairing ZLAZT' + ZU by passage o t_eleseopes from the

maps E¢—2di}:w¢i’i_ The induced pairing is wnique if the group

1, 2di-l .
1in" (ZU) (T3, AT

" yanishes, and we denote it by Z¢ when this condition is satisfied. DNote thai we now
‘ pave two distinet, but analogous, meanings for the symbol Z, end we shall give
' another in seetion 3. There is no rlsk of confusion singe the context wlill slways

ipdicate whether Z is being applied to a map in w? , & pairing, or an extended

pairing as defined in gsection 3. Clearly we have
Zg o By o (ZfaZf') = Z{g o p o {f,f"))

whenever hoth sides are defined.

Next, given & pairing ¢:EAE' + F in T4 we wish %o define a palring
z5:(2E,28') » gF (again, this use of the notation 7 is distinet from thet iIn section
1}). In contrast to section 1, it is inconvenient to do this direetly from the
definitions since the definition of E£A E' is too complicated. Instead, we use the
neps provided by Lemma 1.2. First let '

N Ed(i-l-j te

$e 41 1 (EdiAE:ij)

1,4
be the composite

gt A 8! . . .
L) = 2By A X”Eéj—'}“‘l”’xdlmzdﬂw - 4 g g g8y

z (Edid Ed,j 4

Then the diagram

Biy) —> T (By(gapyh BYy)
I¢ (-1) %

é
L9, . .
z“’(zd(EdiA E!.)) Edzw(EdiAE‘_) __,_iul_,zd(i"'&"“l)f,«

dj 4}
™ R dg, il 1 Ajj*'l
i (Edihz Edj) i 8 (Edih

B3+

]

commutes by Lemma 1.2. We now define

I
ety 5 Bgi® Bgy v Faraeg)

10 be the composite
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2”4y a(i+j
o o J) .
Egg Ejy — 0707 (B AEY) — L) ey F =Ty -

The fact that z¢ is a pairing follows from the diagram above and another application.i

of Lemma 1.2. We clearly have
zlg o oo (faft)) =2g o s5p o {zf,sf'),

Finally, given a palring $:2T7T AZT' +» F we can define a pairing

() {T,T*) » 2F by +(¢) = 24 o (x,<). In analegy with Theorem 1.1 we have

Proposition 2.2 (i) If ¢ is a pairing in WP then'é2¢ o {k,k) = x ¢ ¢ whenever Zy -

is defined.

{ii} If ¢ is a pairing in hd then A o Zz¢ = 9 o (A i) whenever Zz¢ ls
defined.
(iii) If 1imlF2di"1(TdiA Téi) = Q0 then v is a one-to-one correspondence
between pairings ZTA 2T' + F and pairings (T,T!') -~ zF.
(iv} The pairing Zy, whenever it is defined, is uniquely determined by the
equation t(Zyp) =« o ¢.

The proof is completely parallel to that of 1.1 and will be omitied.

As a special case we consider ring spectra and prespecira. ILet S be the zero-
sphere in hA and let S be the prespectrum whose di-th term is i {with the evident
structural maps)}. A ring speetrum is & spectrum E with meps ¢:EAE » E and e:8 + E
satisfying the usual associativity, commubtativity aend unit axioms. Similarly, a

ring prespectrum is a prespectrum T with a pairing $:{T,T) » T and & map e:8 » T

satisfying associativity, commutativity and unit axioms. The unit axiom in this
cage is the ecommutaiivity of the following diagram in nd .

e . 1a e, .
g 8l A 4 g oA
aj di di

Tacie)

There are also evident notions of morphism for these siructures. As a conseguence
of Proposition 2.2 we have the following.

Cerollary 2.3. (i) If E is a ring spectrum then 2E is a ring prespectrum. If f is
a ring map in hA then 2f is a ring mep in w ¥ .

(11)If T is & ring prespectrum with 1im'(zr)%%"1

{Tdiﬁ Tq;) = O ‘then 2T
is a ring spectrum and x:T + 24T is a ring map. If in addition £:T » 1! is a ring
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- map st 1oy 2di-1 1, oy 2di-1 "
R i- _ . L _
1im™(2T') (Tdin Tdi) = 1im™{ZT') (TéiA Téi) =0
A . . 1p2di-l _
then 2f is & ring map. If E is a ring spectrum and lim E (Ediﬂ Edi) =0 then

a:ZzE + £ is & ring mep.

§3. Extended pairings of spectira and prespecira

© Iet n be a fixed subgroup of zj. In this section we generalize the results of

gection 2 by relating maps of the form f:DE + F in h4 to certain structures in

¥ ¥ called extended pairings. This is our basic technieal result, which will be
applied in this chapier and the next to various problems in the theory of H ring

spectra.

First we need a generalization of Definition 2.1. The diffieulty is that,
unlike the smash produet, D does not commute with suspension. The situation
becomes clearer when one realizes that E%de is a relative Thom complex. TFor if p
is the bundle

En x"(Rﬂ)j + Bx

and Py is the pullbsck of this bundle along the map
Em x, B s Bu,

then DHEdX is the quotient T(px)/T(p*), where ¥ denotes the basepeint of X. The
failure of Dn 4o commute with suspension arises from the fact that the bundle p is
nentrivial. This suggests that we consider theories for which this bundle is at
least orientable and replace the suspension isomorphisms which were Implicitly
present in seetion 2 with Thom lsomorphisms. Note that the orientability of p with
respect to a certain theory mey well .depend on the positive integer d.

Definition 3.1. Let F be a ring specirum. A w-orientation for F is a map
i :Dﬂsel > Ed‘lF

such that the diagram
(Sd}(J} 1 0.8

E? 2®a iu

N otre L dp

computes in hd . If U is a ring prespectrum, & n-orientation for U is & map

v:Dng > qﬁ
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such that the diagram

(s ! m_t_,Dde

2 Lu

aj e
8 —_— Gdj

comeutes in hJ . A ring specirum F or a ring prespectrum U with a fixed choice of - -

w-orientation is called m-oriented. A ring mep of w-oriemted gpectra or prespectra
is m-oriented if 4t preserves ithe orientation.

It is now easy to give an analog for Definition 2.1. Recall %he naturallmap &
defined in I82.

Definition 3.2. Let T be a prespectrum and let (U,v) be a n-oriented ring
prespectrum. An extended pairing

Cziw,T) e (U,
is a sequence of maps

£1:D%a1 > Ygi;

such that the following diagram commutes in nJ for all i > 0.

d 8 d
p_(1gn 8% D T4, A DS
li)nc ‘ lz;ia\ v
DT, U, AU
ma(ivl) dij Tdj
‘m ’/4’15 R
Ya(ie1;

We shall usually suppress the orientation v from the motation.

Definition 3.1 is general enough for our purposes, but it could be made more
general by allowing U to be a module prespectrum over some r-oriented ring pre-
specirum. Everything which follows would work in this generality.

If g:U + U' is a w-oriented ring map and £:T' » T is any map in W% we define
the composite
gogo {g,f):{xw,T') + U

by letting {g oy o (n,f))i = gdji oz 0 Dﬂ(fdi). We alsc have composites in the
nw-variable: if p is a subgroup of 7 and U has a p-orientation consistent with its
n-crientation then the maps
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; © “DpTdi > Udij -

: foI’m an extended pairing denoted z o (1,1).

There is an evident stable version of 3.2: if F is a w-oriented ring spectrum

:jwe define an extended pairing from E to F %o be a map g:DﬂE + F. We do not assume

“any relation between § and the orientation y, but the presence of u is necessary for
. the comparison with the prespectrum level. We can define composites

g0 g o Dﬂf-and £ 0o : as in the prespectrum case.

 To complete the program of section 2 must show how to define zf and Zz with

‘suitable properties. Both of these will be defined by using a spectrum-level

vyariant of the Thom homomorphism to which we turn next. If F is a n-oriented ring

gpactrum and f:DﬂE + 39 is any map we write 2(f) for the composite

Dm:dE i»131,;&:-1)38‘1 LAy st AWy my Py,

Since each class in Fn(DnE) is represented by some { we obitain & homomorphism
a5 %) » FY (0 5R)

called the Thom homomerphism. We write ¢(i) for the iterate
Fn(DEE} + Fnédlj(DnEdlE). If E = £™X for some space X then it is easy to see that ¢
is the relative Thom homomorphism for the bundle Py and ig therefors an isomorphism.

Thus the following result should not be surprising.
Theorem 3.3. ¢ i an isomorphism for every E¢ h d .

The proof of this resuli, while not difficult, involves the definition of Dy

and not just its formal properties and is deferred until seciion 8.

We can now define zf for an exitended pairing g:DﬁE + F. Give zF the
orientation

. d © o d__‘” d_"mdéﬁ
z(u).DﬁS ——n ) E D"S = Q D“S LV = Fdj .

For each 1 > 0 let (zg); be the composite

QD6 L e ) .
@ @ 4l oo Ain 98T e dif
e e o~ .

DnEdi —rQ Dﬁ}: Edi 9] D"z E QL YF Fdij
The verification that zf is in fact an extended pairing is completely similar to the
analogous verification in seetion 2. Further, z is naitural in the sense that
z{g o g o Dﬁf) @ gg o ZE o (%,2f) and ={f o 1} = g£ o (1,1). Note that zf depends
not just on the map £ but also on the orientation y.
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Infortunately, Z¢ canno$ be constructed directly as in seciions 1 and 2.
Instead we observe that we could have used 1.1{vi} and 2.2{iv) to define Zf angd Zy
by means of the equations +<(Zf) =k o f and 1{(%) = x o ¢. If £ Is an extended
pairing from 2T to F let t{£) be the extended pairing

zE o {m,c): {n,T) + 2zF.

At ithe end of this section we shell prove

Theorem 3.4. If 1imEF'1(D“Z”di£“Téi) = 0 then t is a bijection between extended
pairings D ZT + F and extended pairings (n,T)} » uF.

We can new define Zy for an extended pairing g:(w,T}) » U when the relevant 1im1
terms vanish. Give ZU the n-orientation

d

2(v):p. &% = 5™p &7
ks k3

> 170, : 870,

and let Z(z) be e o z)s

Corollary 3.5. {1} =227 © (=,x} = x ¢ ¢ whenever Zy is defined.
(i1) Z(ge g o (n,f)) =2g ¢ Zy o DﬂZf and Z(g ¢ {1,1}) = Zg ¢ 1 whenever
both sides are defined.

(3id) vo vt =E o DEA whenever Zzf ls defined.

Proof of 3.5. {i) is the definition of Zy. TFor the first equation in {ii) we
calculate
t{fg o ¢ o BﬂZf}

zig o a2y o (w,zZf) o {w,k}

22g o 2lr o {5,x) ¢ (7,f)

zZg o g o g o {n,f)

#

xkogorgo lnf}

aZlgeoe g o {n,f}));
the result follows by 3.4. The verification of the other equation in (ii) is
gimilar. For part (iii) we have

i

T(A'lo £ o Dﬁx) zA_E o zf o (n,2h) o {m,e)

w o 28 = (%)

with the second equality following from 1.1{v); the result follows by 3.4.
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Next we make some observations that will be Important in sections 5 and 6.

f.Part (iii) of‘oar next result gives an alternate deseription of Zy which ls similar
' to the definitions of Zf and Zy in sections 1 and 2.

Corollary 3.6. Let g:DﬁZT + F be an extended pairing.
(i) tlg); is the composite

. Q"D s, . e () .
’ DT, —e QDT ,, T g®p giipy B2 L ooyl L g
nldd T . ass

(ii) If g’:QEZT + F is another extended pairing and v is a bijection then
£ = gt if and only if

th(i)g o Dﬂei = Q(i)g' o D'rrai

for all 1 > 0.

{3ii) If g:{«,T) + U iz an extended pairing and Z; is defined then Zr is the
unique map for which the following diagram commuies for all 1 > C.

D6 .

£ 7 di ~di
D 57T, »D 55 2T
27D Ty, gz,

PP —
]
g
P
=N
<D

= daij IECES g

Proof of 3.6. Part (i} is lmmediate from the definition of t and diagram {3) of

section 1. Part (i1) follows at once from part (i). In part {iii} the
commutativity follows from part {i) and the definition of Zz, while the fact that Zp
ig the only such map follows from (ii).

Remark 3.7. Let D be a functor which is naturally equivalient to DTr for some w.

More precisely, we assume that there are space and specirum level functors , both
called D and compatible with ™, and space and spectrum level equivalenceg D= DTT
which are alsc compatible under §”; the cases of interest are th Dk and Iﬁt&. We
can clearly carry through everything in this section with D1T replaced everywhere

by D. The necessary maps

§:D(XAY) » DXADY
and '

x5 o
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may be obtained from those for D, by means of the given natural equivalence. Of
course, D may already possess transformations § and 1 compatible with those for D;
this is the case for D = QjA Dy and D = ngk' If = is a subgroup of o ¢ zj and !
denotes the composite

D=D ~~»D
L o

then (provided that 1' preserves the orientations) we can compose an extended

pairing a:DpE + F with 1' to get an extended pairing in the new sense from DE to F.

Clearly z and Z will preserve such composites. The examples of interest for :!' are
the maps «. d i .
D % x and ﬁj,k defined in I§2

We conclude this section with the proof of 3.4. If E:D 2T » F is an extended
pairing we write [g] for the element of FOD"ZT represented by £. HNow D, preserves
telescopes by I.1.2(iii} so

I )
DKZT = Tel Dﬁz b3 Tdi .

Hence the 1im* hypothesis implies

0 o

D 7t = 1im ¥0p 3 4"
K i

12

Téi .

The image of [(¢] in the i-th term of the limit is (D x e, )¥(¢].
On the other hand if g:(w,T) » zF Is an extended pairing then each L4
represents an element Eci] € Fdljb“Tdi, and Definition 3.2 says precisely that

I.

afg,) = (0 a) (g

i+l

Hence the extended pairings (w,T) » zF are in one-to-one correspondence with the
elements of

1 wdL]
Lim FOHD T4,

where the maps of the inverse system are the composites

¥
. . D oal . . -1
a1+l (&, AGHY . de o1 ais
F Dan(i+1) ermcsniocerereetpe Dﬁz Tdi ———tm Dani R
Thus ¢ gives a map
s o0 -di = s pdi]
1im F (D“E £ Tdi} —n1im F (D"Idi).

We claim this map is lim é(l), from which the resuit follows by 3.3. For by 3.6(1)

and the naturality of ¢ we have

[ee),] = (D g, 0 e ig) = oM w00 g1

§4. A vanishing condition for lim

629 = 0, hence BT = B,
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1 terms

In order to apply the results of sections 1,2, and 3, one mus:t have some way of

showing that the relevant Lim!

terms vapish. In this section, which is based on a
paper of D. W. Anderson (10}, we give a simple sufficient condition which is

gatisfied in our applications.

If F is a gspectrum and X is a space we denote the F-cohomology Atiyah-

" Hirgebruch spectral sequence of X by Er(K;F}. We say that the pair (X,F) 1s Mitiag-
leffler {abbreviated M-L) if for each p and q there is an T with

E?’Q(X;F) = Ei’q(X;F); in particular this is true if the spectral saquenée
collapses.

Definition 4.1. A pair (I,F} with T ¢ w® and F ¢ hd is liml-free if

(1) T and each Tdi have finite type.
{ii) The pair {Tyy,F} is M-L for each 1 z 0.
(iii) If d is odd then Hn(Tdi} and = F are finite for all n. If d is even
they are finite for odd n.
We say that T ¢ WP is ;}gf;fggg.if the pair {T,ZT) is.

The integer 4 in part (iii} is the one which was fixed at the begimning of
section 2.

In practice it is easy to see whether a particular pair satisfies (i) and
(iii}. It is sometimes easier to deal with condition (ii) in the following
equivalent form {[10, p. 291]}.

Proposition 4.2. Suppose EZ{X;F) hag finite type. Then the pair (X,F) is M-L if
and only if for each p and q the infinite cycles ZE’Q(X;F? have finite index in
B UxE).

Proof. Fix p and q. Iet c?*Q be the quotient of Eﬁ’q by its infinite cycles. If
Zﬁ‘q has finite index in E?’q then Cz’q ig finite. Since CE;% is a subguotient of
Og‘q there must be an T with Cﬁ’q = Cﬁ’q for all r > rg- But then clearly

0

0
For the converse we recall that the rationalization F » FQ induces a rational

isomorphism of £, terms. Since FQ gplits as a wedge of rational Eilenberg-Mac Lane
spectra the spectral sequence Er(X;FQ) coliapses. Hence sn element of infinite
order in Ei’q(X;F) eannot have ag boundary ancther element of infinite order. It
follows that ZE’Q has finite index in EF?Y and that the projection Zi’q > Eii% has
finite kernel. But if 82'% = #P*% then 0% < 0 and hence 0B/% is finite as

2
reguired. 0
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Corollary 4.3. Suppose E_(X;F) and E (X';F') bave finite type. If
B, (X;F) » E.(X';F') is a map of spectral sequences which induces a ratienal

epimorphism in each bidegree of the Es-terms, and if the pair (X,F} is M-L, then so
is the pair (X',F'}.

As a consequence we get a way of generating new limt-free pairs from known
ones.

Corollary 4.4. ZLet (T,F) be a liml—free pair and let £:F + F' apnd g:7' + T be maps
inducing rational epimorphisms onto nyF' and H*Téi‘for each 1. If F!' and each Téi
have finite type then the pair (T',F'} is liml~free.

Proof. The pair (T',F') clearly satisfies 4.1(iil), and it also satisfies 4.1(ii)
since

*
f*gdi:E2(Téi;F} + E (T ;F?)

2 di?

is a rational epimorphism in each bidegree.

In the remainder of this section we show that 1im® terms arising in previous

sections do in fact vanish for liml-free pairs. The reader wiliing %o belisve %his
can proceed to section 5.

By a filtered group we mean an abelian group & with a descending filtration
a=a00alsy a24.0.,

A is complete if the map A + lim A/A" 1s an lsomorphism (this includes the Hausdorff
property), or equivalently if Ltim &P = 1im1An = 0. Filtered groups form a category
whose morphisms are the filtration preserving maps.

Let {Ai}izo be an Inverse gystem of filtered groups, and let A% be the n-th

filtration of A;. Let G4y = AJ/AR™L. Ve need an algebraic fact ([10, Lemna
1.131). '

Proposition 4.5. Suppose that 1imlGnAi = G for each n and that Ai is complete for
each i, Then lim> A = 0. i

Using this we cam prove the standard result sbout convergence of the Atiyah-
Hirgebruch spectral sequence ({10, Theorem 2.1}). Hecall that the skeletal
filtration of F™X has as its n-th filtration the kernel of the restrietion to the
(n-1)-skeleton X(n-1). The associated graded groups of this filtration are the E -
term of the Atiysh-Hirzebruch spectral sequence.
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. Céroliépx 4.6. If the pair (X,F) is M~L then

(i) 1im F™X(n) = 0O for each m,
n
(ii) The map F™% + lim MX(n) is en isomorphism, and
. n
(11i) The skeletal filiration of % is complete.

Proof. Clearly (i) =2 (ii} => (iii} so we need only prove (i}. Iet A, = (1)

with its skeletal filtration. This filtration is diserete, hence certainly

. ecomplete, so by 4.5 it suffices to show 1iml Ei’q(X(i);F} = 0 for each p and q.

Now the restriction i

4 - B YUx(1);F)
ie an isomorphism for p £ 1, hence the map
b I i E OB

is an isomorphism for p < i-r+l. Thus, if ry is such that Ea’q(X;F) = Eﬁ’q(X;F}
we see that Eﬁ’Q(X;F) + Eﬂ’Q(X(iJ;F) is en isomorphism for i > piry-l, 59 that
110 B Ux(1);F) = 0.

i

Now we can deal with the iim1 term of seciion 1.

Coroliary 4.7. If the pair (T,F) is liml-free then Lim® Fii-lr.. = o,

Proof. Give Fd}“'“l'i‘di the skeletal filtretion, which is complete by 4.6. Then each
group of the associated graded is finite by 4.1(ii1i}, hence the hypothesis of 4.5 is
satisfied and we comclude that lim' F¥i-lr.. = o,

Next we consider the relation with multiplicative structures.

Proposition 4.8. 110, p. 2911 Suppose that F is a spectrum of finite type having
the form ZU for a ring prespectrum U {in partiecular F may be a ring spectrum}. If X
and ¥ are spaces of finite type and the pairs (X,F} and (Y,F) are M-I, then so is
(Xa¥,F}.

Proof. The hypothesis on F mekes P-cohomology a ring-valued theory on spaces (but

not necessarily on speciral. For each p and g the resulting product map

] l 1t
) (Eg O3F) « B UyE)) - Eg’q(XAY;F)
p'*p"=p

. L] H

is a rational epimorphism. Now Zz ’O(X;F) and ZE ’q(Y;F) have finite index in
] " 1 H

Eg Q(%,F) and EB 'UY;F) by 4.2, and the image of Z° 0 g 7279 is contained in
22 UXAY;F). Hence ZD'UAAY;F) hes finite Index in Ezp‘% (XA Y;F) and the result

foliows by 4.2.
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This allows us to handle the 1im; term in section 2.

Corollary 4.9. If {T,F) and (T',F} are Lim~free and F has the form ZU for a ring
prespectrum U then 1l R0~ l{T 44 Thed = 0.

Proof. The skeletal filtration of dei"l(Tdiﬂ»Téi} is complete by 4.6 and 4.8,
and each group of the associated graded is finite by 4.1{iii). The result follows
by 4.5,

We now consider extended powers.

Coroilary 4.10. If X and F have finite type, ¥ has the form ZU for a ring
prespectrum U, and the pair (X,F) is M-I, then so is (D X,F} for any « C Lj-

Proof. The transfer, which is a stable map from D X to X(j}, gives a rational
epimorphism
20 xY 5 + %0 x;m).

The result follows by 4.2 and 4.8.

1

Next we dispose of the lim~ term of section 3.

Corollary 4.11. If (T,F) is liml-free and ¥ is a n-oriented ring spectrum then

-1, -di

lim™F D T 25T, = 0.

di

Proof. The proof of 3.4 shows that the given inverse system is isomorphie to the
inverse system Fdij"lDqui with structural maps é—z o (Dﬁc)*. Now the Thom
isomorphism ¢ preserves the skeletal filtration so we have & filtered inverse system
of groups which are complete by 4.10. The associated graded groups are finite by
4,14131) and the proof of 4.10. The result follows by 4.5.

Finally, we record a result of Anderson which generaliges 4.6.

Proposition 4.12 [10, Corollary 2.4). OSuppose that X and ¥ have finlie type and
{X,F) is M-L. If X is a countable {W-complex then the map

% + 1im F“x{Jl s
&

where {Xq} is the set of filalte subcomplexes of X, is an isomorphism for each n.

'§5.  H, ring spectra and pregpectra
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VIn this section we show that H, ring spectra can be obitained by lifting the

" following structures in w¥P

pefinition 5.1, An Hi ring prespectrum is a ring prespectrum U with maps

%5, P~ Uayg

for all i,j > O such that each t1,i is the identity map and the following diagrams

| commute in hJ for all 1,j,k > O.

DU ADUY,, weem]D 1 D,D, U B D, U

sVa1° kot 55k di ol T ican
1‘3,1 Cyx,i l'{j k,i tngk,i [ﬁjx,i
Uass ~ Yasx b U ) D Ugix S, Vaijx
Dy (Ugy » Uy e S Dyl
1%’ Sx,1% %k,
k da{i+j) aix”
e
d{i+3)k

A ring map £:U » U' between Hi ring prespectra is an Hi ring map if
cj,i o Djfdi = fdij = ;j,:i for all i,j > O.

The significance of the positive integer ¢é in this definition is that a
prespectrum may have an Hi strueture but noi an HS! gtrueture for &' < d. (Some
examples of this phenomenon are given in the next section.) The third diagram in
Befinition 5.1 has no analog in the definition of H  ring spectrum sinee in that
situaticn the anslog of the third diagram follows from the other two by (ii) and
(iii} of I.3.4.

Definition 5.1 has several consequences. The first diagram implies the
commutativity of
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Gy v
(Udi) DjUdi
¥ A_

Yaij

for all i1 and j. In particular the composite

D, e
d 4, pnyg

! jd

is a zj -orientation for U.

diagrams

5,1

—Udj

These orientations are consistent in the sense that the

DjSG“DSd———————-—ﬁ——MD d p.pgd — B .p g¢

K ) x> 5 Dy 5k

lvj " (2) li)j Vi }\ij

[ 8
S Y S
(j +K) Vgt

(1} vjA Vi

SRS NS,
Udj" Udk Ué Dj Udk

commute for all ] and k. Now the unit diagram in the definition of a ring
prespectrum and the third diagram in Definition 5.1 imply that for each fixed } the
mAPS L5 3 give an extended pairing

Cé :(ﬁé ,B) > {U,\Jj e

Theorem 5.2. If U is a 1im1—free 1 ring prespectrum then the maps

]

Zlgy):Dy2U > 2U

If £:U0 » U' is an HY ring map end U,U' and the pair

-

give ZU an H  ring structure.

(U,ZU") are 1im3'-f‘ree then Zf 1s an H_ ring map.

The proof will ocecupy the rest of this seciion. We wriite F for ZU, 53 for
Z(Cj) and ¢ for the multipiication Zy. Let ] be the orieniation

z(\:j):zajs‘1 » 2 ¥z0 = 5 Wy,

as defined after Theorem 3.4. First we claim that the yp. are consistent in the

J
following sense.
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femid 5.3. The dlagrams .
d é o a a 8
I S B
D87 ADS Dy i D;D, 8
. D,
(3) My A by o o (4) l,‘]uk (k]( )
. i+ ® £,
I e e

commute for all §,k > O.

‘Proéf. For diagram (4) recall that ¥i is the composite eéi o zmvi,
di
F.

Bgj 1s the natural map PUgp + I Hence

ujko g = Bdgk o I (\ij o 8}

adjk o z”(z;j,k) o Zng.uk by diagram (2)
_ (k) w
= ¢ (aj) o gjedk o Djz Ve by Corollary 3.6(iii)

o (x)
= ¢ (Ej) GD,]'”}s .

The proof for diasgram (3} is similar.
Next we need snother preliminary result.

lemme 5.4. The diagram

D (FAF) =D FaDF
J’Bk"’ 1‘51:" Ex
D.F FaF

R /
F

commutes for all kX > 0.
In order to prove 5.4 we need the following variant of 3.6{ii).

lemma 5.5. Let ny and Mg be two maps

D (ZTAZT') » F,

4
Djks

o

1V

where
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where F is & m-oriented ring spectrum and the pairs (T,F} and (T',F) are lim’-
free. Then n; = ny if and only if the equation

(24) . giri}
{5} ¢ {ny} oD {8, A 0:1 =0 " (n,) oD (8, 49,)
holds for all i > C.

Proof of 5.5. The composite isomerphism

o L 021)
2d1(T AT' )dllm &

F (D (ZTAZT’})W—WLmFDE a1

takes =, to é(zl)(nl) o Dw(eiA ei), and similarly for n,.

Proof of 5.4. Let ny be the counterclockwise composite in the diagram and P the
elockwise composite. Consider the following diagram of epeectra, where We have
suppressed £” to simplify the notation and the unlabeled arrows are all induced by
Baps 844 -

D (Ugy A T4 * DyUgs A Dyl
\ ® /
dl. , di 5 ai di
Dk(z FAL TF) Dkz F ADki'. ¥
2di (1) (1)
DY ® DEIT ¢ g ) AT gy )
. Sk, 1%k, i
2 Ltk
(21)\‘ ﬁk
(gy)
2d1k
3 +
B Uaix k™ Yaix
%y, 21 v
Uoaix

It is easy to see that the counterclockwlse and clockwise composites in the
inner pentagon are Q(Qi)(al) and @‘21}{n2). To verify equation (%) it suffices to
show that the outer pentagon and parts A, B, €, D and E commute. But the cuter

¥

6 . lD £y i iy
£,

_ D,

. o2di) A oo
lim F i)“(Tdi Tdi)
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;Pgﬁtagon ig the third diagram of Definition 5.1. Part A commutes by naturslity of
5, parts C and E by definitien of ¢ = Zy, and paris B and D by 3.6{1i1).

We now turn to the main part of the proof of 5.2. We shall show that the

.following disgram commutes; the other is similar.

B

b, Ff ——m—»D..F

J Jk

F——d——p
J

We shall apply Remark 3.7 with D = QjDk‘ First crient Q;Dksd using either of the
 two equal chposites in diagram (4) of lemma 5.3, and denote the associated Thom

* igsomorphism by T, We write np and ng for the counterclockwise and clockwise
“composites in diagram {6); these are extended pairings in the sense of Remark 3.7.

By 3.6(ii) it suffices to show

. (7) g{i)n ¢ D.De, = E{i)n o D,D8

1 i1 2 JTkL

for each i > 0. Consider the following diagram, where we have again suppressed

1° and the unlabeled arrows are all indueed by maps B4

D.D,U.,. g > D, U

JTkdl @ » ik oai
\DDdi 8 i

IF D I F

ik Jk

{i) {i)
Do, .
5,1 @ I}jw (zgk % (e;jk} %k, 1
(1k)(6 } :

dlk i zdljk
J

55,k © \ y

DsVaix " Baijx

¥

In the inner square the clockwise composite 1s clearly @{i)(g }. Using Lemma 5.4
one can show that the counterclockwise composite is @(i)(nll To verify equation (7}
we must show that the outer square and parts A, B, C and D commute. The outer
square is the second dilagram of Definition 5.1. Part A commutes by naturality of g
and parts B,C, and D by 3.6{iil). This completes the proof.
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86, Hi ring specira.

Thecrem 5.2 gives a useful relation between H_ structures in nAd and Hi
structures in ;?3> . However, it does not provide a satisfactory amalog for
Corellary 2.3 gince an arbitrary H, ring spectrum F need not possess the zjm
orlentations necessary te give an Hg structure for zF. For example, if F = S then
zF is not an Hi prespectrum for gny d@ > O (ef. Proposition €.1). What is needed
is a notion of H, ring spectrum with built-in orientaticns. I turns out that the
right objects te look at are Hf ring spectra as defined in I.4.3.

If F is an H, ring spectrum we say that a seqhence of §;-crientations is

J

congistent if the diagrams of Lemma 5.3 commute. If F has an Hg structure let Hy
be the composite . ﬂézde . 53 L &
%S 4 F%EF 2 LVF,

Then each HJ iz a xé-orientation by I.4.4{1ii) and an easy diagram chase shows that
the uy are consistent. On the other hand, some i ring spectra do not even have Lo~
crientations, and thus are certainly not HS. ‘This is illustraied by our next
result.

Proposition 6.1. {i) The sphere spectrum S is not an Hﬁ ring spectrum for any
é> 0.

(ii) If F is an Hi ring spectrum for d odd, then 7,F has characteristic 2.
If, in addition, F is comnective and “OF is augmented over Z2 then F gplits as =2
wedge of suspensions of HZ,.

Proof. Let pd be the bundle

4.2
E22 XIZ(R © o BZ2.

Then pé is the d-fold Whitney sum of pl with itself, and pl is the sum of the Hopf
bundle with a trivial bundie. The Thom complex of pd is Dzsd, and so p(i igs F-
orientable if and only if ¥ has a 22~0rientation (for the given value of d}.

For (1) we recall {e.g. from {71, IIZ.2.7}) that a bundle is S-orientable if
and only if it is stably fibre-homotopy triviai. But pd clearly has nontrivial
Stiefel-Whitney classes for every 4 > 1.

(11) let R = wyF and observe that F-orientability implies HR-orientability by
virtue of the canonical map I + HR. Consider the spectral sequence with

B3 = @ (7y5H0(s% s%R)

converging to H*(Dzsd;ﬂ). There is only one nenzerc row and so sz{DQSé;R} is
isomorphic to Hp{ZE;Hg(S&A Sd;R)), which is the Zz-fixed gubgroup of

" ag

Cp?8(s% s%R) = R. But Z, acts on R as multiplication by -1, so we conclude that

sz{Dzsd;R) is isomorphic to the 2-torsion subgroup of R. If on the other hand pl
hae an HR-orientation then sz(DQSd;R} = B, so that R must have characteristic 2.
If in addition F is cormective and R is augmented over Z, then the proof of
Steinberger's splifting theorem III.4.1 gives the splitting of F.

Now let F be én Hi ring spectrum. An easy diagram chase shows that the
equatioh

. T
o B5,i° of )‘55,0}:Djﬁ:dir-’+ 243

‘nolds for each i and j, where ¢(i] is the Thom isomorphism determiend by the induced
zj—orientation of F. Thus the Hi structure on F is uniguely determined by its

underlying H_ structure and the set of induced Ej-orientations. Conversely, we have

Proposition 6.2. If F is an H, ring spectrum with consistent zg—orientations then
the maps €5 ,1 defined by Ej i~ ¢(i)(gj) give ¥ an Hd ghructure.
] ] =

Using this, we can give a precise analog of 2.3.

Corollary 6.3 (i) If F is an Hi ring spectrum then zF ls an Hg ring prespectrum.
If £ is an B ring map in 14 then zf is an HY ring mep in w9.

(i1) If U is a lim'-free Hg ring prespectrum then ZU is an aﬁ ring spectrum
and «:U + 220 is an HY ring map. If in addition £:U + U' is an EC ring mep and U'
and (U,ZU') are liml-free then Zf is an Hg ring map. If F is an HS ring spectrum

and oF is lim'-free then A:ZzF + F is an Hg ring map.

Proof of 6.3. TFor part (1}, the adjeini of the composite

is & map &3 i:EﬁFéi + Fdij‘ An easy diagram chase shows that the Cj,i satisfy
2
Definition 5.1. Part {ii) is immediate from 5.2, 5.3 and 6.2.

The rest of this section glves the proof of 6.2. Iet wy denote the composite

D.e E,
Dés—-—ﬂ-—-rDJF——-j—a-F
{8) _ (1) o4t dij 5. . (1) _ .
and let Bj 3 ‘%j.qjs + L °F; in particular ”5 “j' Then 53,1 is the

composite

(1)
) oAt NPT
Djsz‘F MéijFf‘i}dei B N N DL § N Sl L0
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It clearly suffices to show the commutativity of the following diagrams for all
i,i,k.

di éi o ai di 8 di
I}jS ADkS —-——————-——-—-——D'Dj +3<S DjDkS WWMD.XS
{i) (1) (i) (1) (i}
(1} BeTUA My B3k (2) Dj“k M1
(:Lk)
. di{ +k} . (g.)
(98 p & p8iKE ¢, $A1{j+K)g 3 ;K i), Atk
di . 3 § ai 4
Dk{S ASVY) ,-QKS I\DkS
|
(3) Dksd(i*j ) P P
(i+3) .
zd{1+j )’k¢
2:d(:'le )kF

In diagram (3) the clockwise composite is Hence

cb(J }”1(:1} - ¢(j )@(i}wk - @{i*-} )‘”k
the disgram commutes. Diagrams (1) and (2) commute when i = O since

e:$ + F is an H_ ring map. They commute when I = 1 by the consistenecy of the u.,
and for i 2 1 by induction. A similar induction shows that they will commute for
all negative 1 if they do for i = -1. We prove commutativity of (2) when i = -1;
the proof for (1) is similar. We apply Remark 3.7 with D = DjDk‘ Give Dj Dde
either of the two equal orientations indicated in the second diagrem of Lemma 5.3
and let ¢ denote the associated Thom isomorphism. let "y be the counterclockwise
composite in dlagram {2) and let n, be the clockwise composite. Clearly, we have
¢ing) = w x @B, and since 05k oB = E‘j a Dj""k {this is the case 1 = 0 of giagram
(2)) it suffices to show

4>(n1} = EJ. o Djwk'

This is demonstrated by the following commutative diagram.

241

§ X -d a
DJDk(S Ay s )—i—-vD(DS aD,s) > 0,08 \DjDkS
(~1) (-1}
D D D,
l j(”.’x » uk) ljuk A Dyuy
D,D,S D, (1~ Az %5) i Djz‘dkp ADJ.}‘.dkF
} (~k) (k)
. D, Y .
\}‘“’k /]‘3‘ ©® i«) (EJ) ® (EJ}
: . £
D, F ] > 7 < ¢ g8 kp g W

Here part @ is Dj applied to one case of diagram (3), part commutes by
naturality of &, and part @ follows from diagram (3} and the fact that ¢ is an H,

ring map (see parts (ii) and {iii) of I.3.4). This completes the proof.

§7. ZX-theory spectra

For cur work in chapter IX with Dyer-Lashof operationg in K-theory it will be
eassential to know that the spectrum XU representing periodic complex K-theory is an
H, ring spectrum. This is immediate from Corollary 6.3 once one bas the necessary
space~level input. We begin this section with a quick proof using as input the fact
that the conneetive spectrum kU has an E_ ring structure. This in turn raises a
consistency guestion whieh is settled in the remainder of the section. In VIII 84
we ghall use Atiyah's power operations as input to give & more leisurely and
elementary proof that KU is an H_ ring spectrum. Although we concenirate on the
complex case in this section, everything goes through in the orthogonsl case with
the usual changes.

First reeall from {71, VIII §2} that the spectrum kU representing comnective
complex K-theory is an £ ring spectrum. Henece (as explained in I§4) it is an H_
ring spectrum. Throughout this section we will write gj for the siructursl msps
Di kU + XU. HNow by I.3.9 the zero-th space of kU, which we dencie by X, is an Hwo
space with structural maps DjX + X which will be denoted by gy The space X is of
course equivalent to BY x 2, and by Bott periodicity we can define an G-prespectrum
KU with Riy; = X We give XU an Hi structure by letting each map
DéxUzi * xUzij be gy D'].X + X. We define KU to be ZXTU. At this point we need to
know something about lim* terms. '

Proposition 7.1. XU and XO are tim*-free.

Proof. The pair (XU,KU) clearly satisfies 4.1(i) and (iii). Since E,(BY x Z;KY)

collapses for dimensionsl reascns it also satisfies 4.1(ii) and hence is liral—
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free. The result for X0 follows from 4.4 by letting £:K¥ » KO be realification and
g:%0 » KU be complexification.

Now we can apply 6.3 to get
Theorem 7.2, KU is an Hi ring spectrum and KO is an Hi ring spectrum.

Remark 7.3. (i) We shall see in VIII%6 that the HE structure of X0 extends %c an
4
H

(i1} It is shown in [71, VIII. 2.6 and VIIL. 2.9} that the Adams operaticn wk

stiruciure.

induces an E_ ring map of kU when completed away from k. We shall see in VIIIS7
that wk also induces an H_ ring map of KU(P) for p prime to k but that this iz not
an Hi ring map. Since the methods of the present section can only give Hi ring
maps ithey cannot be applied directly to this question.

Next we wish to show that the H structure on KU is consistent with the
original structure on kU. The point is that (as we shall see in a moment) kU
inherits an H, structure from that just glven for KU, and we would like to know that
the inherited siructure is its original one. The proof will occcupy the rest of this
section.

First recall the n-connected-cover functors im hA ({7:, II.2.11]}. We write ¢
for the connective {i.e., -l-connected} cover funcior. These functors have the
usual property that any map from an n-connected spectrum lifts uniquely %o the n-

cormected cover of its target ((71, I1.2.101}. In particular, we have

Propesition 7.4. If F is an H, ring spectrum then cF bas a unique H_ structure for
which the map oF + F is H_.

We sghall prove

Proposition 7.5. There is an H_ ring map from kU (with its E_ structure) to cKU
(with the H_ structure given by 7.2 and 7.4} which is an equivalence.

The analogous comparison of ring structures was given in 171, 1183].
First we observe that the iterated Boit map
B:z?lky » XU
is equivalent to the {2i-l)-comnected cover of kU. We can therefore define

. :Djs2 > 52y

for ‘its structural maps.
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‘4o be the unique 1ift of the composite -
D.5%e D, B z.
D, £, ) 521y —d D,k v,

The yj are consistent zjmorientations in the sense of 6.2 and hence XU is an Hi

ring spectrum. It follows that zkU is an Hi ring prespectrum. We write

Now define & map

vizkU » XU
by letiing Yo be the composite

(2kU),. = QmﬁzikU —ni&:amkU = X = (KU
2i 217

We claim that v is an Hi ring map. This is demonsirated by the commutativity of
the following diagram.

Doy,
i .
Dj(kU)zi /Fi}jx
\; sz“’z“D.yi
L3 oy
a5 Dj P ~—————-]——v- Qr Dj (),
2 R ¢
B @ & D‘]x Yi @ ™
® o Djz {kU)zi ) Djz (kU)G
LR £°D. 9 T,
o D, B
", 3* d T C
3 J
w0 ol
) . 0k,
l fi.i © l %
Q"1 2B - QKU
| § y.. v
i
(kmzﬁ = X

Parts F and G commute by definition of 5,4 and ;j. Parts A and B commute by
naturality, parts C and E by the definition of y. Commutativity of part D follows

from the definitiion of by e

Next we need more liml information.
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Proposition 7.6. zkU, zkC and the pairs {gkU,KU) and {2k0,X0Q) are liml free.

Proof. The Serre speciral sequence shows that the pairs (2kU,kU} and (zkU,KU)
Now by [10,4.3}] and the
proof of [10,3.13] {specifically the fifth line on p.30l)} we see that the pair

({kU}oj,xU0) is M-L for each i and hence zXU is limt-free. Since

satisfy the finiteness requirement of 4.1{i)} and (iii).

D,d . = PG .

E5 ((kU)zi,KU) E2 ((kU)Zi,kU)
for q < 0 it follows that zf:’q{{kmzi);m) nas finite index in Elg"’q((kU}ei,-KU)
for ¢ < 0, hence for all g by Bott periodicity. Thus the pair {(kU,KU) is 1iml~
free. The orthogonal case follows as in the proof of 7.1.

We can now define
r:kxi + KU

to be ZY ° A‘l, where 7 and A are as in $1. Then 7 is an Hi ring map by 6.3 and

is clearly an equivalence of zeroth spaces. Hence the unique 1ift of T to ¢KU is an

Hi ring map and an equivalence. This completes the proof of 7.5,

The fact that ' is an Hi ring map, and thus preserves the orientations, has
the following additional eonsequence which will be used in VIII §4.

Coroliary 7.9. uj:qjsz + 223KU is the composite
2

D, 57 D.B

DJ.32 i

. -2
2 J 5 J

B, I7KY B
J

;XU - KU » 23y,

88. A Thom isomorphism for spectra

In this section we prove Theorem 3.3. This is the only place in our work where
we need the actual definition of D, instead of just its formal properties. We
accordingly begin by giving a form of the definition; for a general discussion see

the sequel.

Let J£(j) be the space of linear iscmetries from (E°) to K. Then £{3) is a
free contractible p-space and hence there is a w-map x:Er » L(J).

increasing sequence W; of finite z-subcomplexes of Er with U wi =

Choose an

Eire If
v c (R."“)j is a finite-dimensional subspace then (since Wi is %ompact) the union

U

welW,
€ 1

y(wHV) € B
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:éoﬁtained in a finlte-dimensional subspace. In particular, if we let A; be the

standard copy of B9 in F® then there is a finite-dimensional subspace Al of X°

X(W)(4 @ -+« @A) C A

for every W & wi. Let 2 be the dimension of Ai. We may assume that the A; form an
‘inereasing sequence, and we write B; and Bi for the orthogonal complements of A4y iIn

' ]
Ai&i and of.Ai in Ai+1'

Now consider the map from Wy x (A;H to Wy x A which takes

i

: (w’xl"..’xé) to
imx(wHz, @ 00 @ %;1). This gives an embedding of the trivial bundle )

f
{1) Wi x {Ai) * Wi

in the trivial bundle

W

PR

(2) !

+ W, .
i

The orthogonal complement is a nentrivial vector bundle over Wi. We let ng be the
We

If we let =
get through permutations on (Ai)j and trivially on A{ we obtain diagonal sctions

on the bundles (1) and (2} and hence on 8(ny) and Tlny).

associated sphere bundle (obtained by fibrewise one-point compactification).
write S(n;) and T{ny) for the total space and the Thom complex of naj.

Next observe that the diagram of embeddings

3 3
¥y 1 (A Wiag x (Bg)
N
W, I A Wieg % (Ay)
Wx A Wi * By

commutes. Hence there is a bundle map

B
n; @B > ng,y @ (B

* wi*1°

5 SNEH)
T{ni)AS —-—:»T(ni_‘_l)é\ (s *y4

' covering the inelusion W The induced map

B,
of Them complexes 1s a w-map if we give sach side the diagonal g-action; here 8 * is
the one-point compactification of B;, ete.

Now let U be a prespectrum (indexed on multiples of d as ususl). We define a
- X
. new prespectrum U indexed on the set {a;} as follows {we haven't previously

congidered prespectra indexed on sets like {ai}, but everything in section 1 goes
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. .
through with the obvious modifications}. Let (U )ai be the space

{j?}
T(ni} A {Udi)

with the structural maps ¢ indicated in the following diagram.

a, .- B! B, . ‘
i+l 74 () i (3} i,(§) 6D
z Tinyda (Ug )7 8 (Ta ) a8 DA (T 1 = (Tlng a8 19Ty A (0,0

i

| i T

{3} d (3) . i 3
T(ni*l)ﬁntﬁd{i+l) “—T{ng,4)a (270;:) E T{?i+1 L5 AT

Finally, given E ¢ hA we choose a prespectrum U with ZU = E (for example, we could

let U = 2E) and define

DE = a0} = el 2 717000 A (0,09
ﬁ 1 i7 %y rat *

This agrees up to weak equivalence with the more sophisticated definition given in
the sequel, and in partieular it does not depend on the choice of y or U.

Now we can give the proof of 3.3. First we cbserve that the Thom isomorphism
theorem holds in F-cohomelogy of gpaces for any F-orientable bundle. This is well-
known when the base space is finite-dimensional (see e.g. [71,IIL. 1.4]) and the
general case follows since the Thom homomorphism induces s msp of Milnor 1im1
sequences. Similarly, the relative Thom isomorphism theorem holds for any F-

oriented bundle over a pair {X,Y). For example, let U be a prespectrum, let
X = S(ny) x, (Ugg)d

snd let ¥ be the subspace in which at least one coordinate is a point at = or the
bagepoint of Uy;. Hote that %/Y is (Ux)a.. let q be the pullback of the bundie
i

piEn xﬁ(ﬁg}a > By
along the map

X = 8(ng) x (Ugg) > Bnox ¥ = Ba

di
Then the relative Thom complex T(q)}/Tiq|Y) is

N B S T

T(ni) a {z Udi) (x U)a

1
Let 84 denote the composite indicated in the fellowing diagram.
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X L dr ((3) anl + dy 03
(70X = Tng) A (50U A (Tlny ) A BT ) A (550, ).

-

X ap 58 = {3} + d,4j)
Uai"DgS [T(“i}'\n(udi} P [Ex Aﬁ(S ) ]
If F is a w-oriented ring spectrum then the relative Thom isomorphism for q is the
composite ¥
’ C ) — N o) e Y X,
i i i -

where the first map is multiplication by the n-orientation y. We denoie this
composite by #;.

Next, we note that if E = ZU then 1°E = z(z%U). It is shown in the sequel
that the map

4 d

§:Di"E + D EAD S
W ks T

is obtained by passage to ielescopes from the §;. We therefore have a map of Milncr
liml sequences

1 n+ainl n+ai

Q v Lip' F (u% iz TOD B e Lim F (U{é}——»o

i i E i i

1
Jllm "bi lria Ilim q’i
n+dj +a, -1 : n+dl +a,

0~ 1im> F L% er PN 08 e Lin ¥ HietoX ) —=o

i 5 1 i

The result follows by the five lemma.

We conclude this section with a teehniecal fact which will be needed in VIII §6.

L let giln,T} » U be an extended pairingAand suppose that the pair (T,20) is 1im*-
" free. Then Zr exists and is clesrly Getermined by the composites

(Zg)
G . _x gy
T(ni) AW(Tdi) Tai -—’(D“ZT)ai —— (ZB)ai

for 1 > 0. It is natural to ask for an explieit deseription of the elements

5y ¢ (20 1(Tng) A (14401 ))

represented by these composites. We shall give such a description by caleulating

© the image of 2; under the relative Thom isomorphism

a . a,+dij s .
¥:(20) HT(n,) .\Tr('réi)‘”} — (20 (Tlny) J\ﬁ{Zledi){g)).
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let y; ¢ (ZU)dij{W; h“(Tdi}(j)) be represented by the composite

4

+

(3) i
Wy A (Tgy) " e DTy

- £
Udij (ZU)dij

and recall the homeomorphism
a
éi G . it (j?
T(ni)f\“(ﬁ Tai) ER % lwi An{Tdi) .

Proposition 8.1. ¥a; =LY .

Proof. Write a for a;. Tt will be shown in the sequel that the following diagram _

commutes for any space X.

- . K .
T(ni)aﬂczdlm‘” e (D 27N,

R R

&yt (3} a “a @
2 A (Tyy) ) Coe T D T4y — (2 DX,

Letting X = Tyy glves the commutativity of the left square in the next diagram.

a
. 3] £ D B,., .

= ai ) 8 . 8. 74l L 41
L (T(ni)hﬂ(a Tdi} e A R LD ETIE

R (i} a, (i)
o + J - z % Z
'L (WiAa(Téi) } T

~l« %5 1%

o 8 = I i, -8y 4ij pAraii oy
L D“Tdi L DﬂTdi——www—rﬂ £ i3

The right square commuies by Corollary 3.6{iii), and we therefore have equality of
the two composiites around the ouiside. But the counterclockwise composite is
clearly sayi, and the proof of Theorem 3.3 given in this section shows that the
elockwise composite is ?zi. This completes the proof.

CHAPTER VIII

POWER OPERATIONS IN Hg RING THEORIES

by J. E. MeClure

I3 was shown in Chapter I that an Hg ring strugture on a spectrum ¥ induces

~ certain operations A in E-cohomology. In this chapier we investigate these

4
opersiions ir some important special cases, namely ordinary cohomolegy, K-theory,

. and cobordism.

In section 1 we collect the properties of the 3% and their internal variants

?}; mogt of these have already heen shown in Chapter I. We also show that the

. results of Chapter VII allow one to construct an Hz struecture on E by giving space-

. level operations with certain properties. The seetion concludes with a brief

gecount of a multipiicative transfer in E-cohomology which generalizes the norm map

: of Evens [35].

In section 2 we show that the general facts given in section 1 are strong
enough to prove the ususl properties of the Sieenrcd operatlions without any use of
echain-level arguments. In seection 3 we show that the same arguments applied to the
gpectrum Hzpa\x give the Dyer-lLashof operations in H*(X;Zp) with all of their usual
properties; in particular, we give new proofs of the Adem and Nishida relations

which involve less caleulation than the standard proofs.

In seetion 4 we show tha® the power operations in K~theory induced by the Hi
atructures on KU and KO are precisely those defined by Atiyah [17]; this gives a
rather concrete deseription of these HS gtruectures. In section 5 we show that
cobordism operations defined by tom Dieck in [31} lead to Hg struetures on the
classical cobordism spectra which agree with their E_ structures; again, this fact
gives a rather concrete homotopical deseription of the E_ otructure. In section &
we show that the Atiysh~Bott-Shapire orientations are Hz ring maps; it is still an
open question whether they are E_ maps.

In section 7 we show that gquestions about Hf ring maps simplify considerably
when the spectra involved are p-local. We use this to show that the Adams
operatlons are H, ring maps (a fact which will be important in Chapter IX) and that
the Adams summend of p-loeal K-theory is an Hi ring spectrum. We alsoc give a
sufficient condition for BP %o be an Hf ring spectrum; however the guestion of
whether it actually is an Hi ring speetrum remains open.

Notation. In chapters VIII and IX we shall write pX for g AX, instead of
X:s81 as in chapters I-VII. We shall also use § to denote the suspension
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isomorphisn i En+1x . In particular, if E is a ring spectrum the fundamental
class in B°8" will be denoted by L.

§1. General properties of power operations

Let E and F be spectra, let w be & subgroup of Iy and let & be & fixed
positive integer. By a power cperation EHNEX in the most general sense We mean
simply & sequence ?; of natural transformations

gdiy ., pdikp ¥,

one for each 1 ¢ Z, which are defined for all X e T4 . We shall also call @% an

(E,%,F) power operstion when it is necessary to be more specific. In this section
we consider the relation between power operations, extended pairings, and Hi ring
structures. In particular, we collect the properties of the canonical power opera-
tions sssociated to an Hi ring structure and of the related internal operations.

The most important class of power operations for us will be the operations
D ¥y, Hp x
L W

determined by an Hi ring structure on E. As usual, we sbbreviate @; by '@

Hecall the definition from I84: if x ¢ £y ia represented by £:X » EdiE then
ﬁbﬂx is represented by the composite

Dy f di. Sk,i_ _dik

D Xt ﬂkX i Dkz o

Cur first result ecllect the properties of these operations.

Proposition 1.1. Let E be an Hi ring spectrum and let x ¢ EdiX, T € EﬁjY, T € Ly,
1) &P s (PP U Rmxanm).

(11) S*@Jk’_‘ =P Ppx e Ediki(DjDkX)

(111} s P (R = Pl ¢ B8ID (xay,

(tv) 1Pz = e B

(v} If 1 ¢ E°S is the wnit then P1 is the wit in EO(D,8) = E(Ba™).

(vi) IfX=7Yeandi=j then

Plxry) = § oo + 3 3 xg S’EXJ(&_JH

in EdikaX, where
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Te, kg D DX AD X

is thﬂ transfer defined in II.1.4.

£
(vii)} If E is p-local then iP X = TlT- & X whenever |} is prime to p, where T Is
the transfer D“X > X(k} of II.1.4.
{viii) If E is p-local then
{x+ = + ; X + P_ P _ 4P
f?P x+y) @;x @;y L p' (¢ ¥) ¥ -yl

Procf. (i), (i1}, and [311) are immediate from Definition 1.4.3. Part (iv) follows

from Remark I.4.4. Part (v) follows from I.3.4(1i). Parts (vi} and (viii) were
shown in II.2.1 and IX.2.2, and part (vii} follows from the proof of the latter.

We shall alse want te go in the other direction, that is, to start frem a set
of operations baving eeriain properties and deduce the existence of an Hd ring
gtructure. et E be a ring spectrum. We say that a set {@%} >0 of (E, zg’E)
power operations is consistent if it satisfies 1,1(1}, (ii), and {i11). Given a

sonsigtent set of operations 33 on E we can define maps

dl

5 ;020 » sy

by applying ﬁ?- to the classes represented by the identity maps EdiE + EdiE- It is
casy to see that the 53 4 form an Hd ring structure on E whose induced power
operations are the given E? On the cother hand, two HS ring structures on E
which determine the same power operations are clearly equal. Thus there is a one-
to-one correspondence between Hi ring structures on E and consistent sets of
{E,EJ,E) power operstions.

Next we consider & more general situation. Iet w be a subgroup of Ey and let F
be a r-oriented ring spectrum wiih oraentatlcn B D Sd > EdkF (see VIIS3). The
class in de(D g9) represented by the orientation w111 also be denoted by p. An
{E,7,F) power cperation :?“ is gtable 1f the eguation

(1) Pt =t - R0

holds in PAU*1IE(p 39x) for a1l x ¢ E3X. 1.1(111) implies that the (E,x,E) power
operations determined by an Hﬂ ring structure on E are stable. More generally, let
5:DHE + F be any map {in the iterminology of VII§3, £ is called an extended pairing).
If x « B3 is represented by f:X » t3E define ?wa € FdikDﬂX 1o be the element
represented by the.composite

D
DX —Tw D z‘ﬁE———,(D s ADEM-——“E-(: F) (3 A p by p3ip
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where ¢ is the produect map for F. Then ff)“ is 8 stable power operation. .
Conversely, given a stable operation.'?ﬁ we obtain a map £:D.E + F by applying §ﬂr
to the identity map E » E. Clearly, this gives a one-to-one correspondence bebween -

maps E:D“E + F and stable power operations. To sum up, we have shown

Proposition 1.2. (i} There 1s a cne-to-one correspondence between consistent sets

of (E,EJ,E) power operations and Hg ring structures on E.
(ii)

to-one correspondence beiween stable {E,n,F} power operations snd maps g:b, B+ F.

For applications of 1.2 it is usually easiest to work with space-level insteagd -

of spectrum-level power operations. Our next resuli will allow us to reduce to this
case. Let § be the homotopy category of finlite CW complexes. Iet {{E“)a}aeh be
the set of finite w-subeomplexes of Ewx. By an (E,n,F) power operation on { we mean

8 seguence 3% of natural transformations

iy 5 1 ¥ (B0} A x®
[+ 3

t,

one for each i e Z, which are defined for all X ¢ § . ‘EP“ is gtable if i% satisfies

equation (1). A set {E{i}j>0 of (E,XJ,E) power operations on G is consistent if
it satiefies 1.1{1i},(ii) and {(iii}.

Proposition 1.3. (i) Let T be a prespecirum and suppose that each Tdi has the
If the pair
(T,F) is lim!-free in the sense of VII.Z.l then every stable {ZT,r,F) operation

homotopy type of & countable CW-complex. Iet F be a ring spectrum.

on © extends uniquely to a stable operation on _1;.8 .
(ii) Let E be a ring spectrum and suppose that each Eqq has the homotopy type

1

of & countable CW-complex and that zE is lim*~free. Then every consistent set { §3}

of (E,%:,E) operations on & extends uniquely to a consistent set of operations on

nd.

Proof. For part (i), let {Xi,s} be the set of finite subcomplexes of Ty; and let

X € ﬁdlx. be the c¢lass of the inclusion map X, » T..s The elements
= 1.8 ik v b A ik
fpﬁ(xi’s) determine an element of %TE ((Eﬂh}ﬂn Xi,ﬂ) and hence of F Dani

by VII.4.10 and ViI.4.12.
representing these elements form an extended pairing of prespectra as defined in
VII.3.2. Part (1) now follows from VII.3.4.

shows that the set {Sﬁ} determines an Hﬁ ring structure on the prespectrum 2E and
the result follows from VII.6.3.

It i3 easy to see that the maps Ei:DwTdi > Fdik

For part (ii), a simllar argument

The definitions we have given are closely reiated 1o tom Dieck's axioms for

"generalized Steenrced operations® {31]. lLet E be & ring spectrum. In tom Dieck's

If F is a w-oriented ring spectrum and E is any spectrum, there iz a ong-

Recall the eylinder construction Z from VIISL. .
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ermiﬁolégY: a generalized Steenrcd operation is what we have called an (E,»,E)
Soawer operatioh. His axioms Pl and P2 are 1.1{iv) znd 1.1{(ii) respectively. In
articuiar, if S% satisfies Pl then S%zdl is a n-orientation for E. Axiom P3 is
gazéz. Thus an operation satisfying Pl and P3 is
tom Dieckts final axiom P4 will elsc be
:'f interest in what follows. If ¢ is a vector bundle over X then En x qk

quation (1) above with u =
‘gtable in our sense (but not eonversely}.
is a
I%ector bundle over Ez x_ % whose Thom gomplex is homeomorphie to D T{g). If v is
‘4n E-orientation for g and §% is an operation satisfying P1 then P (v) is clearly
Axiom P4 1s the statement that E has canonleal
‘orieﬁtations for some cliasgss of vector bundles and that E% takes thg canonical

This axicm will be satisfied in all of the
‘particular cases considered in this chapter.

Tan E-orientation for Em x, qk.

forientation for q to that for ¥ x, qk.

From now on we fix an HS ring spectrum E and let '§; denote the associated

‘power cperations. ILet X be a space. Iet A be the disgonal map

0

xaBrm = xaD 0 5 D (XA = DX
Lt k3 i

fdefined in IT.3.1. We define the internal power operation

Pﬁ:ﬁdix + Edik{}( ABn+)

ito be the composite
*

=di ﬂdikanx A

P R
oy LI - gdik

(XaBr').
:Since ¥*A Brt = (X x Br]” we obtaln an unreduced operation

P“:Edi){ * Edlk{x x Br).

Our next result summarizes the properties of the unreduced operations; similar
- statements hold for the reduced ones.

Proposition 1.4, Iet % ¢ Edix, ¥ o« Ede, TG Dy

(1) 1 *pox = x¥ e pdi¥x
(11) Pl =1¢ EO(X x Bn)
(111) P (xy) = (P x)(ey) e EXENE(x « Br)
(iv) If 1 = j then
*
P {x+y) =P,x + P.y + § {x Y HP xP, ¥)]
k X i ochai %kt & kg
{v) If E is p-loeal and |%| is prime to p themn P x = LI
P B Y B
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(vi} If E is p-loeal then

1 *
P (x#y) = Pyx + By + iy Hxsy)P - %P - yp)l('zpl).

(vii} If = C 3 is generated by a k-cycle and ' C I, is generated by an 2-
eyele then
% .
(1x y)'PP_x =P ,Px ¢ B X x By x Be'),
T LA |

where +y:Br x Ba' » Ba' x By switches the factors .

Proof. A1 parts except (vii} are immediate from 1.1. For (vii) we use the
argument of [100, VIII.1l.3l. If we give the set » x a' its lexicographic order we
obtain a faithful action of Iy, o0 it. Let g « Bq be the element whiéh switehes
the factors 7 and n'. The following diasgram is readily seen to commute.

8
O LJt, k.2, By
lvr d B lcg
o' % ow g f7 C Lo lzgle‘; R”k-— Ekji,

flere 4 is the evident diagonal and tg is conjugation by g. By 1.1(ii) we have

p Py = *d* % % - d)*P
! "x~A ! Bk,fl kgt ” xﬁk’£o1o xe*
and similarly
*
P“Pv,x = {1 x Bg,k a1 od) Pklx'

But (1 x cg)*Pkgx w Py % since cg:szE > B5k2 is homotopie to the identity.

We conclude this seciion with a brief description of another kind of operaticn
induced by Hi structures, namely a multiplicative version of the transfer for
finite coverings. The definition is due %o May. TFirst reeall the definition of the
ordinary {additive) transfer. If p:X + B is a j-fold covering then one can
eonstruct a map . .
p:B » EE, x ¥

J ks

J
as in {8, p.1l2}. If x eFiX is represented by f:X » Fi then oyx ¢ 7B is represented
by . fj
B—Rmgr x. X g . (r) —>F,
J ks D | i
d g

where the last map is the Dyer-Lashof map determined by the infinite loop space

structure on Fi' B Now if F is an Hi ring spectrum and if x « Fdix is repre-

sented by f:z(X") » zélF we define Pk € 74p to be the element represented¢ by

o, - N " D £ £, . iy
5y 2R Ls (B2 x; @t . D1 % wﬁwnj pip el 48y
d

“peeords Some properties of By *

proposition 1.5 (i) pgl = 1, By 0 = O.
(ii) p@{XZY) = (pgr)ipy)

QU SR, 3

P,k

B ww—————— B!

(v} If Y is any spece and x € FdiX, v

{1 x p)®

. where h:B + BL:; is the classifying map of p.

J

. been suppressed to simplify the notation.

ot DA D (f g}

d
I I
~t et D.faDl. g

J

it suffices by (i1) to show

g —Rsp ¥ —d “Dj(X+AX+)—J—-PDj(Zd

)

- (iw) f*p'(g = ggg* for a pullback diagram

€ deY then

S L S p—

|

(3 x p)®('ﬁ*y) = {1 x h)*Pjy

commutes and the results follows.

diagrem —
" as (1xp) Dy (v"axh)
llAh‘” ln.n"
+ + A’b *J
YAB% ,%Y

(4i1) If @:Y » X is a k-fold covering then (pq}(SJ = Bt

ly x x) = [{1 x h)*?jyl(p®x) ¢ PN EE) y g

D.zd(i+k)

if-E is merely K, one can give the same definition in degree zerc. Our nexi result

Proof. FPart (i) is trivial and parts (iii) and (iv)} hsve the same proofs as in the
© additive case. For part {ii) let £:r°(x") » %% ana gu™(x") » 295 pepresent x

and y. It suffices %o show commutativity of the following diagram, in whieh 1™ has

\-\gdj (i+k)g

/L

The pentagon commutes by I.4.3 and the remaining pieces by naturality.

B'ap'—BAP o %X+ADXi—J——ALs%z“FA%zmﬁﬂ—¢z®1th®kF

For pert (v)

where 1:Y x X + Y is the projection. 4&n inapection of {8, p.112] shows that ithe
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Remarks 1.6.(i) Formula (v} is due to Brian Ssenderson (alsec ef. [35, remark 6.2]).
If we let ptX » sz be the j-fold cover assocciated to Ezj > sz and let x = 1 then
the formula gives

(1 X P)®(:)T X }.) = Pjyj

so that the internal operation Ei is completely determined by the multiplicative
transfer, an observation alsc due to Sanderson.

{31} If p:X + B and q:Y » € are any two coverings then p x q iz a covering .
which factors as (p x 1)(1 x q}. We can therefore compute (p x qqu(x x y) in
prineiple by using formulas (ii), (iii} and (v), but there is no simple external
anslog of formula (ii). ‘

(111) If Fis K then 'Vz :3F is B, by II.1.3. Thus we cen define a map
i¢

FdiX FdiB
;T;TZ "_ﬁb ;]:TZ

which agrees on homogeneocus elements with that already given. We leave it as an
exercise for the reader to show that if x has nonzero degree then 33(1 + %) has
components px in degree x| and p,x in degree j|x| {ef. [35, Theorem 7.11).

{iv) In the case F = HZP a multiplicative version of the iransfer was first
defined by Evens, who called it the norm [35]. It seems 1ikely that this agrees
w1th 3®, but we shail not give a proof. Note that in this case one always has

PP *x = {x, but it is not true that HEP x =x. For example, formula {v) gives
* *
(1 x p)qg(l * p} {y x 1} = {1 xh) Pjyu

which is certainly no% equal to yj x 1 in general.

2+ BSteenrod Operations in Ordinary Cohomology.

In this section we use the framework of §l to consiruet the Steenrod operstions
in mod p cohomology and prove thelr usual properties. The construetion will be
similar %o one given by Milgram [37, Chapter 27], except that we use stable extended
powers instead of space-level cnes. On the other hsnd, the proofs will be quite
c¢lose to those of Steenrod and Epstein {10C] except that we make no use of chain-
level arguments.

Throughout this section and the next we write H for HZP, H* for mod-p
cohomology, and n for the subgroup of E generated by a p-eyele. If p is an odd
prime we write m for E—- as usual. For odd primes the spectrum Hzp is H2 but
not Hi (see VII.6.1), hence the power operation TQP can be defined in even degrees
but not in odd degrees (unless one uses some form of local coefflelients). The

operaticn ﬁ?n does extend to odd degrees, as we shall now show.

gzgﬁgﬁi&iee_g:l: For each i ¢ Z there is a unique map g:Dﬂz H+ %
‘the diagram

Ty
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PiH for which

(z'm P et 3 iy
commutes, where ¢ is the iterated produet map. For each 1,] ¢ Z the diagram

4 3 & i it
B"{z HAH} ———-—--———--9'¥}Tr2 HAD_“Z i

D (z*9m) PlyaxPly

\\\\\\\* zp(lﬁj}a ‘{/?r,/’

. commutes up to the sign (~1)mH

The proof is the same as for L.4.5. One can in fact repiace % in this result
by any subgroup of the alternating group Aj’ but we shall have no oceasion to do so.

Using the map £ we obtaln an external operation
P x5 #Plp x
i B
and an internsl operation
P oK » P aBe")

as in §1. The unicueness property in 2.1 implies that these cperations agree with
those already defined when i is even.

% £
Since 1'@222 ¢ PP is the canonical generator Epl, we see that @;21 is an
orientaticn for the real regular representaiion bundle

En x (Rl}p + Bu.
i
It follows that the element y ¢ Hp"an defined by
iy = Pﬂzl

is the Euler ciass of the real reduced regular representstion (i.e., the sum of the

nontrivial resgl irfeducibles). In particular, y is nonzero since each nontrivial

real irreducible has nonzero Euler class.
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Qur next result gives the basic properties of the operation Pﬂ. Note that‘
ok .
W (XABr") is an H'(Bs)-module.

Proposition 2.2. {i) 1*Pﬁx w xP

(11) P (ey) = (1Rl )y
11y gx = (-0l x)

{iv} Pg(x +y) =Px+ Py

{(v) BP,x = 0if p is odd or |x| is even.

Proof. Parts (i) and (ii) are immediate from 2.1 and part {iii) follows from part
{(i1). For part {(iv) we assume first thet |x| is even. Then we may apply 1.4(vi) to
get

" 1 P_g?P Pt
Plx+y)=Px Py + = [{x+ - X - {r_1).
* * %
But rpl =11 =pll =0 and the result follows in this case. If x| is odd this

gives
Pn(zx + Ly) = PﬂEx + Pnzy.

Applying part (iii) gives the equation
{-1}mixgx{zpn(x +y)) = (—E)mixix(z{P“x + P y))

and the result follows since y is not a zero divisor in H*Bn. For part {v) we need
a lemma. lLet g:H » IH represent the Bocksiein operation.

lemma 2.3. The composite
. 2pi .
Dnz2iH £ E291H I8 E2p1+1

factors through the transfer

H

£ :D EZLH — (Eziﬁ)(p}-
7

The proof of 2.3 is rather technical and will bhe given at the end of this
section. For the moment we use it to proﬁe part (v). Let x e ﬁQix be represented
by £:37K + $91 and consider the following diagram, where we have suppressed I° to
simplify the notation.

D £ 2pi
XA Bn+ &

»D X ap gty &, g%y E
T 7 -
ll T T lT P
m 5 W -

(p) . P
21}{)(}1)

g _2pi+l
% 5 B

(z

The dotted arrows exist by 2.3 and the diagram commules. The top row represents
ﬁPﬁx. Thus 8P,x is In the image of the transfer
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% ¥ "
SRLINED & £ :4(0 2% PE
But the composite of (1 Arﬂ)* with the restrietion
(1a0) B ame®) - B

is multiplication by p and hence vanishes. Since (1.ﬂ1)* is glearly onte we
see that {}_Arﬁ}* = 0 so that gP,x = 0 as required. Finally, 1f p is odd and
X € #171% we have

o=;w“mx)=au ‘E%x)=—pzmﬁgk

ginee RBx = 0. The result follows in this case since y is not a zero divisor.
completes the proof of 2.2.

Now let x ¢ HX. If p = 2 we define ply ¢ HAYIX to be the coefficient of
&1 in Px. If p is odd we define Pix ¢ BYHP-Llx 45 ve (n1ymi*mafe-11/2 4
the coefficient of XQ‘Zi in P x. We also define an element » ¢ HP2Br for p od
the equation Bw = y.

Proposition 2.4. (1) Pi(x +y) = Plx + Py
(11) PHzx) = zPlx
{ii%) Pix = %P ir g =21 and p is odd or if q = 1 and p = 2. Pix =0
if q < 28 gnd p 158 odd or if ¢ < i and p = 2.
(1vy P% = x.
(v) If p = 2 then BPZix = P2?+lx; in particular, gx = Pz,
(vi) If p =2 then P,x = 2(Ptx)x9L. If p is odd then

i

Pox = p{-1)MmlamL) /2 (piy) @21, (1) 9(gpix) ey amRiYy,

(vit) Plzy = s x)(pidy).

Proof. (i}, {ii) and (iii) feollow from 2.2{(iv), 2.2(iii} and 2.2(i) respective
For part (iv), we observe that PO is a stable operation of degree 0 and hence
represents an element of HOH H ZP' Thus PO is a constant multiple of the ident
and the result follows sinee PY = 1P = 1 by part (iiif). In part {v) we can us
part (1i) to reduce ito the case where g is even. The result follows in that cs
from 2.2{v} and the relation By = xz. In part (vi) the p = 2 case is true by
definition. If p is odd we can use part {1i) and 2.2(iii) to reduce to the cas
where q is even. We then have P x = z*pr. We recall from [68, Lemma 1.4] the
image of

1*:H*BZ » H'By

P

is nonzero only in dimensions of the form 2i(p-1} and 2i{p-1)-l. Thus this ime
generated as a ring by yx and w and we have
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Px = 5 (_1)mi+mq(q~1)/2[(Pix)xq~2i q~2i~1]

* ¥yux
for some elements y; & Hq¢2i{p*l)+lx. Now 2.2(v} imples that ¥i= {~1)qs?ix as
required. Finally, part (vii} follows from 2.2{iv) and part {vi). This completes
the proof of 2.4.

Next we shall prove the Adem relations for p odd. We use the method of proof
of Bullett and MacDonald [26, §4], where the ease p = 2 may be found. However, in
our context the relations erise more maturally in the form glven by Steiner [1021.
let U and V denote indeterminates of degree 2p-2 and define S and T by

S = (1 - vigyp-l

T e V(1 - ginyPel,

B

We shall prove that the equations

(1) yoeletoudet - 5 plelvist
1,5 1,3

(2) I Pertoudrt - - oty eertovist s vl g ertagvisT
i, i

s ’

holé for all x. The usual Adem relations can easily be obtained from these as in
{102, p. 163]; the basic idea is simply to expand the right sides of (1) and (2) as
power serles In U and T and compare coefflclents. The proof of {1) and {2}, like
any proof of the Adem relations, is based on the relation

(3) v'PPx = P P x

glven by l.4(vii}. In order to compute PP x in terms of the P we need to know
more about the element y « WP~1Br. We have mentioned that ¥ is the Euler class of
the real reduced regular representation of 7, and that this representation is the
sum of the norbrivial real irredueibles of w. Choose one such irredueible, and let
u € HQBa denote its Buler class. Then the Fuler classes of the remaining
irreducibles (suitably oriented) are 2u, Ju,...,mu, and thus y = #mlu®. The
ambiguity in the sign arises from the question of whether the various orientetions
have been chosen consistently, but 1t turns out that we shall not need to eliminate
this ambiguity. Thus we shall assume y = miu™ (it is in fact possible to choose the
orientations so that this holds) and leave it %o the reader to check that the other
possibiiity leads to the same relations (1) and {2). We define b ¢ Rlﬂm by the

egquation b = u, so that w = nlbu®™l, Then the equation 2.4{v) may be written as
follows.

(4) Px =) (-pyimala-/2 el (-1 4 (apeypu (@2

EAN - _1yTypt i
__-_(5) P x T (-1)7[P™x + (P x)bu

) ~ PPx=] {—Z)r[PﬁPix + (-1)m(PﬂsPix){Pﬂb)(Pﬁu)_l{P"U)
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.:Siﬁée voth sides.of (1) and {2) are stable we may assume that g has the form 2r with

.+ even. We define U = -u®®, so that (4) becomes

—11Ur~i

-

..Now 2.2{i1) and 2.2{1v) glve

rui}

in H*X@ ﬁ*Bw ® H*Bn. We denote the coples of b and v in the second copy of Brn by ¢

}'and v, ané we let V = P, Equation (4) gives the following formulas. .

(7) Pb =allb - vevl}v™®
(8) Pu=upP .- avPl = w(v - 1)
(9) PU=~(PwPd=uw - mPt=yPls

(10 Pwpix = (=117 (p9px + (gpdplayey ™ vF R

i

(11} P 8P7x = h) (—l)rmiinﬁ?ix - ((BPJBPix}cv“1]Vr+2im”3vm.

We therefore have
(12) PP x = ()" JIpdelx + (eplptriev (Plap ™ - v hivey - 7
+ (a8 pptxpen v vy - wytpvdgt,

* * *
Now we apply equation (3). We have yu=v, y U=V, and vy 3 = T. Since
¥Pg = PT = v (VPS) we have

. . _—
(13) PP x=yPpx= (W8 | (plply - (gpIPhuin

uw - 0L - epderyper Iy Ruuany e

j - - -1
* {PJBPix)(cv 1w 1) .
Collecting the terms in {12) and (13) which do not involve b or ¢ gives equation
(1), and the terms whieh involve ¢ but not b give (2). This completes the proof.

Finally, we give the proof of ILemma 2.3. ILet M be the Moore spectrum Sup ol

and let 1:5 + M be the inclusion of the botiom cell.

* *
lemma 2.5. Hl{DwM) has a basis {x,y} such that (D, 1} x = 0, (Dﬁi) y #0, and x is
in the Image of the transfer
«:::HIM(P’ > 1D M.
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Proof of 2.5. We use the spectral sequence

B s (uP))) > wp u
of I.2.4. Each of the groups Eg’l and E;’G is generated by a single elemént.
The generator of the latter group clearly survives to E  and represents an element
v ¢« B'D M. Since (1'P11*:8%P) ., 05 is an isomorphism, so is the map induced by
Dﬁi on El’o. Henece (Dﬁi)*y # 0. Now let 2 < HlM{p) be a generator of
H1M® H0M® cer & Hou and let x = 1:2- Clearly, x is represeneted by 2 generator of
Eg’l, and (Dni)*x = (D“i}*rzz = r:(i(p}}*z which is zero since HLS = 0.
Proof of 2.3. Iet HZ be the spectrum representing integral ecohomology. Then
E=HaM Let e:S + HZ be the unit and iet n be the composite

D {en 1)
DM =D (SAM) wfowm] (HZAM) = Dﬂﬂ—g——rH.

Let w be the element of HOD“M represented by n. Then (Dni)*aw = { since 8 vanishes
on 0D 8 = H'Br. Henece by Lemma 2.5, Bw is a multiple of x and in particular it is
in the image of the transfer. Thus we have a factorization

K
s
\ /a n

u'p)

Now eonsider the diagram

Ay - N (220 Hz A M) -——-——,-D 1234z AD M —Ean o 2Ply iy b, PPy

2p1
2pl+l
TTI TT[ @

220 ®) o GRligawP) o (Rlpg P)A P 18,1 52z ) éﬂ»zzmﬂz».zx

D3
b

The uniqueness clsuse in 2.1 imples that the composite of the fo@ Tow 1s
21 .
£t Dﬂz H > EzPiﬂ, so it suffices to show that the diagram commutes. Part (:)

commutes by VI.3.10 of the sequel, snd the other parts elearly commute.

'theorles. We continue to use the notations of §2, so that B denctes HZ
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5;.'D&er-Lashof operations and the Nishida relations

AMn interesting feature of the treatment of Steenrod operations in §2 is that is

'fgenerazizeé to give the properties of Dyer-Lashof operations; thus homology opera-
“tions are a special case of cohomology operations {ef. [68]). The use of stable

instead of space-level extended powera is crucial for thig sgince homology doss not
have a simple space-~level deseription. We glve the details in this section; IXS1

will give another approaech %o homology operations which generalizes to extraordinary

P
First let M be any module spectrum over H and let Y be an arbitrary spectrum.

. fhere 1& a natural transformation

A:MMY » Hom(HyY 7 yM)

dgefined as follows: if y e My is represented by f:Y » i then Aly} is the
omposite
eonp (1af),

HY = my(HaY¥) e 5 (HAM) —p T M,

which is a homomorphism raising degrees by i. Clearly 4 is a morphism of cohomology

theories. Since it is an isomorphism for ¥ = 8 we have
Lemms, 3.1. A is an iscmorphism.

Now let X be a fixed H  ring spectrum with structural msps 63 {for example, X
wight heve the form #°2% for an infinite loop space Z)} and let M = HAX. Then M is
an Hi ring spectrum with structural maps

. E. + AO .
D, (2% A X) -irD; iy hDjX i PSS B FTO

and we cbtain power operations
R My > N,y
J J
and By Y . N (v B, ).

The operation 125 can be extended to odd degrees by means of the maps

p ' = D (*HaX) ~2r D sl AD % 508 Pirax
whers £ is the map given by 2.1. The unit of X gives an Hi ring map h:H + HaX = M
and hy alsc preserves fP" in odd degrees.

Define b, u,'X and w in M'Bx %o be the images under hy of the elements b,u,y
and w in H'Br defined in $2. Thus zi:m Rﬂzl. lemma 3.1 gives the following
isomorphisms for any space Y.
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32

MY % Br) = (MT)IIF]] if p = 2.

1]

M (Y x Br) = (MY)([b,u)] if p is odd.

Thus we can define operations Rly for y e MIY as follows: if p = 2 let Rly be the
coefficient of "q"i in Ry, and if p is odd let Rly be 1)m1+mq(q~l)/2 tlmes the
coefficient of T 41 in Ry. Now if Y = L there is an isomorphism HX = pas?
which we shall always denote by x =% . We define the Dlyer-Lashof operations

Qi:HqX + Hq*ix when p = 2

Qi:qu > Hq+2i(p_l)x when p 18 odd

by the equetion Qix = R"?ﬁ, The properties of Qi will follow from those of R and

Rl. Our next result gives the basic facts about R .

Proposition 3.2. (i) i*Rﬂy = yP
mlyilz
(i1) R _(yz) = (-1) It l{Rny}(an)
mlyi _
(111} R, (zy) = (-1) ¥ ER¥
(iv} R (y + 2} = Ry +R.a.
{v} BRy =0 if p is odd or |y| is even.
Proof. {i) and {ii) sre immediate from the definitions and (iii) follows from

{ii). In the proof of 2.2{v) it was observed that the iransfer

* % *
TH:H Y+ H (Y x Br)

vanishes for all spaces Y. By 3.1 it follows that

¥ ¥ ¥
r“:M Y+ M {Y x Br)

also vanishes. In particular, the map

¥ ¥ *
M (pt.) » M (BE
1M (pt.) > MY p)

vanishes. Part {iv) now follows by the proof of 2.2{iv).
part {v) it suffices to give a suitable substitute for Lemma 2.3.

& map

To complete the proof of
That lemma glves

po(g2iy) (P, p2Pitly

such that F o T, is the composite

. 2pi
DﬂSQiH Sy pPiy 278, pEpitly
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Goﬁéidef the foilowing diagram

8*1

/’

z }{P)AD X

D (E Igax -—-—‘rD 2 AD X EAS PPy Ay LB 2pi+1H

lT \\\\\\\\‘
ks
1a1 (

(1% ax) P .
The left part commutes by VI.3.10 of the sequel and the right part commutes by
definition of F. Using this
faet in place of Lemma 2.3, ihe proof of 2.2{v) now goes through to prove part {(v).

AX

(E H)
Thus the top row of the diagram factors through Tye

If we now replace Pi, y and o in Proposition 2.4 by R ¥ and » then every

L
‘part except (iv} remains true with the same proof. If we replace U,V,S and T in the
Adem relations (equations (1) and (2) of Seetion 2} by U= hU, V= nV

8= 1,5 and T = h,T then these relations remain true and have the same proof.

Proposition 3.3, (1) Qx +y) = oXx + @'y

{i1) If p is odd then Q'x = O for 2i < |x| and @lx = xP for 21 = [x|.
| If p = 2 then Q'x = 0 for i < Ix| and @tz = x° for 1 = |x|.
(141) 80%% = 0** i p - 2

) @) = ] (@0 @y

(v) The Adem relations hold: if U and V are indeterminates of dimension

2-2p, 8= U(1 - vl ang 1 o= Vi1 - I.I"}“\J')P"l then the equations

(Q%QX)ULQ =
i, id

i ovis’
and if p is odd

(@edwuid = 1 - vt 3 eetel vt
i3 1,
+ U-lV 2

i,

(o*add vt
are valid for all x.

(vi) If X has the form 3"2" for an E_ spece % and

a:HqﬂZ > Hq+iZ

is the homology suspension then Qic = o@t,
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Proof. We shall prove part (vi); the remaining parts are immediate from the

properties of g, Tor any space Z the retraction of 2 to a point splits the cofibre’

sequence - -
A L S
and gives a map
Vil g DAl

Now let % be an E_ space and let X = 32",
and W are H ring spectrs dbut ¥ and W are not. Let ¢ denote elther of the
composites D .
DX —Twr D X —w X —SuX

G v

and D —EeD W —>W A,

where the unmarked arrcws come from the H_ structures on X and W. We can use the
meps ; to define operations ﬁn
ig easy to see that

(1) (Lav), By =R (1av),y |
for all y. Now if x ¢ HZ then x e (Ba) % c (HawW)™YS, and (1) and the
definition of Qb give

(2) Box=] (~1)ml+mq(q+1)/2Q1x X.’Zluq
i i

gsinee (1A v}y 18 monic. The natural map £:I0Z2 + Z induces a map W » ¥ which

will alsoc be ecalled e. A fairly tedious diagram chase (given at the end of IX37)

shows that the following diagram commutes.
LD
|g
W

Hence the following diagram commutes, where £:5 » "% W represents X

=W

Dz
ki

X

R o
[
[
[

)]
T

D
ki)

)

D f
sBe’ T 5D (3% ) %o p 5% D § —> s P AW 25 Plga g

A LA l}AA
1 D zf ] o - P -
D 8 —“—+Dﬂ(z T Ha ) ~»D 3 qHAE“z:w ey 5 Py AD X%

iag

¥ =372, w="em)", W=:"0%. Thenx

in the theories represented by HaX and HAW and it
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The top row of this disgram represents (1 Ae)“2§“£ and the other composite
épx':-é'sents ﬁj;(l Agl),Ex . Thus we have

ombining this with {1) gives

: (6) (1A“€)*2§:;£ - z {wl)mi+mq(q+z)/2chix X2i—g
B i

“Pinally, by 3.2(iii) we have

o R (1Ave),ix = B Sox = M)m“l"“x(mn%}

7 (-1 )miﬂaq(q*l )/BzQiux X2i-q.
i

The result follows frem (4), (6), and (7). This completes the proof of 3.3.

We conclude this section with a proof of the Nishida relations in the form
given by Steinar:

H

() I Eldoviy = ) @iExuird
1,5 ivd
and if p is odd

#

(9 [ (Fraddx)v gl
: i )3

-wh y s Flavied
1
+ vt 3 eleRlovied
i,]
"?i is the dual of the conjugate Steenrod operation ?i and U, V, S and T
are as in 3.3(v}).

: Wwhere
The usgal Nighida reiations can easily be obtained from these by
" first translating from ?;“ to Pi and then writing both gides as power series in U

and V; see [102, p. 164].
_' proof for p = 2.

We shall prove (8) and (9) for p odd; there is a similar
The basic idea will be %o show that the total Steenrod operation
i
: H— \/ 1l
1cZ
is an H_ ring map, end this in turn will follow easily from l.4(vii). To make this

work, however, we need a particular H_ structure on \/ 5'E which we now construct.
ieZ
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Iet X be the functor H*(K %x Br} on the category of spaces. Ve denoté_’:.he
generators of HlBT[ and H?'Bn by ¢ and v, so that E*K is the polynomisi ring
H%) e,vl.
ring spectrum E.

E.)\L is a multiplicative cohomology theory and hence is represented by a
The projection X x Br + X gives a natural transformation
H*X. > E*X which is represented by a map g:H » E. Of course, E is equivalent to

\/ z:iﬁ with its usual ring structure and g is the inclusion of H in this wedge.
i<0
Next we define power operations in E*. iet @? be the composite

¥

P = Bl ne’) —e BN oy eam) L B (X1 AB) 5 i x.
It is easy to see that the "S) are consiztent in the sense of Definition 1.2 and
thus they determine en }12 ri;ng structure on E by 1.3 (compare II.l. 3). The
extends to odd degrees since P does, and g is an H Ting map which
An inspection of the definitlons gives the
following deseription of the internal operation ’?“.

operation ?ﬂ
alse preserves /53“ in odd degrees.

* - s
(10} Pf = (1ay) P“:Hi(x ABrt) > B (A BT A BT

Noie that, with the conventions we have adopted, c‘ and v are the generators In the
As in Section 2 write b and u for the
generators in the first copy of Br; thus g*:H*Bn + E*Bn takes v to u and ¢ to b.

second copy of Br in this situsiion.

Now let F'X be the Leurent series ring (H*X)i[c,v,v“lli = Exl (v, Fois a
multiplicative eohomology theory and hence is represented by a ring spectrum F, and
the inclusion B'X + F'X 1s represented by a ring map H + ¥ which we again call g; of

course ¥ ig equivalent as a ring spectrum to iyz ziH and g is the inclusion of H

in this wedge. Now observe that the element @?v (B*sz)llc,v,v_lli is a Laurent
series which 1s bounded sbove, and that by 1.1(iv) it has leading coefficient
1€ HOBZ it Hence @?\r is invertible, and it follows that we can extend the
operations @ ‘o operatlions ?? in the F-ecohomology of finite complexes. The @g

are consmten‘h in the sense of 1.2 and kence give an Hi gtrueture for F by 1.3.

Next we define the total Steenrod operation 1:E + F by letting ty be the
composite

P
3 el BPUK = Br) = EPY e FOX,

where the last map is multiplication by (__l)mq(q—l)/Z(m“-q v Ha,

have the formula

By 2.4(vl} we

i

(11) % = T [gePlx 5 (1) %, (gplx)ev v,
i

In partieular, the projection of %: » V ziE on
ieZ

where V = ~yP~1 as in Section 2.
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2k{p-1)g 1s P¥, Either from the definition or from formula (11) we get the

(-;'_2) tye = b - cuy”t
.(13) tev = v+ uPV L = w1 - orhy
(m 1V o= Pl oo hPt o g - welyPl <o,

_f is clearly a ring map, bub it turns out not to be an Hi mep. However, we have

Let ¥ be any speetrum and let ¥ ¢ HY. Let w = {1 - UV L0, Then

“Proposition 3.4.

b ¥y = wq@ft*y-
: This fact will suffice for our purposes but we remark that by combining 1% with
© 7.2 below one can show that t is actually an H_, map. It is certainly not H2

" it does not preserve ?11'

since
For the proof of 3.4 we need a standard lemma.

lepma 3.5. For any space ¥ the map

* * ¥ ~k ~
Jea: By 1P @ # v A"

is moniec.

For completeness we shsll give a proof of 3.5 &t the end of this section.

Proof of 3.4.

sense of 1.2 and 1.3 it suffices to show that they agree on finite complexes.
3.5 it suff'ices to show

¥ ¥ geF
1 t*@ny = wq@“t*y

Sinee both sides of the equation sre stable (H,n,F} operations in the
By

and

P N
(15} t*Pﬂy B P?[ 1,y

for 81l y. &ince 1*w =

(iv).

1 and t ig 2 ripg map the first equation follows from 1.1

For the second, we first let y = rl. Then

PRIl = By (eE1) = (Byx)e(t,81) = ywezl

while
F

we' 1,21 = wpt
m

;; gyEl = wg*P‘gzl = wy+Ll.

Since xw ls not a zero divisor, 1t suffices to show (15) when q 1s even, say
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Then as elements of (H*Y)[ib,c,u,v,v“lﬂ we have

q = 2r.

o (74, =2 ~2mpr - yoor
byl ¥ (-1 (ml) Ty PPy=sVTPPY

and

2r.F 2r

r . * -r
WP by =W (1ay) P“(U Py by (10}

« w2rv~pr (- UV—}LJ-Emr

*
L y) PPy
- ybr : s

PﬂP“y by l.4(vii),

and the result follows.

If we let ¥ be the class of the identity map H + H we obtain

Corollary 3.6. The diagram

D H et
kil

e

D F —msmmmmeeps
b
commutes, where the unmarked arrows come from the Hy gtruetures of B and F.

Now let X be an H_ ring spectrum. Then, as we have seen, HAX 1s an Hi ring

spectrum and there is an operstion
R, (HAX) + (Ha X)PIDY

for T e h& . Simitarly, FrX is an Hi ring spectrum and we obtain an operation
R an¥r s (FaxPhy,

The wnit of X induces H_ ring maps h:B » HaX and h':F » FaX.

Corollary 3.7. If ¥ is any spectrum and ¥ ¢ (HAX)%Y then the equation

(4A1)y Ry = WIR(E AL)yy

nelds in (FaX)Pdy,

Proof. For q = 0 this is immediate from 3.6, If ¥ = L1 we have
_ F
(A1}, R 21 = (LAL), R BEL = hit, 51 = WR (£ Al)yrl
= 34 O(z~4 = 4,
by 3.4. For general y let 2 = £ -y e (HAX)(27Y}. Then y = {£1)=z and we have

a7

(tal), Ry = (8al)s (R0 R 2] :

*
5 [wq(?zimqgi(m 1),2]

GnF
w R“(t ALy

& reguired.

Corellary 3.7 gives the following relation between the internal operations.

. g F ~

16) Hil\l)*RT[y =W R“(trxl)*y

“To prove the relations (8) and {9) one simply evaluates hoth sides in the speeial
cage when Y is a point. First we
'P_i:H » 2Py 45 pot ?i but

‘particular @z = -gz . Thus (11)

recall that the operation in homology induced by
its conjugate P.. Since 8 = -8 we have in
gives

(tAl)z = ¥ ig,Pys ~ {—l)qg*sﬁz ev iy
i —_—

(AR y = (baldy ] (=D)™UO D200y 9gdy (1) (g0) gy v P

J
i)/2 -
= (1O 2 0010795 (A1), @ - (-1) F(8A2) 00T (8,0) (1,000 ™01 (6,00 P, 7
J
18) = ()™ 2g) -0 m g plgly - (21)%Ble ey

i,j

S SR G 11 1 o
- -0 xbu o - wh T gRledd wen vt - vyl

:0n the other hand, we have

- "
W Rﬂ(ta}.)*y

w‘qﬂi Z [g*?‘i*x - (nl)gg*ﬁﬁxcvnliv'j
J

#

~q a miq+l) j F T R A |
w j{ R, Flx - (-0U-DMIVR gBlx 8oy () 1T

(19) (1Pl /20170880y 138l - (19 ot xput
i i’j

+ (1% B b o™ (107 gl xven Ly (107 e T put e

.Ii‘ we collect the terms in (18) and (19) not Involving b or o we get (8).
:Collecting the terme imvolving b but not ¢ gives (9}.
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I% remains to show 3.5. é@ivari&n‘b veetor bundies over ¥; we write Vect Y for the case where G is the

-t'fvivi,al group‘. If Y is a free G-space there is a natursl bijection
Proof of 3.5. Let p be odd; the p = 2 case is similar. We use the spectral :

sequence I.2.4 VeetgY = Vect{Y/G)

1P i+
H (Tr,H]X ) == H (DHX)., i (cee [18, 1.6.1]). If Y is any G-space we write A for the composite

¥
Let {x } ., be an ordered basis for H'X. Iet [o| denote the degree of x . The VectgY + Veetg(EG x Y) » Veet(EG x4 ¥),

A
s ok
graded group H*{X(p}) = ¥ ()% has the basis {x, ® =+ ® X, | AR €A} and
1 p

where the first map is induced by the projection EG x Y + Y. The map A Is additive

the E,-term has a basis consisting of representatives for the elements and hence if Y is a finite G-complex we obiain a map -

g 1 = { sas = ot
{p7u §;xul aeh, e =0o0rl,1>0) and {r“(xaga ® X, )lal win «, # max mi} Kol » K(EG xg 1)

{in particular, the spectral sequence collapses, as we also know from I.2.3). Hence .
which will aiso be denoted by A. MNow if X is a finite nonequivariant complex and we

¥ o ,
these elements form a basis for H {D"X]. Ilet = € ED X be a nonzero element with -
T o lek Ly act on X by permuting the factors then the j-fold tensor power gives a map

* %
'z =Az =0, Since 1"z = 0, z is a finite sum of the form

/3> Veet X » Ve::t£ 1){“J > Kz Xé

e 1 3 3 5

Toa .bru X .
e g Wl o

. which however is not additive. In order to extend it to virtuwal bundles and to the

" relative case we must use the "difference construetion® [94, Proposition 2.1]. Iet

. #
Since o'z = G, we have

(20 0= § 2 ibauiP“xu (Y,B} be a G-pair and consider the set of complexes
G,E,i Ay 6. 4
04— Fyat B a— creali ko0

= ¥ (ml)j“ml““|“1'1)/2(m!)§“lxa iui*ml"l‘zjmbe[?ixa + {_1)f°‘|(;3?5xa}bu“li

. of G-vector bundles E; over ¥ which are acyclic over B. We write Py(Y,B) for the
set of isomorphism classes of such complexes. Two elements Ey and E} of ﬁG(Y,B)
are homotopic, denoted Ey = E;_. if there is an element H, ﬁ‘G(Y x I, Bx I) (with G
aeting trivially on I) which restricis to Ey and E} at the two ends. We say that Ey

and E} are equivalent, written Ey ~ E;, if there are complexes Fy and F; which are
acyelic on ¥ such that

by equation (4) of section 2. MNow let K be max{i+m|a| f).a e # 0}. and let 8 be
=2
the set of triples (a,e,i) with A #£0 and ism|a] » K. Then the coefficient
¥

X '€
of u* in line (20) is

("z)m[aﬂEa{—l}/Z(m!}fa!k e
Q,e,4 [+3

(,e,i) ¢ 8 155 Ex @ Fy = E;@F;.

It is shown in [94, appendix] that there is a natural epimorphism

I:&u{Y,B) + K5{Y,B)

which Induces a bijection from the equivalence classes In £5(Y,B) to K(Y,B). If B
is empty I' is easy to deseribe: it takes Ey to | (u-l)lEi. I is additive and
mltipiicative if we define addition and multiplication in ‘OG to be the direct sum
and tensor product of complexes. Now if {X,A) is sny pair of finite CW complexes
the §-fold tensor product of complexes give a map

gsince all other terms in line (20) involve smaller powers of u. But this is a

contradietion sinee the x, are linearly independent.

§4. A’{.iyah'é power operations in K-theory

In this section we show that the power operations in KU and KO defined by
Atiyah (17] glve Hg structures for these spectra which agree with those con-
structed in VII §7. We shall work with complex K-theory, but everything ie similar
for KO.

B{X,A) » B (X,0).
J

If By and E;e in &(X,A) are homotopic by a homotopy Hy then the restriction of

. N ' {ons. 4,
We begin by reecalling the definition of Atiyah's operations. ILet G be a finite ! along the disgonal map

group. If ¥ is a G-space let Vect,Y be the set of isomorphism classes of
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Xa0 x 1. (xa) x I

gives a homotopy between Eg)éand {E&)C)j. If ¥y 1s acyelic on X then the inclusion
(E*)Oj » {E, C)F*)Q‘j is zjmequivariantly split and is a homology equivalence by
the Kinneth theorem, so that 199 ~ (E,® F,0®J. It follows that the j-fold
tensor product preserves equivalence and we can pass to equivalence classes to
obtain a map

¥

] KGR » Kol (x,04).
letiing A be the basepoint * of X we write @} for the composite

R = K(X,%) K, (09 -L»K{Exj x, (X,00) = ko, x.
J J
We can extend @3 to all even dimensions by letting it take the Bott element
be K'ztso) to pd. It is easy to see that the @E are consisteni in the sense of
1.3, sc by 1.2 and 1.3 we have

Theorem 4.1. KU (resp. KO) has a unique Hi (resp. HS} ring structure for which
the power operations are those defined by Atiyah.

4

@

We shall see in Section & that the HS strueture on KO extends to an

structure. Our next result answers an cbvicus question.

Proposition 4.2. The structures on KO and KU given by 4.1 are the same as those
given by VII7.2.

For the proof we need a lemms.

lemma 4.3. Let X be a based space and let 2:X* 2 X ve the based map which is the
identity on X. Then

o 05 FDx s F ot
e N Ed .
3 J k

ig a split monomorphism for any theory F.
Proof of 4.3. If vii X X" is the map -given in the preoof of 3.3 then
* ¥ @ *
D, D, = (D, = 1.
(3“}(.]“ (J(z;\ov))

t
Proof of 4.2. Llet @% be Atiyah's power operation and let T ve that given by

b
Vil.7.2. By VII.7.7 we have
?‘;{zzb) = (%‘z?fl)-bj

while by 1.1{iil) we have
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?3'(:21:) - (@5321)-’?‘;1}.

- ey ‘
Since 5}221 is an orientation for the Thom complex st2 this implies

. 1
f#b = ='§3b. It therefore suffices by 1.3 to show that 3% and @} are equal on
J

¥ for sny finite complex X, and by 4.3 it suffices to show that they agree on

: 'ﬁ(x+) = KX. They do agree on Vect X by (71, VIII.1l.2]. But any element x of KX
- can be written in the form V-W with V,W ¢ Vect X, and we have

/Pjv='%(x*?{} ?J“@Jw{zi Ti)j,_il(@ix)(’%_iwn .
by 1.1{vi}, and similarly for T?i Henee
hi i
@jx = Pv- - D IRIICEIE AN

! 1
and similarly for 53. We therefore have ng =‘33x by induction en j.

By analogy with Section 2 we now ask what operations in K-theory can be
cbiained from the internal power operation

PH:KX~3~ K(X = Br)

The structure of K(Bw) has been determined by Atdyah [16}: ¥(Br) is a %pnmodule
and the composite

IR(r) © 7, 2B (Bn) @ 2 —=RiBn)

is an isomorphism, where IR{w) is the augmentation ideal. If p is the automorphism
.group of n then the invariant subgroup (Bn)® is generated by A(N-p), where N is
the regular represeniation of n. Atiyah also shows thai Kan = 0. In partieular,
£*Br is flat over K*{pt} and we obtain a K;nneth isomorphism

KX ® K{Bx)

12

K{X x Br)

for finite complexes X. Since P is the restriction of Pp we see that P actually

lands in the invarisnt subring KX ® K{Bs)P. We can therefore define operations

PIKK > KX
and 8P KX » KX x %p
by the eguaticn
(1} Px=9Pr@1 v ePx@aly - P,

By 1.4(1) we have
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(2) tPPx = ¢, ..from standard notation (in this section only} by writing G{1} for the group which
Jdpte on g, Let py be the umiversal G(i}-vector bundle over BO{i), let 8(p;) be
Atiyah proves the relation . ﬁ.,s fibrewise one-point compactification, and let T(pi) be the Thom compiex obiained
by collapsing the poinis at «. We shall always idenilfy principal G(i)-bundies with
free G(i)-spaces, s¢ that the prineipal bundle assoclated to Py is EG(i). If q is
any G(i}-veetor bundle with principle bundle Q, there is & bundie map F:q » Py and
induced maps S{F):8(q} + 8(p;) and T{f):T(q} » Ti{ps}. If F!' is another such map we
éh&ll need -to know that T(F') is homoicpiec to T(F} (of course this 1s well-knowmn
for the maps of base spaces induced by F and F'). Now F has the form ¥ Xa(1) at
for some G{i)}-mep ¥:Q » EG(i)} and S(F) is equal to F a1 } di , and smliarly for
SFt ang S(F'). It is shown in [32] that there is at most one G(i)-equivariant

" homotopy eless of G(i)-maps from any G(i)-space into 2G(i), so i1 follows that S(F)
i is homotopie to S(F!') by a homotopy preserving the base points in each fibre, and

“hence T(F) = T(F'} as required.

{3) poPx = xP - ¢Px

in {17]. Since the representation N of =z is induced from the trivial representation -
of the trivial group we have A(N) = tr 1 and therefore (1), (2) and {3) give

(4} Px=wPx®@l + oPx @ vl,

an equation which will be used in §7.

We can in faet 1ift 8P to KX by using the eguivariani iniernal operstion Fﬁ.

This is the composite = *

)J—-”KX,
L3

where A is the diagonsl map from X with its trivial r-action to XP with its Now we define the Thom prespectrum TG by letting (TGly; = T(p;} with

permutation action. Olearly P, = A o "?” . Since n acts trivially on X, we have a

oL T(py} » Tpy,q)

K Xz KX ® Re. The p~invariant subring of Rz is generated by 1 and N-p, so we may is+1

define 6Px as an element of KX by the equation : “$nduced by any bundle map from 7 ® RG to py.p- We wish to show that TG is en

Hi ring prespectrum. For this we need some bundle theoretic ohservaiions.

=XX®@1+efx® (N - p).
let p be a G{i)-vector bundle over X with associated principal bundle P. Then

: Exj xsz'J is a vector bundle over Ezg xzj XJ; we wish to give it a canonical G(ij)-

7 bundle siructure. let B = (}(i)J « ‘Then pj is an H bundle over ¥ with principal,
© bundle PJ and E:J acts on everything on the left. However, its action on P] does
_f_no’c. commute with the right H-action (Pj iz not & "zj ~equivariant prineipal He
..;.bundle"}. Instead we have ol(ph) = (op){ch} for ce Ly, D€ A, hed. Now let

:'_Q = B Xy G(i]J}. 7This is a principal G{ij)-bundle over ®W owith associsted veetor

The operation “1':‘““ satisfies the obvious snalog of 1.4 snd one can use its properties
%o obtain additivity snd mulbtiplieity formulas for oF and ¢ (using equation (3) as
the definition of (P). One can also obtain the G-equivariant Adams operations in
this way by sterting with a G-complex X and constructing operations

. : 3
@j .KGX + sz a x

exactly as before. The reader is referred to [34] for detalls. ~bundle pj . Because of our cholce of 4 the permutation action of £y on (I 1irts

- to & homomorphism 2; » G(ij) denoted o +>3, ang we have o(h) = gha " for all

-:_.'h ¢ H. We define a left action of Ly on Q by al{p,g) = {op,og); 1t 1s easy to check
; that this action is well-defined and that it commutes with the righi action of

.."G(ij }o Thus Q is a :;J ~equivariant prineipal G(i})-bundle and hence so is its

5 puliback Ezj x Q to EEJ Ay XJ Since ):J- acts freely on Ez x Q and commutes with
:.G(ij) we can divide out by its action to get a prineipai G(lg )-bundle Frs ><z Q over

: Ez; 53,1 ¥ . The reader can check that the associated vector bundle is Ez z P

§5. ‘tom Dieck's opera'bi.ons in cobordism

In 1311, tom Dieck constructed "Steenrod operations® (power operations in our .
terminology) for the cobordism spectra asscciated to the classical groups. In this
section we use these operations to give Hi gtructures for these spectra. A wider
elass of cobordism speetra will be Invesiigated by lewls In the sequel, snd he will
show that they have not just E_ but E_ structures. His results do not quite include

those of this seetion, however, since his methods do not give the "d-structure'

Since T(E};j xz_pj) is naturally homeomorphic to DjT{p) we obtain maps
J

(1.e., the f,-orientations} for the classical specira. : (TG = j -
’ | 55,170y (T8)q; = T(EX; "I By) = T(py;) (76) .5
Throughout this section we write G for any of the classical groups C, S50,

Spin®, U, 8U, Sp or Spin. Let d = 1,2,2,2,4,4,4 respectively. We depart somewhat for all 1,j z O. The diagrams of Definition VII.5.1 commute sinece in each case the
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two composites are induced by bundle mape into a miversal bundle. Thus we have
shown

Propogition 5.1. The maps &y,1 are an Hd structure for TG.
H L .

Now define MG = Z{TG}. BEvery G(i)-vecior bundle g has a canonical Thom class
in this theory represented by the map

T(q) — Tipy) ~Ew (ME) 4y

At this point we need some 1im1 information.

lemma 5.2. AlMof the pairs (TG,MG'), (IG,KU), {IG,K0), {TG,ku) and (TG,kO) are
lim*-free.

Proof. First consider (TG,MG'}. The pair (TU,MU) is clearly lim'~free since the
speciral sequence Er(Tﬂzi;MU) collapses for dimensional reasons. For each other
choice of @ and G' there are maps f:MU + MG' and g:TG » TU satisfying the hypotheses
of ViI.i.4, henee each pair (IG,MG') is 1im'-free. A similar argument gives the
remaining cases.

Corollary 5.3. MG is an Hi ring spectrum.

Cn the other hand, it was shown in [71,IVS2} that M3 has an E  ring structure.
Sueh structures always determine H_ structures, as mentioned in I84; see [Equiv,
VII§2] for the details. ILet g?:D M: +» MG be the structural maps obtained in this
way and let g? be those cbtained from 5.} and 5.3. As one would expect, the two
atructures agree:

Proposition 5.4. For each j, g? = g?-

Proof. We use the notations and Definitions of VIIS8. Fix 1 and Jet a = ajy. It
suffices to show that the elemenis z? and z? in cobordism represented by the
eomposites E
(i} x i a
T‘“i)"x. T(pi} ——>(DjMG)a (MG)

J
and

E
(g,)
) x a
Tiny) ~, 200)Y ) £ (D), —42 s (u0)
are equal. An inspection of the proofs of [71, IV.2.2] and {Equiv. VIL.2.41
ghows thai the second composite is induced by a bundle map from ny C)(pi)J into
the wniversal bundle Dy, hEMCE ZE is the canonical Thom class in

MGa(T(ni}/\z T(pi)(j)). On the other hand by Propesition VII.8.1 there is a
J

o, B
© which takes z; to the canonical Thom class in the target group.

of zaT(EEi xz‘(pi)j). Thus WZz = ?zf and the result followk.

Pl
} J_L F([11{x},y). For a muiti-index o = {ag;eve,0y) let a(x)® =

" Define eMUZP”ZBﬁ by the equation xtzzl = Pnzzl;
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feiativelThom isomorphism

w0 M) A (20— ey (s°r(m, x, w91
J

i

Since the

._eanonigai Thom elass of a Whitney sum is the product of the Thom classes, the
- pelative Thom iscmorphism ¢ takes the Thom class of ‘Tin.)A
i

(3)
E.(T(Pi) ) to that
dJ

We conclude this section with a discussion of cobordism operations reiated 1o
P+ The situstion in unoriented cobordism is quite simple: there is a
Kinneth isomorphism

MO™(X % BZy) & (MO*R)[Ix}!

s *
- where y is the MO" Fuler class of the Hopf bupndle, and we can define operations

a +i
glio™x - mot ¥
for 1 ¢Z by the eguation

sz =3 (Rlx)xq‘l.
i

One ean prove various properiies of the gl exaetly as in §2 (see [31, 5151).

To deal with the case of complex cobordism we need some formal-groups notation.
Let F(x,y) be the formal group of MU and let [n](x) be the power series defined

Inductively for n > O by [11{x) = x and [(n+11(x} = F([n](x),x). There is a
Kunneth theorem due to Lendweber [49]:

MUM (X x Ba) = (MUTX)[{ull/[pliu),

. wiere u is the Euler class of a nontrivial irreducible complex representation of =.
t The power series Ip!{u) has leading term pu but is not divisible by p, so that in

o particular MU*Bn is torsion free. We cammot continue as in the unoriented case

- @ince the power series [pl{u) and the ring MU*Br admit no simple descriptions.

- There is however a relation between Pﬁ and the Iandweber-Novikov operations 8y which

: is due to Quilien ané was used by him te give & proof of the structure theorem for

ngMU,  Let aj{x) for | » 1 be the coefficient of ¥ in the power series

o a
1 k
= az(x) tas &R{X) .

thus y is the Euler class of
the complex reduced regular representation.
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Propogition 5.5. For any finite complex X there is an integer m > O such that the .

equation

(1) Pan®ds 1 (s xatmilel
T o
a§ ﬁ m

holds for all x ¢ MUK,

For the proof see [93] or [1l]. There is a similar relation between P, and 8,

in the uncriented case. Since the right side of eﬁuation (1) is additive in x we
have

Corollary 5.6. (P xty) - Box —P“y)-xm = 0 for large m.

§6. The Ativah~Bott-Shapiro orientation.

) It is well-known that the KU and KO orientations eonsirucied by Atiyah, Bott
and Shapire in {19] give rise to ring maps

oY :MSpin® » KU
and ¢V:MSpin » KO

In this section we shall prove
Theorem b.1. ¢U is an Hi ring map and ¢0 is an HS ring map.

Bemark 6.2. MSpin actually has an Hi structure, as ghown in §5. By combining 6.1
with VII.6.2 we see that the Hi siructures for KO and X0 constructed in 84 and in
VIIS7 extend to Hi structures.

We shall give the proof of 6.1 only for ¢O, which will henceforth be dencted by
4; the remaining case is similar. If p is a Spin(8i}-vector bundle we denote its
Atiyah-Boti-Shapiro orientation in KO(Z(p)) by uip).

First we translate 6.1 to a bundle-theoretic siatement. As usual, let pgy e
the universal Spin{8i)-vector bundle. If X C BSpin(8i) is any finite complex, we
obtain an orientation class

i}
ulpg; 1X) KO(T{pgy|X}).

These classes are consistent as X varies, hence by 5.2 and VII.4.2 they determine a
unique class in ﬁﬁf?Syinai} which is represented by & map

i :T8ping; + BC x &,

- 'wheTe ‘Eg is the power operation defined in §4.
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: T'Ae'_ sequence {us} is & map of prespecira, and ¢ is defined to be Z{p;} (see

¥1I51). The multiplicative property {19, 11.1 and 11.3} of the Atiyah-Bott-Shapiro

“orientation implies at once that {uy} is 8 ring map, and hence so is ¢ by 5.2 and

'VII.Z;B- Similarly, Theorem 6.1 is a consequence of the following property of y.

“proposition 6.3. If p is any Spin(8i)-vector bundle then

By < P P,

“

In the terminology of §1, Proposition 6.3 says that 33 satisfies tom Dieck's

Jaxiom P4. tom Dieck gives a simple proof of the analogous statement for the KU-
“orientation of complex bundles in {31, §121.

For the proof of 6.3 we need %o recall several technical facts from [19]. The
first ig the "shrinking" construction in £(D,Y). Let

d é
. . ok i}
E,: 0 EO El [ SO . En dee )

be a complex of real vector bundles over X which is acyelic over Y. Choose

Fuelidean metrics in each E; and let 85:E4 7 + By be the adjolint of 4; with respect
to the chogen metrics. Let

. D
8(E,): 04— $(E) == §(E); «— 0
te the complex with s(E), = ® E,, s(E)) = ® E, , and differential
i even i odd

Dml,ey.“)={dﬁ§,%@1+df3,%§3+d¢5”.d

Then s(E) is in #(X,Y) and it defines the same element in KO(X,Y} that E doss (see
(19, p.221}. The same construction works G-equivariantly provided that the chosen

" Fuelidean metrics are G-invariant.

Next we need the Cl;fford algebra ;. By definition, €y 1s the quotient of the
tensor algebra T{R;) by the ideal generated by the set {x ® x - HxﬁgolEx ¢ Bi}. The
grading on T{Ri) gives C; a Zy-grading by even and odd degrees and we will write

¥ for the Zy-graded tensor produet of two Zy-graded objsets. By a module M over
C; we mesn a Zy-graded real vector space with a maep

satisfying the ususl properties. Equivalently, such a strueture is given by two
maps

e u
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and Rl gmt » 0,
each denoted by X ® mp— xm, such that
(n x(xm) = -1:x;12m

for all x,m. In particular, the latter deseription shows that if M is a Ci—module
and N is a Cj ~module then M N is a Ci+j -module with

(x®yllmen)=xmen + (Hl)lm|x®yn

for all XeRi, ¥ eRi’ meM, neN. If M 1s any module over §; we can define a

complex
B(M) : 0 <— By (M) 3 E () «— 0

of real vector bundles over R by letting Eg(M} = R x MO, E (M) = B x Ml, and
d{x,m) = {x,xm}., FEquation (1) shows that this is acyclic except at 0, and in
particular it defines an element of K{)(Dl,sl_l).

We can now define iwo complexes over {Ri)j ,namely E{M 3) and the external
tensor product E(M) ®J. The first has length 2 and the second has length j+1. We
need to be able to compare them.

Lemma 6.4. The inner product in E(M} ®J can be chosen so that S(E(M)® gy

isomorphic to E(M J) .

is

1

Proof. It is shown In [19,p. 251 that one can choose imnmer products in M and ML so

that the adjoint of x:M » MO is -x:MC » ML for each x ¢ R'. We define an inner
product in M @] by

< sas t aae I'> = I'> wes !
:111 @ ®mj s m.‘L ® @mj> <m1’m1> <mj ,mj>

with the understanding that <m,m'> = 0 1f |m| # Im*|. Then s(E(M) * J) and

M j) ¢learly invelve the same two bundles, but -they have different
differentiale, say d and d'. The definition of the shrinking construction gives

<:1{x,111:t @ eon ®m3.} =

J %mll*"’*lmil“l
;-1 (#,m) ® +eo@m , @X,m @M _, @ **° @mj)
k=1 ’
PR . 3
I x=%%..0 % ¢ {R*), while ihe definition of ME Vas a Cij -module gives
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3 bmyleeeering |
y {-1) . * (x,m @ @0, @xm @n

® =2+ @m ].
k=1 i+l

J

'fi':ie required isomorphism is given by taking (x,m @ +++ @ mj} to itselfl if
I;‘lll 4 oews i:njf is congruent to 0 or 1 mod 4 and to its negative in the remaining
sgees . '

Next we recall that Spin(i) is a subgroup of the group of units of C; {in fact
fhis' is the definition of Spin{i) in {19, p.81) and that the resulting conjugation
sction on R ¢ C; agrees with its usual action on RB'. We can therefore define an
action of Spin{i) on E{M) through asutomorphisms by g(x,m) = (gxg"}',gm). Now if P is
“a prineipal Spin(i)-bundlie over X with associsted vector bundle

:V + X we can define a complex E(M,P) over V = P xgnin(s) B: by

E(M,P) = P xgyin(qy EOR.

This complex defines an element of Z(BV,5V} and hence of %(T(p)}. If Pis a
G-equivariant principal bundle for some G (i.e., G acts from the left on P and
copmutes with the right action of Spin{i)) then E(M,P) has a left G-action and
‘defines an element of %G(T(p}). If G acts freely on P we can divide out by its
action , and it is easy to see that the quotient complex E(M,P)/G is just E(M,P/G}.

Atiyah, Bott and Shapirc speeify a module A over Cg for which E()\) represents
the Bott element in %{35) {see [19, p.151}, and if P i3 & prineipal Spin{8i)-bundle
they define u{p) « EG(T(}))) to be the element represented by E(AIX] i,P).

From now on we ©ix i, P and p and denote 7\ i by M. let q = p] with its
permutation action by I3 and iet Q be the associated Iy ~equivariant Spin(8ij)-bundle
as defined in Section 5. To prove 6.3 it suffices %o show that E(MZJ Q) and the
external tensor product E(M,P) ® 3 define the same element of %-5; {T{q}}. We can

" gescribe these complexes more simply: the first is b

P o« e ™)
Spi.'l.':m(&:l)‘i
end the second is

* sptacer CM ® 9

in each case I acts through permutations of both factors. Now it is shown in [19,
. 251 that the inner producis on W end M used in the proof of lemma 6.4 cen be
- chosen to be invariant under Spin{81), hence the inner product on E(M) ®J ysea in
the proof of that lemms is invariant under beth (Spin(Si})é and 23- , and sco is the
isomorphism S{E(M)®j) 2 B(M B Y. It follows that s{E(M,P} ®j) is isomorphie %o
E(m B ,Q@) as reguired.



§7. p-local H ring maps.

In this section we make some general observations sbout p-loeal H_ ring maps
and apply them to show that the Adams operstions are H, ring maps and that the Adaﬁs
summand of KU(p) iz an HZ ring spectrum. We also obtain a sufficient condition for
BP to be an H2 ring spectrum.

Throughout this section we let p be a fixed prime and let x ¢ ¢
by a p-cyeie. '

P be generated

Lemma 7.1. let F be a p-local spectrum and let Y Be any spectrum. The map

% _¥ %
F (D, Y (D
B { 5p YT anY)

is split monic, ang if ] is prime to p the mep

¥ % %
:FDY s F(TAD, ¥
o LY - ( 51 )

is split monic.

Froof. The subgroup zJ. fnof sz has index prime to p, and hence the composite

¥ * ¥
B (L, M) = (£ f5 ;M) S ¥ (5.
(Jp ) (3!):9, ) (zJp,M)

is an isomorphism for any p-loecal Ej pnmodule M. Thus

F'D, Y L Fo, . Y
i EJ I
is split monie by I.2.4. The result for B* follows sinee 8 factors as

. 1
Dj DHY e DXj I”Y o D}PY

and the result for o is similar.

As an application, we have
Proposition 7.2. let E and F be Hg ring spectra with power operaiions ?3- ané’pl; .
Suppose that ¥ is p-local. Let £:E + ¥ be a ring map sueh thet the equation
\l
(1) f*o?P=@Pof*
nolds on E4%y for a11 3 ¢Z and all spectra Y. Then f is an Hg ring map.

P
Proof. We shall show that Ty ofSD:! =K.S)j o £, for all ] by induction on j. This is

trivial for j = 1 sinc:efi:-l is the identity. OSuppose it is irue for 2ll k < j. If j

285

R . . ,, B
ig prime to p we have a f*(%y = (f*y)(f*@j ¥ ad o rjaéf*y " (f‘*y)( @-i“lf*y)'

. - %* ¥ ! _ 1 r
1¢ j has the form kp we have 8 f*@jy = f*@k@ﬁx and B @jf*x —@k@gf*x. . In

'éither cage the result follows from 7.1 and the inductive hypothesis.

Under the usual Lim® hypotheses, it suffices %o check equation (1) for spaces

..Of—f(ﬂ' Finite oW complexes. However, for actual calcualtions it is much easier to

deéil with the internal operation P, than with @)ﬁ OQur next result allows us to

" reduce to this case when we are dealing with spectra like KU or M.

proposition 7.3. let F be a p-local spectrum such that w,F is free over Z{p] in
even dimensions and zero in odd dimensions. Iet % be a space such that Hy(X;Z) is
free abelian in even dimensions and zero in odd dimensions. Suppose that X and F

o have finite type. Then the map

~ ok ¥ ‘
Yot Fox ¥ P o ¥ xaBh)

© {s monic.

Proof. First let Fo= HZ{P)' The Bocksteln on T'{ (D X Z } ois glven by II.%.5 and
it follows that E, = E_ In the Bocekstein speciral sequanee. Thus ff (D b4 ( p)) is a
d:Lrect sum of coples of Z P and Zp, so it suffices to show that the maps .

(1 ® A } @ Q and (1 @ A ) ®Z are monic. For the first we observe that 1 ® @

is a split Injeciion by a simpie transfer argueent. For the second we use 3.5 and
the universal coefficlent t.heorem. This completes the proof for F = Hz{p). For the
general case, we observe that @ .'_\. induces a monomorphism on E2 of the Atiyah~
Hirzebruch spectral sequence and that the spectral sequences for x'®) ang xAB*
ecollapse for dimensicnal reasons.

Qur first application is to the Adams operation

KU(P) > KU(P)

with kX prime to p. This is well-imown to be z ring map.

~in n Xk
Theorem 7.4. If ¥ is any spectrum and ¥ ¢ KUY then ¢k@3y = ¥ @;1 Ky'y). In
particular, wk iz an H, ring mep but not an Hf, ring map.

Proof. Let @y “Jn@ Wy ror v KPY. We must show apk?j '?'fp . The(? are
econsistent in the sense of‘ 1.2 and thus define another H2 structure on KU(p) (Whmh
agrees with the standard H, structure but has different zj -orientations). By 7.2 it
suffices to show ¥ @‘ ‘?w , &and by 1.3 it sufi‘lces to show this for finite com-
plexes. Since \p ig a ring map we clearly have 4' =1 @ *il , 8o by 7.3 1%
suffices tc show
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(2) WP x = Py

for all x ¢K*PY whenever X is a finite complex. If x is the Bott element b then
wxb = kb and P b = bP so (2) is satisfied in this case. Thus we may assume n =
Since ¢k is 8 stable map i% commutes with the transfer, and thus {2) will follow
from equation (4) of seetion 4 once we show that @k comnutes with 8P, It suffices
to show this for the universal case BU x Z, and since K(BU x Z) is torsion free it
suffices %o show that @k commutes with pa

of Section 4.

P’

Next we recall the Adams idempotents

E_:KU a € &
a

) * My p-1

defined in (5, Lecture 4]. These idempotents splii off pieces of KU(P) which we
shall denote by LO"“’Lp~2‘ Thus the idempetent E, factors into a projection map
and an inclusion map:

8
KU 2, L, —2 . xU

(p) (p)

with IgSg = 1. 1 we have XU

Since . z . Ea ar
p-i

satisfy the formulas Eqnl = 1,

(P) = LGV .aoVmez. The: E&

O 1f n#amed p-l

{3) " =
b2 otherwise
and
(4} Ea(xy) = Z (Ea'X)(Eana'y)'

In particular, the image of Ey is a subring of £*X and hence Ly has a unique struc~

ture for which sy is a ring map. On the other hand, (3} implies that the kernel of

By 1s not an ideal and hence there is ne ring structure on Ly for which r is a ring

map.

Proposition 7.5. LO nas a unique Hi ring structure for which 83 ig an Hﬁ ring map.

Proof. We must show that'@} takes the image of £y to itself, i.e., that the
equation

holds on Kan for every n ¢ Z and every spectrum Y.

But this is immediate from equetion (3}
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zef.ch be the Chern character and let X be a finite complex. We have

chwpg x) = oh(E;¥Px) for all ac zp“1 and all x ¢ KX by [5, p.B4-85) and [1,

1{vi)]. Hence wa& E ¢p by {5, lemma 4 of lecture 4}. As in the proof of 7.4
it follows that Eaep = SPEa and $hat Eaan = PnEax for all xe¢ K. Now leit ne¢d and
Then we have

'iét a be the class of n in Zp-l'
T - T = 0
EgP Eo(b™x) = EgP (WPE_ x) = Ey(bPoP % x)
. 1 = TL
= BPPE_ P E_x = bFURE_x
= P_(bPE_,x) = P Eqi{b"x)

for 81l x ¢ XX. A4s in the proof of 7.4 it follows that (5} holds on the space level
"wlthﬁ? replaced by @? Sinee both sides of (5) are stable in the sense of 1.2 and
1.3, 1t follows that (5) holds on the spectrum level with @2 replaced by'ﬁD The
rest of the proof is an induction on j just like that in the proof of 7.2. We glve
{he inductive step when j has the form kp:

#

= = D P
8 E{)@j oF = Bob ByEy = By P BEy
= By @k{EO@ﬂEOY) = (?kE{))pﬂ B,y by inductive nypothesis

@}lE;EGY 7

*
8 @j}aoy R

go that (5) holds in this case by 7.1. The remaining case is similar.

It would obviously be desirable to have an analog of 7.5 for BP. In this case
the Quillen idempotent e factors into a projection and an inelusion

o BP e M

Wip) (p)

" which are both ring meps. We could therefore attempt to factor the operations

'EE either through the inclusion (as in the proof of 7.5) or through the projection
{or both). The proof of 7.5 shows that the i? factor through sy if and only if the
foilowing equation holds for all finite complexes X and all xe Muclx,

;{{6) P ex = P ex.

Similarly, the @3 factor through ry if and only if the equation

L {7) eP x

ePoex = eP

hoids. In either éase the resulting structural maps on BP would be the composites

D.s E,
£} Dy BP MDJ.MU e My T BP,
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The point is that, while these maps 55 clearly satisfy the first and third
diagrams of Definition I.4.3, the diagram involving 8 is mueh harder to verify and
equations (6) and (7} give two sufficient conditions for it to commute. We conclude

this section by giving some weaker sufficient conditions.

Lemma 7.6. Eguation {6) or (7) holds in general if it does when x ig the Euler
class v ¢ MUCP™ of the Hopf bundle over CP”.

Proof. Suppose a?ﬂev = ePﬂv. Since ¢ is a ring map we have ¢ @Fev =g @%v by
7.3 {with ¥ = CP®). Now e’?ﬂe and si?ﬂ both satisfy tom Dieck's axioms P1, P2,
and P3, so Theorem 1l.2 of [31] impiies that they are equal, hence e:PTr £ =eP  for

211 spaces as required. The other case is similar.

Next we need some notation. ILet f{x} = ipllx} 3 MU*%%X%! where [pl{x) is the

e
power series defined at the end of Seetion 5. Let [pl'(x) e BP*[[x]] be vylplix)

and let £'{x) = ryf(x). Let u' « BP*Bw be ryu, so that u' is the BP-Euler class of -

a nentrivial complex irreducible representation of #. Landweber's Kinneth theorem
for MU¥(X x Bq) given in Section 5 implies

BP (X x Bw) = (BPYX)[[w')1/1p'](u")

Lemma 7.7. Equation (7) holds for all X if and only if equation
(8) TP ¢ [CPP] = ryp [CPP] mod £'(u')
nolds in BP'Bx for all n 2 O.

Proof. Assume that {8} holds. We shall show that ryP ev = r*P%v, where v is as
%

in 7.6, let M*X denote the even-dimensional part of MU(p)

X and iet P be the

composaite
* Pﬁ * * *
M X e M Byroz M X [{u]}/1p1{0) —= (M X){[ul}/f(u).

If M*X has no p-torsion then, since f{x) has consiaznt term p, u is not a zero-
divisor in M (X)[[ull/£(u). The element x of Corollary 5.6 has leading term

(p-l)!up‘l, hence y is also not a gero divisor. Thus 5.6 implies that P is additive.

for such X. It is also muitiplicative by 1.4(1ii). In particular we have a ring
homomorphism

PiM (pt) > M (pt)) [ [uil/flu).

Since the elements [CP™} generate M?(pt) @ Q as & ring and since My” (Br) is torsion
free, equation (&) implies

we have

289

TP ex = TP x mod £f(u')
*
7 all x € MET{ptl.
-'~Now tet ev ® | bivi. Since ¢ is an idempotent we have by = 1 and sb; = O for

_ i=1
i'2, Hence {9) gives

TgP b = 0 mod friu')

for all i z 2. MNow the ring homomorphism

P (CP°) = MT(CP® x Br) = M'{iv,ull/f(w)

ié contimous with respect to the usual filtraticns by 131, Theorem 5.1] and hence

o _ o i _
TyP v = TP 121 byv = 121 {r*Pnbi){r*Pﬂv) £ r*Pﬂv mod £1{u}.

Finally, we observe that the map

BP*(CPm x Bm) = BP*EIV‘,u‘]]/[p]’(u') - BP*[[v‘,u‘%]/u' ClBP*{iv',u']]/f'(u')

Tis ponic since u! and f£'(u') are relatively prime. We have shown that

f*(P“sv - Pﬁv) goes to zero in the second summand, €o we need only show that

it goes to zero in the first. But the map

| BP¥(CP® x Bn) » BR {(v',urll/u’ = BP [{v']]
can be identified with the restriction

. (1 x 0Pt (cP® x Br) + BR¥CE®

énd the resuli follows since

kl % 1)*r*(Pﬂev - Py = rel(ev)F - vP) = (rev)P - (pev)P = 0O,

We can now use Quillen's formula 5.5 to give a very expliecit equation which is

equivalent to (7).

o Corollary 7.8. Hquation (7} holds for all X if and only if the element

o

) (ca,b“n“l)r*[cpnf'i“‘1r*(a(u}“)(r*x}“‘§°‘E
<1

© of BP*Br is zero for each n not of the form pE-1. Here the (cq,b“n‘ll are certain

numerical coefficients defined in [6, Theorem 4.1 of part Il.
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Proof. This is immediate from 5.5, 7.7, and [6, Theoreme I.4.1 snd I1.15.2].

There 1s no obvious reason for the elements specified In 7.8 to be zero. If
they were zero, it would be evidence of a rather deep comnection between P11 and e.
The author's cpinion ig that there ig no such deep comneetion and that neither
equation (7) nor equation {6) holds in general.

: K*(Qx;zp) in terms of the K-theory Beckstein spectral sequence of X.

" calculation of Ky(Qs®;7

. operation analogous toc the sequence of coperations in ordinary homology. He con-

CHAPTER IX N

THE MOD p K~THEORY OF QX

by J. E. MeClure

In this chapter we use the theory of H_ ring spectra %o comstruet and analyse

;'Dyer~Lasho£ aperations in the complex K-theory of infinite loop spaces analogous to

- the usual Dyer-lashof operatlicns in ordinary homology. As an application we compute

N

Dyer-Lashof cperations in K-theory were first considered by Hodgkin, whose

p) [41] ied him to conjecture the existence of a single

structed such an operation, denoted by Q, for odd primes [42]; a similar construc-

© tion for p = 2 was given independently by Snaith, who later refined Hodgkin's

construection for odd primes and analyzed the properties of Q. The construetion of
Hedgkin end Snaith was based on the E° term of a certain spectral sequence (namely
the spectral sequence of 1.2.4) and therefore had indeterminacy, ané Hodgkin showsd
that in faet any useful operation in the mod p K-homology of infinite ioop spaces
must have indeterminecy. He also observed that the Dyer-Lashof method for calcu-
lating Hy(QX;Z )} by use of the Serre spectral sequence completely failed to
generalize to K-theory. The indeterminacy was a considerable inconvenience, but the
operation was still found to have applications, notably in the calculation of
K*{QHPD;Zz) given by Miller and Snaith [84]. This result, which was proved by using
the Eilenberg-Mcore spectral sequence starting from Hedgkin's caleulation of
K*(QSO;Z }, was the first indieation that K*{QX;ZP) might be tractable in the
presence of torsicn in X. The main technical difficuity in the proof was in
determining exactly how many times @ could be iterated on a given element, since Q
could be defined only on the ¥ernel of the Bockstein g. (Incidentally, a joint
paper of Spaith and the present author showed that the odd-priméry eonstruction of @
contained an error and that in thig case as well @ could only be defined on the
kernel of §.) The amswer for RP" was that Q could be iterated on an element exactly
as many times as the element survived in the Bockstein spectral sequence.
Unfortunately, the methods used in this case did not extend %o spaces more
complicated than RPV.

In view of these facts, it is rather surprising that there is in faet a theory
of primary Dyer-Lashof operations in X-theory for which practically every statement
about ordinary Dye?«Lashof operations, ineluding the caleulation of H*(QX;ZP), has a
precise analog. We shall remove the indeﬁerminacy of @ by constructing it as an
cperation from mod p2 to med p K~theory, and more generally from mod pr+1 to mod pf

Hetheory. It follows thaet Q can be iterated on any element precisely as often as
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the element survives in the Bockstein spectral sequence. There are also cperations.}
Zand R taking mod p¥ to mod pT*! K-theory in even and odd dimensions respectively-
A @ is the K-theory analog of the Pontrjagin p-th power {57, 28], while R has no
analog in ordinary homelogy). These will play a key role in determining the proper-

ties of the Q-operation and in our caleulation of K*(QX;ZP). They also give

indecomposable generators in the K-theory Bockstein spectral sequence for QX.1 The

operations Q,éi and R form a complete set of Dyer~lashof operations in the sense
that they exhaust the possibilities in a ceriain universal case; see Section 8.
key to defining primery operations in higher torsion is the machinery of stable
extended powers, which gives a very satisfactory replacement for the chainmleﬁel
machinery in ordinary homology; more precisely, it allows questions about the
operations to be reduced to a universal case in the same way that chain-level

arguments allow reduction to BE_. In applying this machinery to K-theory we make

P
essential use of the fact that perlodic K-theory is an H_ ring spectrum, as shown in
VII 87 and VIII §4, and the fact that the Adams operations are p-local H maps as

shown in VIII §7.

This chapter is largely seif-contained, and in particular it does not depend
logleally on the earlier work of Hedgkin, Spalth, Miller and the author. The
organization is as follows. In section 1 we give a very general definition of Dyer-
Lashof operations in E-homology for an H_ ring spectrum E. When E is HZP we recover
the ordinary Dyer-Lashof operations. In section 2 we use some of the properties
developed in sectlon 1 to give 2 new way of computing H*(QX;ZP) for connected X
without use of the Serre speetral sequence, the Kudo transgression theorem, or even
the equivalence QQEX = QX; instead the basic ingredients are the approximation
theorem and the transfer. In section 3 we give the properties of Q, @ and R and the
statement of our caleulation of K*{QX;ZP); up %o isomorphism the result depends only
on the K-theory Bockstein speciral seqguence of X, but for functoriality we need a
more precise deseription. Section 4 contains the ealeulation of K*{QX;ZP), which is
modeled on that in section 2. Sections 5 through & give the construction and
properties of Q, 2, and B. In section 5 we lay the groundwork by giving very
brecise descriptions of the groups K*{DPSH;Z ple Section 6 gives enough information
about @ to ecalculate K*{DPX;ZP), 8 result needed in section 4. The argument differs
from that in [77] in three ways:

more preclse result, and it applies to the case p = 2.

it is shorter (but less elementary), it gives a

Sections 7 and 8 complete

"It was asserted in the original verslon of this work ([76, Theorem 5]} that certain
composites of Q and R gave indecomposable generators in K (QX;Z.). Doug Ravenel has
gsince pointed out to the author that this is Incorreect: his arpument is given in
Bemark (ii) following Theorem 3.6 below. The corrected versions of [76, Theorems 5
and 6] are also given in Sectlon 3. (The mistake in the original version was in the
proof of lemma 4.7 for M = IM,, where it was asserted that the r > 1 and r = 1 cases
are simllar. They are not.}

The.
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thé‘construction of Q,% , and K. In section 9 we prove a purely algebraie fact
néeded in section 4; this faet is consldersbly more difficult than its analog in
“homology because of the nonadditivity of the operations.

I would like to thenk Viec Spaith for introducing me to this subjeect and for the
ﬁany ingights I have gotten from his book and his papers with Haynes Miller., I
would alse like to thank Doug Ravenel for pointing out the mistake mentioned above.
1 owe Gaunce Lewis many commutative diagrams, as well as the first version of
“pefinition 1.7. Finally, I would like to thank Peter May for encouragement and for
:-ﬁis careful reading of the manusecript.

‘1, (@eneralized Fomelogy Operations

let E be a fixed E, ring spectrum. In thls section we shall construet
¥hen E

these are {up tc reindexing) the ordinary Dyer-Lashof operations defined by

generalized Dyer-Lashof operations in the E-homology of H, ring spectra X.
 is Hi,
- Steirberger in chapter III, and for E = S they are Bruner's homotopy cperations.
:3When E iz the spectirum K representing integral K-theory we obtain the operations
: referred to in the iniroduction which will be studied in detail in sections 3-9.

For simplicity, we shall begin by defining operations In E.X, although
“ultimately {for the application to K-theory) we must intrcduce torsion coefficients.
. For each n ¢2 the cperations defined on Enx will be indexed by
f;E*(SpSn)’ i.e., for each e eEm(DpSn) we shall define a natural operation

Qe:EnX + EmX

. in the E-homology of H ring spectra called the internal Dyer-Lachof operation

¥ix a prime p.

- determined by e. As usual, Q. will be the composite of the structural mep

(gp)* : EmDpx + B X
ﬁ'with an exiernal operation

Q @ EX > EDX

which is defined for arbitrary spectra X and is natural for arbitrary maps X + Y.

Throughout this chapter we shall use the same symbol for corresponding internal and
. external Lyer-Lashof operations, with the context indicating which is intended. In
} this gection we shall be concerned only with the external operations, and thus X and

© ¥ will always denote arbitrary spectra.

In order to motivate the definition of the external operation Q, we give it in
stages. Fix m,n ¢Z and e eEmDpSn. Let u ¢EyS denote the unit element. Ve deflne
Qe first on the element M eEnSn by Qe(znu} = e. If x ¢E/X happens to be
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spherical, then there is a mep g:8% + X with gy{z™u) = x, and naturality requires. ':'

us to define Qux = (ng)*e. Now any element x ¢ E X is represented by a map

£:8° 5 EAX, and 1o compleie the definition of Qg it suffices to give an analog for .
general x of the homomerphism (D?g)* which exists when x is spherieal. It is useful .

0 do this in a scomewhat more general contexit, so let Y be any spectrum and let
£:Y » Ea X be any map. First we define fyy to be the composite

(1A£), (a1}

*
EY = 1y (EAY) ———> 1, (EAEAX) ——mermg, (EAX) =

*X"

where ¢ is the product on E. Note that fyiPu = x if £:5% » Ea X represents x.

Next define Bﬂi‘ for any n C© Zj to be the composite

D f
DY —*——"——*DT{{EAX) —‘S—*DKE AD X i‘“—l—»ﬁwﬂx,

where £ comes from the H_ structure of E. Combining these definitions we obtain a
map

{D"f)**:E*[}EY *—PE*DﬁX .

Definition 1.1. If x EBX is represented by £:8% + EA X and e is an element of
EmDpSn then

Qx = (T f)yyle) <E D X.

Of course, this agrees with the definition glven earlier when x is spherieal,
and in particular when E = S we recover the external version of Bruner's operation.
Next let ¥ = HZ?. The standard external operation (as defined by Sieinberger} is
denoted e ® xP, where e; is the generator of Hi{tp;zp(n)) defined in [68,section 1]
(recall that Zp(n) is Z_ with ¥ acting trivially if n is even and via the. sign

P P
representation if n is odd). New 1t is easy to aee that the map

A 1,
B (BT )} =y o (D 8752 )

glven by e, k=2, & (PP 4s an igsomorphism, and we have
i i
Proposition 1.2. If e = ¢le;) then Qx = &; ® ¥P for all x.

The proof of 1.2 will be given later in this sectlon.

It is possible to put Definition 1.1 in a more caitegorical conmtext. Let CE be
the category in which cbjects are spectira and the morphisms from X to ¥ are the
stable maps from ¥ to EaY. The composite in CE of f1X » EAY and g:¥ + EAZ is
the following composite of stable maps
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¥ Lomavy lEpanaz $0hEaz

‘The construction '.ﬁ" on morphisms, combined with D on objects, gives a functor
'.'Tj'“;c;’E +(.‘E, and we can also define & smash product A on E by letting £ AL, be

“the composite

flAf2

Kty FoBmady ARAY, < EAR AR MK — kAT AT,

!Finally, E homology is a funetor on é’E which takes f to fy4, and the following
lemma shows that both Q, and the external product in E-homology are natural
+ransformationsa.

Lemma :.3. (1) (ﬁpf)**Qey = Q 8,y for any yeEyY and any f:Y » EAX.
(1) (£0,) ® (F,) = (£ A8,y @v,).

As one would expeci, the maps 1,«,8 and § of I8l also give natural
transformations.

Lemma 1.4. (1) 14(D flyy = (D )y, 3 7o,
1) a D f ADfhy, = (B 0
(183} 8, (D D Flyy = (D o Flyyby -

(1) 6,00 {f] Afy))yy = (D F

We shall need two further transformetions, namely the "diagomal” A:XD X + D IX
and the transfer r:DpX > D"X.. The first of these was constructed in II§3. The
transfer was defined in II§1 for certain special cases, and will be defined in IV§3
of the sequel whenever « ¢ o- ‘

Lemma 1.5, (1) (D £f) 0, = 8,010 £ .

(1) T*(ﬁpf}** = (D £ty -

The proofs of 1.3, 1.4 and 1.5 are routine diagram chases (using [Equi.,VI.3.9]
for 1.4(ii} and (i1i) and [Equi.,IV.§3] for 1.5(ii)}.

Next we would like to define Dyer-Lashof operations in E-homology with torsion
coefficients. We shall always sbbreviate Ey(X;Z ..} by Eg(X;r). If M, denotes the
Moore spectrum S“lu r 0 and E. denotes EAZM, }‘ghen by definitlon we have En(X;r) =

P

1 (E,AaX}. Thus if E, is an H, ring spectrum {for example, if E ig ordinary
integral homology) we can apply Definition 1.1 directly to E.. However, it is a
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nmelancholy fact that in general E, is not an H  ring spectrum, as shown by the
following, which will be proved at the end of section 7.

Proposition 1.6. Kr is not an B ring apectrum for any r.

Thus we must generalize 1.1.
fyx to be the compesite

{1af),
E (Y;r} = n*(EI_/\Y} > (E AEAX) —*n*(Er’\X) = E {X;r). ‘

Next observe that the Spanier-Whitehead dual of IM, is M,, so that there is a
natural isomorphism

E (X;r) = [27M,,EAX].

In particular, any x e £,(X;r) is represented by a map f:EnMr + EAX and there
results a homomorphism

(5pf)**:E*{Dp£nMr;s) > By(D X;6)

for any s > 1. Note that f**zx’ur = ¥, vhere u, 1s the composite

” u Al
Mr # GA MI_ —af AMr. We shall call U, the fundamental elass of M‘r

Definitiop 1.7. let e eEm{Dp{:nMr;s). Then
QB (Kr) - By (D5 8)

is defined by Qx = (Mﬁpf}**(e), where f‘anr + EaX is a map representing %.

Lemmas 1.3, 1.4, and 1.5 remain valid in this generality.

When E is integral homology and r = & = 1 Definition 1.7 provides ancther way
of constructing ordinary Dyer-lashof operations, which are of course the same as
those given by Definition 1.1. However, even in this case 1.7 has certain technical
advantages; for example, it gives the relation between the Bockstein and the Dyer-
Lashof operations, snd by allowing r and s to be greater than 1 one obtaing the

Pontryagin p-~th powers.

We conclude with the proof of 1.2.

We write E for HZP. The result holds by

definition when x = tMue Ensn,so it suffices to show that

(D f) yle; ®FF) = &) ® (37

for all £:Y + EAX. We shall do this by a direct comparison with the mod p chain
ievel. If Ay is any chain complex over Zp we write DPA* for W®E (A*)® IJ’ where W
is a fixed resolution of Zp by free Zp[zp]—modules. We let Cy defote the mod P

First of &l11, if £:¥ » EAX is any map we define -

og7

D Cy = CyD

céiluléf chains functor on CW-spectra, and we have a natural e:luivalence p o
l in dimension zero then

‘by 1.2.1- p
tnere is a natural equivalence between E0X and the chain-homotopy classes of degree

If I'y Genotes the trivial chain complex with Z

gero maps from Cy4X to ry. In particular, we obtain chain maps 6:C4E » Iy and

e’:DPC*E + Iy representing the identity E » E and the structural map DPE + B. If ¢

“denotes the composite DPI‘* = W/EP + I'y (in which the second map is the augmentation)}
‘then € © Dpe is a chain map which, like 6', represents an element of EO(DPE)
axtending the product map EP} o E. But the proof of I.3.6 shows that there is oniy

“one such element, hence we have we have ¢ o Dpe = §'. Next, observe that fyy is

equal to the composite
E,Y —>E (EAX) —»E,X,
in 20

where the second map is the slant product with the identity class

by the composite

E. Hence fyy

is represented on the chain level
N0, Y —=C (EAX) =~ CLE@CX 28 Lr ®0.x = 0,
A 3 * - * * * * [ 2k

< Since h is a chain map we have

#

(D piyle; @57 = ey ® 1P = e @ (1 7,

go 1t suffices to show {Bpf)** = (Dph}*. Now (Epf)** is equal %o the composite

6*
EyD)Y —#E, (D (EAX)) —> E(D EADX) —»EDX ,

*7p

- where the last map is the slant product with the structural map in EODPE. Hence

: ("ﬁpf)** is represented on the chaln level by the composite H around the outgide of

© the following disgram

d
DGyl =D Cy(EA X} = D (C)E @ C,l) ——>D 0B D C,X

O

po(r, x C.X)
D ¥ * a
e ® 1
D Cyk = Iy @D Oyl «==m DTy @ D CyX

© Here d is the evident dlagonal transformation and the diagram clearly commuies.

- Inspeetion of the piece marked @ shows that H = Dph as required.
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2. The Homology of CX A:CA + HyOX

g i we shall show
Our main aim in this chapter is the computation of X,{CX;1). In this section :
we illustraie the basic method in a simpler and more familiar siiuation, namely the Theorem 2.i. i is an isomorphism.
Theorem <=
computation of the ordinary mod p homology of CX. (All homology in this section is :

to be taken with mod p coefficients for an odd prime p; the p = 2 case is similar,). We shall derive this theorem from an analogous fact about extended powers. Iet

This result is of course well-known, but in fact our method gives some additional be any spectrum and let A be a basis for HyY. OCA is defined as before, and we
ke 1t & filtered ring by giving O'x filtration p*'X). Let DA = FOA/Fy G4 for

%5 1; this has a standerd basis consisting of the standard basls elements in

generality, since both the consiruction CX and our computation of HyCX generalize .o

the situation where X is a (unital) spectrum, while the usual method of computation.
does not. .

F}'&:A' - F_1CA. There is an additive map

We begin by listing the relevant properties of this specirum-level construetién
{which is due to Steinberger}; & compleie treatment will be given in [Equi., chapte:{

NciDgh > By

VIIl. By a unital spectrum we simply mean a spectrum X with an assigned mep S » X defined as follows. If all Dyer-Lashof operations and products are interpreted

called the unit. For any unitel spectrum X one can construct sn E, ring spectrum externally then a standsrd basis elemeni of represents an element of

)Y A e A LDy SY) with P14 cee + 98 = k; here (0¥ denotes the j-th
iterate of D_. Applying the natural meps ay and By gives an element H*DkY which by

P
definition is the value of Ay, for the original basis element. We %hen have

CX, and this construction is funetorial for unit-preserving maps. In particular, % o
might be 5%¢* for some based space Y, and there is then an equivalence CX = y™(Cy)*
relating the space-level and spectrum-level constructions. There is a natural
filtration FkCX of CX and natural eguivalences FJ_CX = X and

;fheorem 2.2. O is an isomorphism for all k > 1.
FCX/Fy 10X = D (X/8). ———
Assuming 2.2 for the moment, we give the proof of 2.1. ILet X be a unital
spectrum and let A s {n} be & basis for HX. Let Y = X/3. Then A projects %o a
basis for HeY which we also denote by A. For each X > 1 the map AIFkCA Lifts to a

Finally, there are natural maps Fi CEA FkCX > Fj +kCX and Dj P CX + Fj xOX for which the_j.'__

following disgrams commute.

CX ALK ——mmmmmmpr GX D, G ———— 0% map A(k):FkGA + HyF CX and the following dlagram commubes.
r 1 j r '
T Q wrewne F_ o CA »F. CA DA 0
Fj CXAFkCX B Fj +}s:CX Dj FKCX ———————er kC){ k-1 k X
« a /5 8 s A(35-—1) A{k} N
SJ (X/8) ADk(X/S) —ij +k(X/ ) Dka( /8) -——“'Djk(X/ ) k
Now let X be a unital spectrum and assume the element n eHOX induced by the HF k_lc}{ _'"""'H*FKCK i H*i)kY

unit map is nonsero. We can then choose a set A € HyX such that A w {n} is a basis :
for HeX. let CA be the free commutative algebra genersted by the set Since Ay is an isomorphism, the map y is onto and hence the bottom row is short
exact. It pmow follows by induction and the five lemma that ltk) is an igomorphism

{Q%x | x ¢4, I is admissible and e(I) + b(I) > [x]} for all k, and 2.1 follows by passage to colimite.

(here |x| denotes the degree of x; see [28, 1.2] for the definitions of admiss- We begin the proof of 2.2 with & special case
ibility, e{I) and b(I)}. The elements of this set, which will be called the

standard indecomposables for CA, are 0 be regarded simply as indeterminates since
the QI do not set on HyX. The basis for CA consisting of products of standard
indecomposables will be calied the standard basis for CA. Using the inclusion

X » OX and the fact thet CX is an E_ ring spectirum we obtain a ring map

Lemma 2.3. ;\p is an isomorphism for all Y.

The proof of the lemma is a standard chain-level caleulation which will not be

o given here (see [68, section 1]). It is interesting to note, however, that one can




300 301 .

prove 2.3 without any reference to the chain-level using the methods of section 6 . @a@ental classes, so that B = B, w B,. There is an evident wap CB, ® (B, » CB
b . : :
elow d passing to ‘the associated graded gives a map

Next we use the machinery of seetion 1 to reduce to the case where Y is a wedge

k
of spheres. For each x € A choose & map I‘ .Si | + HAY representing x. Let M ). (E)iBl ® Dk iBQ) e DkB'
= V5%l and let £:12 » HaY be the wedge of the foo Then fye:HyZ » BY is an ) 1=0
Récall the equivalence
isomorphism. We elaim that 2.2 will hold for ¥ if it holds for Z (where HyZ is _ : :
given the basis B consisting of the fundamental classes of the Slxl}. To see thig, \/ {D A D = Bk(vaSn) = DXZ
congider the f i i : i=0
¢ following diagram onstructed in IIS1.
- D, (fyy) A
e et
X ¥ “lemma 2.5. o is an isomorphism, and the diagram
A A ¢
k B k )_:O(Diﬁl ® Dk_iBz) e DkB
(Dkf D x =
H,D Z ———— H D ¥
*
Dy %k DOy @ L) M
. : s k
Th f induced by f which clearly takes B to A. Thus f 8
e map Dy (fy,} is uced by fyy, ¥ us Dy (fyy) is an § (1D Sm®H* . s KD, 2
isomorphism. The diagram commutes by 1.3 and 1.4(ii) and {iii). The claim now i=0 -1

follows from : gomutes .

— b "Preof. < is an iscmorphism since it takes the standard basis on the left %o that on
Lemma 2.4. Let h:W » HA X be any mep. If by, is an isomorphism, so is (Dhlyy for -

‘the right. The commutativity of the diagram is immediate from the definitions.
all k.

Proof. The proof is by induction on k. First suppose that X = jp. Since the case : By Lemmz 2.5 we see that 2.2 will hold for Z once we have shown the following.
k= p of 2.4 follows from 2.3 we may sssume j > 1. Let ¢ = zj ! 2 and consider the- Tet x eHnSn be the fundamenizl class.
foliowing disgram :

Ty By
..___.}_L,.
HyD W o B D e B DD W B, D W

pemma 2.6, ,\k:Dk{x} > H*Dksn is an isomorphism for all k > 1 and all

(5kh) % (ﬁnh)** (5.5 h)** (Ekh)** Proof . By induction on k. First assume that k = jp for some j > 1. For the proof
. P “in this case we use the following diagram, which will be denoted by (¥}.
HDXMHDX*————*HDDX%H '
'k 1D KDyt
‘ ¥,
< J .
The diagram commutes by 1.4(i) and (i1i) and 1.5(i1). The map g4 is an isomorphism.. DL = D (y, 2}
The map (D h)yx is an isomorphism by the case k = p, hence so is (.,.ﬁ.,ﬁm h)** by
P D.(Dg.), D lgyly
inductive hypothesis. Qur assumption on k implies that vy, is monie and Bs 5 p is JoPTE
Y.
onto, hence (th)** ig monic by inspection of the first square and onto by Dj J - k{x}
inspection of the third. The proof is the same when k is prime to p, except that we .
*} =5 R A A A A
let 1« be Xk“'l b )::l- J j j Tk X
Bix
D0 D 8 LE > 1,D, 5
Next we reduce to the case of a single sphere. To simplify the notation we : 4 F

asgume that 7 is a wedge of two spheres sy Sn; the argument is the same in the ! /Dj ngi) % (Ekgk ]
general case. Let B, and B, be the bases for HyS® and HyS® consisting of the B,

1,00 (5" 8 ipt 5D (v 5.
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Here y,2¢ Hn{snv &) are the fupdamental classes of the first and second summands.
The set a.CH*Dpsr is {8%°Q%x|28~¢ > n}. (The reader is warned as this peint to
digtinguish carefully between the Bockstein 8 and the natural map 8 of section I.1.
This is made easier by the fact that we never use the latter map per se, only the
homomorphism 84 induced by i%.)
if n is odd and is the union of this set with {yizp"1§l <1 < p-1} when n is even.
Lemma 2.3 implies that (Land QU are bases, end hence the maps J\j are isomorphisms
by inductive hypothesis. The maps gi:Snv % 5 8% are defined for i = 0,1 and 2 by
gg ® 1v1l, gy = 1v ¥ and gy » ¥v1, where 1 and * denote the identity map and the

trivial map of 5. To complete the construction of the diagram we require

Lempa 2.7. There exist maps \f and er , independent of i, such that diagram (¥)
commutes for 1 = 0,1 and 2.

The proof of 2.7 is given at the end of this seetion; ail that is involved is
tc "wimplify" expressions in Dj a.' and Dja, using the Adem relations and the Cartan

formula in a sufficiently systematic way.

Now consider the inner square of diagram (¥). By assumption on k we see that
o 1, is an isomorphism, hence Ay is onto. Iet B:Dk{x} > i)k{x} be the
Clearly iy will be monic if & is. In fact we shall
We claim first of all that & takes the subspace

£ €D {x} generated by the decomposable standard basis elements isomorphically into

p¥ 1
composite Yj Q Aj
show that ¢ is an isomorphisn.

o Ty © ?Lk.

itself. To see this we use the oubter square of diagram {¥). Let
. . =3
g! .Dk{y,z} ks Dk{y,z} be the composite «(j' [+ )3 0Ty © )‘k’ let OF C Dk{y,z} te

k-1
the image of
i=1
kernel of the map

D (g )y ® D lgy)y : Bly,a} — D {x} © D {x)

and hence 0 takes p' into itself. Bubt Dlgyly( D'} = & and

D (gyly o @' = 8 o D (g,),, hence 6 takes & into itself and we have
» O
4
Since both & and &' have finite type 6:8 »# will be an isomorphism if

g': &1+ ' is monie. Bubt Ay is monic on @' by 2.5 and the inductive hypothesis,

hence §' is also monie on @' since A, o @' = 5 pk

the commutative

diasgram
D {g.)
1 *
& k=0

Bl

D (g~}
gt kFo 0.

x o 1,) 0 Ak'

The set Q' € HeD (v 8h) is (8°0%,850% |28-¢ 2 n}

) (Di{y} ® Dk—~i{z}) under the map @ of Lemma 2.5. Then A is the
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(1) 4

H

: How‘let J = D {x}/& . This has the basis {sz[I admissible, p
:'e(II) + b{I) > h}. We wish to show thai the map 6: J+3 induces by 6 is an

gomorphism. The basic idea is to use the homology suspension, or rather its
‘external analeg which is the map A*Z:HiDPSn + Hy +19psn+1, to detect elements of J .
1et P Hn+18n+1 be the fundamental class. We define Tr:J » Dk{'SE} by I‘{le) =
¥, where we interpret 0% as zero if e{I) < n+l and as a p~th power in the usual
way if e(I) = n+: and b{I) = 0. The key fact is the following, which will be proved

‘gt the end of this section.

lemma 2.8. The diagram

commutes.

We also need the fact that the evident action of the Bockstein on <9 commutes

with 9; this will be clear from the proof of 2Z.7.

Now lei Jn be the subspace of J sparmed by the set {QIXII admissible,

pul} = ¥, e{I) + b{I} < n+m}, We shall show first that ® is monie on ..01. Let j;
e the subspade of Jl spanned by the set {QIin admissible, pR'(I) =%, ell) =
(1) = 0} Then 4, = 4] ®8J]. From the definition of T we see that &)
the kernel of T, that I' is monic cng}t and that I'(j]'_) =7 )A R . Let whea
nonzero element ofji . We claim that ow lies in 1, 80 that it can be written

n+l,

is

unigquely in the form w' + gw" with w’,w“Ji, and furthermore we c¢laim that w' # O.
To see this note that I'w is a nonzero decomposable, hence oI'w is also a nonzerc
decomposable, hence Tow = oI'w is a nonzero element of r(Jf)n & = I‘(ﬁi)- Thus there
is a nonzero element w' of 3; with rv}' = row, so that @w ~ w' is in ker T = 3-3;'1 as
required. Now let Wy,%y be any elements of -gi with Ewl = w]i + WEI!. and

Suppose that v = wy + fw, iz the kXernel of ©¢. Then

= 1 1 = ! = 3
0 and wi o, 0. But w) 0 implies

“é'wz =Wy + pwY.
0 =78y = W o+ gy
wy = 0, hence

+ fw!, hence wi

w' = 0. Thus w! =

T 3 0, whence w, = O and v = 0, showing that B is

monic on Jl‘

Next we claim that © is monic on J for allm > 1. Let weJ  with ow = O.
let o = D (¥}/@ end let T be the composite «f » DK{E} » v. Then I'w is in the
subspace f]:__l generated by QIE with I admissible, oI} = % and

e(I) + b{I) = (n+l).< m-1. @ Tw=T 8w =
m~1 We see That Tw = 0. Now the kernel of T is precisely jl’ and we

Since ¢ =znd ginee {by induction on m) o
is moniec on

have shown already that b is momic on -11, hence w = 0 ag required. Thus §: 4.
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is monic, and since J has finite type ¥ is an isomorphism. This completes the .
proof of 2.6 for the case k = jp.

Now suppose k is prime to p and consider the following diagram

Y!

b {y,2} ® D _,{y,2} » D, {y,z}
Dylg;}x ® Dy yleg)y Dyleg)y
Dy {x} ® Dy {x} X = D, {x}
F MO Ay M ® A ‘l " "
B (s"A D Rl HyD, S
\ (g A Dy o s ( Bye; Iy ¥
Py Sy an_ (v ) R SL. » 1,0, (S v)

Here vy and y' are cbiained from the products in C{x} and C{y,z} by passage to the
assoclated graded. The diagrem clearly commutes. The snalysis of thls diagram
proceeds as before, except that in this case the map Dk{go)* takes the kernel of
Dy lgy ) D Dy lgyly onto all of Dy {x},s0 that we can conclude at once that Ay 18 an

isomorphism withoui having to consider indecomposables.

This completes the proof of 2.6, and thereby of 2.2, except that we must st111.
verify 2.7 and 2.8. For these we need certain properties of the external Q. First

of all these operaticns are additive, and Q% 1*(X(P)) if 28 = |xl.
Cartan formula is a
I ooy

i=0

5, x®y) =

The exiernal Adem relations are cbtained by prefixing 3pp* to both sides of the
stendard Adem relations. ALl of these relations can be cbtained directly from the
definitions of section 1, without any use of internal operations {compare sections
and & below).

internal operations by means of the equivalence

v

k»C

They can also be derived from the corresponding properties for

BX

0
G(X»{S ) = "

proved in iEqui., VII§5}.

Proof of 2.7. Every standard indecomposable in CA has the form Ql(s0%x).
formally simplify such an expression by means of the Adem relations into a sum of

adiissible sequences achting on x (for definiteness we assuwe that at each step the -

The externeal.

Ve can
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'déﬁ'reiations are applied at a position in the sequence as far to the right as
dgible). The result is an element of C{x}, where we agree to interpret all
Séquenees with excess less than |x| as sero, and we extend multipleatively to gei a
map F cQ + FXC{x}. The map Y; is obtained by passage to quotients. The map yj

obtalned in the same way except thait we use the Cartan formula %o simplify

is

expressions of the form QI(y zp"l) with 0 < i < p. The inner snd cuter sguares of
diﬁgram (*) commute as a consequence of the external Cartan formula and Adem

When 1 is
21 o @ goes to Qn/zx and so it is necessary to check that

relations -and the upper trapezoid clearly commutes when 1 is 1 or 2.
zero the element yi
the resuit of simpilifying QIQn/Zx with the Adem relationsg is the same as u91ng the
Cartan formula on QIxP the resuli in each case is gzero unless all entries of I are

ilvigible by p, in which ocase i% is (QL/PyyP,

: Finally, we glve the proof of 2.8. We need iwe facts about A*'H*{XDkX) >
H*(akzX), namely that Ay2Q%x = Q%gx Af X = p and that A*z(al ilx{x @ y) is zero
for 0 < 1 < X. The first of these, which is the external version of the siability
_'QS, was proved in II.5.6. For the second, which is the external analog of the
faot that the homology suspension annihilates decomposables, we use the third
agram of IT.3.1 with X = 8%, noting that the diagonal a:s! » slagl is
nullhomotopic. Now 2.8 is immediate from the commutetivity of the following

disgram.
: Y
D, ] > D (Y
3 jKfix}
rl! r!
¥
D;i — S— ) {x}
A .
i l A Ax A
B
R § <.,
H,D, D& HyD, S"
/*)3 A*E
\ 1 B.ox v
DD g P +1
7. ¥ i%p HIDkSn

Here 13 ig the map constructed in the proof of 2.7 and I'' is the composite
0, (x} —~§ L 53
QO (8%0%%).

?mulas given above.

We define I'" to take decomposables to zero and Ql(ﬁ %) 1o
Commutatxvity of the left and right trapezcids follow from the two

0 Commutativity of the upper trapezoid is cbvious except on
elements of the form QM{p%Q%x) with e(I) = m+l + 28(p-1) - ¢ and B{I) = 0, and it
_pllows in this case from a simple calculation.
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3. Dyer-lashof Operations in K-Theory

p is odd then the following also holds, where TiXaY + ¥ aX switches the factors.
. . ; _ X

In this section we give our main results shout K-theory Dyer-Lashof operations, (vil)  I(x®@y) = {-1) 711 iy ® x

We begin by fixing notations. We shall work in the gtable category, so that X wiltl. -

= 2 there are itwo external products for each r» gsabisfyi i ii
always denote a spectrum. Homology operations are to be interpreted as internal fr P o c gatisfying (i), (ii), (v) and

: lyi). If these are denoted b and @ ' the relatd
rather than external. We use Z,-graded K-theory, with {x| denoting the mod 2 degres: v v e ® ahion

of x. ‘There are evident natural maps (viii) @y =x@'y+ Pea] B ® By
‘holds. Relations (iii) and (iv) hold when either mod 2¥ product is paired with
qinher mod or-1 product., If r > 2 then (vii) holds for both ® and ® ', while

“{f r = 1 then the following holds.

LI Ku(){;r} -——*KG(X;r-l) it r > 2

(%4
—

8 . .
Pyt KG(X;r) —-'F'KQ(X;I"PS) if s

Bt KG(X;I‘) -——’-Ku+1(X;r)

) vit)' T,x@¥) =¥®@'x =y ®@x + By ® Bx.

I Ka(X;r) MKMI(EX;r} .
We shall actually give a canonical choice of mod 2¥ multiplications in Remark
{Recall that IX means s'A ¥ in this chapter, not Xxast as in chapters I-VII.}

By will usually be.written simply &8 8. We write ¥ for the s-th iterate of x. :
It will often be convenient to denote the identity map. either by uo or pg; We write

1 for the reduction mep ]{a(x;Z} * Ka(X;r). Our firet two results give some useful

__.3_'_4(iv) below. When X is a ring spectrum we obtain an intermal product denoted xy.
:wg write ne KO(X;r) for the unit in this case, reserving the letter u for the unit

Qur next result gives the properties of our first operation, which is denoied

elementary facts about mod pr K-theory; the proofs may be found in [13] (except for .
¥ @+ In order to relate Q to the K-homology suspension we must restrict to the

3.2(iii), which is Lemma 6.4 of [63], and 3.2(iv), which will be proved in section

" ‘gpace level, and we fix notations for dealing with this case. If Y is any space we

L, w  + e o0,
write K (Y;r) for K, (2 Y ;r) end, 1f ¥ is based, we write KP(Y;I‘) for K {z ¥;r).
The homology suspension ¢ is th sit
Proposition 3.1. {i) Ky(¥;r} is a Z p-module. & P e composite

P

o T o
. 8 8 . p) e P} e .
(31) If s > 1 then Br*sp* = B KG(QY,Z‘} Ka+l{m.':{,r} Kq+1(Y,r) c Ku+1(Y;r).

(111} Py and Pt are multiplication by p.
{lv) 8.8, = 0.

Proposition 3.2. ¥or each r > 1 there is an external product

Ka(}{;r) @ Ka,(Y;r) * KMG‘(XA Y;r), ‘ op?ration
' ' QK (K1) » K (X;r-1)
dencted by x ® y, which has the following properties.

wi{h the following properiies, where K B
(1) ® is natural, bilinear and associative. g prow ’ Y GG
- - (i) Q is natural for H_ maps of X.
{31} If u Kgb is the unit then I®Tu=1u@®X = X :
w - - i1} Qn = O.
(1ii) s(x®y) =@y apd 1 (x@Y) = v xB 7w Y, :
(i4i) Qmx = »Qx if v > 3.

(v) Bx®Y¥) =B XY+ (-»*lee ByYe

(vi} (x®y) =Ix@y = (ml)%xlx@b Y.
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xP if x| = 0Oand r = 1
pex - (pPH - 1)xP if |x| =Oand T > 2
(ivl Qpygx =
0 if ixl=landr=1
Pl if |2 = 1 and r > 2
. -1 :
QB,x - pr (P B x) if ixj =0
v 8, ,&x =
{nﬁrx)p + pas x if |x| = 1.
Pl p o dpd } _
oy -al ] 5(F ) ¥ 1f p is odd end x| = |y| = 0
i=1
(vi)  Qlx+ y) =<$Qx + Qr - =lxy) + 2r"2{wﬁrx)(ﬁﬁry) if p=2and |x| =iyl =0
Qx + Qy if |x| = |y| = 1.
Qo) = kx - 2 00 (0P 32 k7, Jx] = o
{vii} Let |x| E |y| = 0. Then
Qren(y®) + (xP)eQy + p(Qx)(Qy) if p is odd
= 2 2 12
Qxy) = § Qeenly®) + nle®) -Gy + 20QeHQy) + 25 %0 (28 x)ulys y)

+ 22r“4tqarx)(qsry) if p = 2.

Let jx| =1, |y| = 0. Then

Qea(y®) + p(Qx)(Qy) if p 1s odd
Qixy) = 4
| Qxely®) + 20@00 (@) + 2% 4 0@,y 15 p = 2
iet |x| = |yl = 1. Then
r
(@) (@) if p is odd
Qtxy) =9 @ey) + 2" Palas mlyey) + 224 ns 0P (@8 y)
* 22r'4(erxJ(usry)2 if p =2.
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' if Y is an H_ space and x eﬁa(ﬂY;r) then Qx e?ﬁ(ﬂY;r—l) and

0

Qox if x|

oQx =

(nox)® + pQox  if x| = 1.

ix) If k is prime to p then y<0x = Qy¥x, where y¥ is the k-th Adams operation.

(x) If p=2and [x|] =1 then

QB2 ifr=1
2 .
x =
2" 2,00 if 1> 2.
’ X r-1_.,2 ) . ) 2
iTn particular (w “x) eKO{X;l) ig gero if r > 3 and is equal to ("B2x)

grr o= 2.

“Remarks 3.4. (i) There are no analogs for the Adem relations.

(11} We shall write Q%:K (X;r} + X (X;r-s) for the s-th iterate of Q when
‘> g8 (and similarly for the cperations R and & to be introduced later).

: (1ii1) If z eKy(X;1) has gx = O then x Lifts to ¥y ¢Ky(X;2}. Thus one can
'3define & secondary operation Q on the kernel of § by o = Qv. The element y is
well-defined modulc the image of py and thus 3.3(iv} shows that Qr is well-defined
“modulo p-th powers if |x| = 0 and has no indeterminacy if |x| = 1. This is
“egsentially the operation defined by Hodgkin and Snaith {42,991 (although their

-¢onstruetion is incorrect when p is odd, as shown in [771).

(iv) When p = 2, parts (vi) and (vii) are corrected versions of the
Note that 2°7™% = 0 mod 2°") unless r = 2. The

formula for G{xy) with [x| = |y} = 1 end p = 2 implicitly sssumes that the mod 27

ecorresponding formulas in [76].

Tmyltiplications for r > 2 have been suitably chosen, since the evaluation of

:Q(xy + 2r"l(3rx){8ry)) by means of 3.3{vi) and (vii) gives a different formula.
Thus we may {induetively) fix a canoniecal cholee of mod 2r multiplications by
'iehocsing the mod 2 muitipiiecation arbitrarily and requiring the formula to hold as
stated for r » 2. From now on we shall always use this cholce of muliiplieations.
OQur next result shows that, in contrast to ordinary homology, Xu(X;1) will in
 general have nilpoteni elements.

: T
. Corollary 3.5. If X is an H, ring spectrum and x K;(X;r} then ("r“igrx}p =0 in
EglX51).
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Proof of 1.5, (By induction on r}. If r = 1 then

(gx)P = (ﬁﬁzp*x}P = fQpyx = 0

by 3.1{ii}, 3.3(v) and 3.3(iv}. If r > 2 then

1 1

r I -
e = TP = TP e =0

by 3.3(v) and the induetive hypothesis.

It turns out that iterated Q-operations on T~-th Bocksteins are also

nilpotent. In order to see this we must make use of the operation R described in

our next theorem.

Theorem 3.6. Let X be an H, ring spectrum. For each r > 1 there is an operation

Rif  (X;r) + K (X;74l)

with the following properties, where x,¥ <K, (X;r).

{1) R is natural for H_ maps of X

{11}  wBRx = Qpgx - x{srx)p‘l, and if r » 2 then Bax = Qpyx - pp'lx(ﬁrx)p‘l
(iii) pygRx = Bpgx
. - 2
(iv) B, Bx = Q8 .pex .
= Rx + AP )t 0 Pt
{v} Rix+y) = Rx Ry - izl P { i ) PyX 6r+2p* ﬁr+lp*y
-1, i-1 p-i-l
R GRS RS R E ST IS J0°3 L VI .3 ]
(vi) If Y is an H_ space and X ¢ ﬁl{Y;r) then

p*[(ax)P] ifr=1

p*[(ox)p] * pchx if » > 2.

{vii) If k is prime to p then kax = kax.

(viii) If r > 2 then QRx = RQx. If r = 1 then QRx = C.

Remarks (1) Le% ¥ e Ky {X;r) and let & > 3. By 3.3{v) we bave
(75t L 0P = ®la oFRSx. But OFRPx = RETLGR(OTIx) = O by 3.60vili). We

therefore have the following nilpotency relation.

T
{ﬂr+s"lﬁr+SRsx)P = 0.
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bté that this is a smaller exponent than would be given by 3.5. In terms of the Q-
“operation this relstion may be written {ﬂr“s"lQSsrx)Pr =0 for 8 < r and
(@ P
{(ii) The second statement of 3.6{viii) wss not in the original version of this
work (ef. [76, Theorem 3(iv}i). The decomposability of QRx when r = 1 (which
?actually implies ite vanishing, as we shall see In Section 8) had been asseried by
“gnaith when p = 2 (199, Proposition 5.2(31i)1), but was not ineluded in [76] because
;{ﬁe author erronecusly thought he could prove QHx to be indecomposable in Kl{QX;l)

: whenever X eKltx;l) had nonzerc Bockstein {cf. {76, Theorem 4]).
‘recently sedtled by Doug Ravenel, who observed that if one starts with the deserip-
“gion of KylQ(slu 0 ¢®);1) given in [76, Theorem 4] and spplies the Rothemberg-
.steenrod spectral sequence (which ecollapses) then one can see that the only
:indecomposable in Kth(S2 Ljp e3);1) is the generator of Kl(82 LJP e3;1), and in
particular QR of this generator is decomposable.

=0 for s >r.

This point was

This contradicts part of {76,
‘Theorem 4] and a corrected version of that result will be given later in this
:section. We shail give a completely different argument in Section & to show that
QRx is decompossble, and In faet vanishes, for all x eKl(X;l).

We next introduce an operation 2 which is the K-thecoretic amalog of the
Pontrjagin p-th power [57, 28]. This operation is a necessary tocl in our
caleulation of Ky {(Q¥;1) and will also be used to give generators for the higher
terms of the Bocksteln speetral sequence.

et X be an H, ring spectrum. For each r > 1 there is an coperation

2:Kpl¥sr) » EplXsrel)

with the following properties, where x,¥ «Ku(X;r).

(i} 24 is netural for H_ maps of X.

(41) #8x = xP, and if » > 2 then wx = xF.
(111} Qpex = PP ip, & x.
(iv) Mok X = xpﬂls x
X+ 2y o+ ?El l~{ LT i1y gp b is odd > 2
a3 ¥ Ao 7 JPy(x p is odd or r >
{v) 2Mx+yr =
dx + By + 2,0y} + (B,24x)(B,25y) if p=2and v = 1.
(vi) Let |x| = E&I = 0, Then Zixy} = {2x){y) if p is odd, while if p = 2

_there is a constant G ZZ’ independent of x and y, with



sz
(2x)(2¥) + (1 + 2608, 2x)(8,4y) ifr =1

Alxy) =

3
1v

)

*

(2xayt + 2 (5, @ x N8 2) if

T+l
Let |x} =1, |¥| = 9. Then

-~

(Ex)(2y) if pisodd and T =1

(Rx)(2y) *+ p2((Gx}{Qy)] if p 3s odd and r > 2

n
no

Rixy) =< (B)(Zy) - (1 + 251}(628x)(823y} if p and r = 1

(B)(29) + 4y 1Q0a ] + 2528, 400} (8,1 23)
+ 2% (8

pey )8, BY) ifp=2and > 2,

.

and R{yx) = {(Zy)(Rx)} + (1 + 2e9) (8,2 y){B,Rx) 1f p = 2 and r = 1. let
|x| = |y| = 1. 'Then there is a constant ele zp, independent of x and y, with

.
el (Rx)(Ry) if D is odd

(1 + ZEi}{Rx){Ry) - {1+ 2g, # 2%}(82?&)(62@) ifp=2andr=1

2Fer(Re) (Ry) + 27 (R0 (41 + 27,00 (B)

i

+ 22T L A Q) (B, hyQy) i P = 2 8md T > 2.

r+l r+l

A Y

(vii) let Y be an K_ space and let x e"KO(Y;r). If p = 2 then o2 x = 2Rlox), o
: T
while if p is odd there is a constent e;, independent of %, with odx =p E;R(O’X)o

{viii} If k is prime to p then tpk.,?, P ;i,xg:kx.

0 ifr=1
(ix) Q2x =

r 2 )
1Y AP P et ar e 2.
i=1

The wndetermined constants e, in part {vi) depend on the choice of multipli-

cations; they can be made equal to zerc for a suitable cholce but it is not clear
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‘na’ﬁ .their values are for our canonical cholce. Ii is quite possible that the

gt U gre all zero.
i £ and Ep

Next we shall use the operations @ and R to deseribe Ky(CX;1l} for an arbitrary
:U:.al spectrum X. If ¥ is a based space then the homology equivalenee of [28,
eorem 1.5.10] is also a K-theory equivalence (by the Atiyah-Hirzebrueh spectral
iaquence}, bence

KelQ0;0) = (ng0) " Ky (OY;1) = (agl) " MRed0z®(17)50)

go that our calculation will also give K,(QY;1).

First recall the K-theory Bockstein spectral sequence E;X (abbreviated BSS)
ffom [13, section 11]. X was assumed to be & finite complex in [13] but we wish to
work in greater generality. The finiteness assumption is necessary for those

sults which deal with the E” term, since in genmeral %there is no useful relation
tween E:X and KX (for example, E:RPw iz concentrated in dimension szero, while
K;RP” is concentrated in dimension one}. On the other hand, the results of [13]
ﬁhich deal with ET for r finite remain valid for arbitrary spectra X. In pariie~
-ﬁlar, any (r-l)-eycle x can be lifted to an element y ¢ Ky(X;r)} and we have dpx =
ﬁ?‘lary. The element ¥ has order p¥ if and only if x is nongero in EF. If we write
k*{X;m) for the inverse limit of the Xy(¥;r} then an infinite cyele always 1lifts to
K*{X;w); we shall frequently use this noiation. Our next definition gives the kind
éf data necessary for the deseription of K (CX;1).

U A, with AL C K, (r) s called a
lersn
subbagis of height n for X if for each s < n the set

. Definition 2.8. Iet 1 <n < . A set A

{Er—lx [ xeh, &< <} u{nr“}srx [ x €h, s <r<m)

§$ro,j ects to a basis for Eix.

: if the height of a subbasis is not specified, it will always be assumed %o be
infinite. Subbases with finite height will ocoour only in sections 7 and 8. It is
not herd to see that any speetrum has a subbasis of any given height. The term
subbasis is motivated by our next result, which is an easy consequence of the
fesults of {13,811]. Recall that a subset S of an sbelian group G is a basis for G
if G is the direct sum of the cyclic subgroups generated by the elements of S.

Proposition 3.9. If A = U A | is & subbasis of height n for X and if s <n
. lir<n
(with s <= if n = &) then the set
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hat.thé commutator of two elements is the product of their Bocksteins. To build

this into the definitlion of CA we define the modified temsor product G, @)C of
_graded differential alghebras over Z, to be their Z,-graded tensor produet

r-s -8
{n “x|xe A, s <rgm o {n" Brxl Xeh, s < <n}

§-r S-r
wip, x| x €d , T <8} wi{Bpy X | xe A, r<s} twv .
with multiplication given by
is a basis for Ky{X;s). The elements of the form p* "y and g p* Ty have order p* xr

and the remaining basis elements have order p°. (x@yMx' @y = x* @yy' + xldx') @ {gyly'-

wg can define the modified temsor product of finitely many C; similarly and of

Now let X be & unital spectrum. Let ne KO(X;w} be the uni% and suppose that
infinitely many Ci by passage to direct limits. Now for each Xe¢ Ar we define C

7°n is nopzero in KO(X;l}. Then we may choose a& set A = k_} A such that
lgrge
A {n} is & subbasis for X. We write Ar,O and A?,l for the zero~ and one-

to be the free sirietly commutative algebra generated by {nr 8- lQ xl0 < s 2} ané
ipr <, {“rus-iﬁ s9%x| 0 <s < r}. Give this the differential which takes QF~Ix
to ot 1x and all other generators %o gerc. For each x EAT ;1 we define Cy to be the
conmutative algebra generated by the sets {w® 5" 1g8xj0 < 8 < r} and, if T < =,
(518,85 |0 < s < r}, with the relations

dimensional subsets of A,. Ilet p be odd, and let CA be the quotiemt of the free
commuiative algebra generated by the three sets

res-1l.8 - : »
{w Q°x I x €, 0 <5< <} W (“r+s—13r+sRSX)2 -0
regm1 5 and
{n Br_SQxExeAr,O,Gfs<r<w} 0 100 <8 < 1-2
r+e-i 8
and {m 8 RBx | xeh r<w, 0 <s <} -1
r+s r,1’ - . (41)  (aT"81g80)2 = (ﬂr'lﬁrx)2 if 8§ = -2
by the ideal generated by the set t+'s ERx)zr_l if & = p-l.
s
T
r+g-1 3_.p
{n B x0T | xe Ao T D58 <) {Relation (i) is motivated by 3.3(x)). Give C, the differentisl which takes QF1x

r-1
to (“r~}8rx)2 and all other generators o zero. Finally, we define CA to be the

The elements of the first three seis will be called the standard indecomposables of modified tensor produet @)C . There is an evident ring map A:CA + K,(CX;1) and

CA. Here symbols like n¥ 5"1gS

x are simply indeterminates, since the Dyer-ILashofl
operations are not defined on Ky{X;r). However, by means of the ineclusion X » X

X ¢
with these definitions Theorem 3,10 and its proof are valid.

Bemarks 3.]11. {1) When X = S°

‘space, We recover the caleulations of Hodgkin [41] snd Miller and Snaith [83,841.

we' may interpret these symbols as elements of K (CX;1}. Thus we obtain & ring map or wher p = 2 and X is a sphere or a real projective
>

A:CA » K {CX;1).
(11) We can describe the additive structure of CA more explicitly as

follows. When p = 2 we define the standard indecompossbles of CA to be the same
three sets as in the odd-primary case. If we give these some fixed total ordering
then CA has an additive basig consisting of all ordered products of standard

- indecomposables in which each of the odd-dimensional indecomposshles oceurs no more
~than once and each nr+s'18r+SRSx ocours less than 2¥ times. This basis will be

Qur main theorem is

Theorem 3.10. A is an isomorphism.

We could have defined CA in terms of the {-operation alone, without using R,

since the third generating set is equal to ealled the siandard basis for CA. We define the standard basis in the same way when

r-s-1 Q8 s-7+], P is odd.

{x s+1Px

E
Q8 x[xe Ar p T 0<s crbw{QB xjxe A p17 TS 82 r}

The definltion we have given 1s more convenient for our purposes, however, since it Next we disecuse the functoriality of the desecription given by 3.10. If X and
X' gre unital spectra with subbases A ,{n} and A' {n} then a unii-preserving map
£:X » X' will be called based if fyd,( A; ({0} for &ll r > 1. Such a map clearly

induces a map fy:CA » CA', and we have X o £, = (Cf), o A, If f is not based, it

allows ug to treat the cases s < r and s > r in & unified way.

Theorem 3.10 also holds for p = 2, but the definition of CA in this case is
more complicated since mod 2 K-theory is not commutative. Recall from 3.2{vii)’



is still possible in principle to determine (Cf)y on Ku(CH;1) by ueing 3.3, 3.6 ang
3.9 (although in practice the formulas may become complicated). For example, if
£:8° » & 1is the degree p map and X € KO{SZ;Z) is the generator then

in KO(CSE;l). Since f*:K*(Sz;E} > K*(Sz;l) is zero this gives ancther proof of = .
Hodgkin's result that Ky(CX;1l) cannot be an algebraic functor of K (X;1l). A simils
caleulation for the degree p’ map shows that Ky(CX;1)} is not a functor of Ky(X;r)
for any r < =. Finally, the projection gt up N 82 onto the top cell induces the
zero map in integrai K-homology but is nonzerc én K{.(C(S1 “p 92);1) 8o that

Ky (CX;1) 1is not a functor of Ky(X;2). Thus i% seems that the use of subbases cenno
be avoided. '

Theorem 3.12. For 1 <m < w, E’: CX is additively isomorphic %o the gquotient of the.
free strietly commuiative algebra generated by the six gets

and

by the ideal generated by the set

If p is 048 or m > 3 the isomorphism is multiplicative.

In order to determine the differentisl in E?:CX one needs the formula

for x “Lr,}.’ 0<8 <r<e t>0; this is is a consequence of F.3(viii) and 3.3{v}.®

4o Caloulation of XKy (CX;Z._)

will be dealt with in Sections 6 and 9. The argument is very similar to that given

We conelude this section by determining the B3S for CX.
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in sectiqn 2 for ordinary homclogy, and in several places we shall simply refer to
'tﬁgt. section.

: _: First we reformulate 3.10 as a result about extended powers. Iet ¥ be any
gpeétrum and let A be a subbasis for Y. We define CA with its standard indecom~
posables and standard basis as in Section 3. We make CA a filtered ring by giving
alements of A filtratlon 1 snd requiring Q and R to multiply filtration by p. Let
gk';\ = FkCA/Fk”}kCA for k > 1; this has a standard basis consisting of the standard

(CE},Qx = QUfyex) = Qlpx) = =(xP) £ 0

{)‘gsis elements in ?kGA - Fg..ch- There is an additive map

AgiDA K*(Dk?{;l} -
‘defined as in Seeiion 2 by interpreting Q,R and the multipiieation externally and
:-ghen applying oy and By. We shall prove

Tﬁeorem 4ol My is an isomorphism for g1l k > 1.

Rémark 4.2. Using 4.1 and the external versions of 3.3(v), 2.6(iv) and 3.7(iv)
which will be proved in sections 7 and 8) one can determine the BSS for DY as

1pT8-lysy | x¢ 4., m <8, 0 <5 <1} ollows. If m > 1 let (A denote the algebra vhose gemerastors and relations are

{ r-g-1 tyen in 3.12. We make CUA a filtered ring by giving elements of A filtration 1 and
e

equiring K, Q and 2 4o mltiply filtration by p. If DEA is the k~th subquotient of
ijA there is an isomorphism DiA > EE:D]{X. The proof is similar to that for 3.12 and
i left to the reader.

Brog@% | Xedy g, B <78 <, 0 <8 <)
(a1l g m-r 80y [ xeh, g, L Sr-8 <m}

»
{nm'lﬁm&m"r+stx | x¢ An 00 1<r-8 <m}

{ﬁm-lnm—r+SQSx [ x EAr,l’ 1 < r-3 < m}

{ “r+s—1[S

The derivation of 3.10 from 4.1 iz the same as that given for 2.1 In section 2.
We therefore turn to the proof of 4.1. We need the following speclal case, which

r+sRsx | KeAr,l’ m < ris < ) .
will be proved in section 6.

- +
{(xF*8 18r+SRSx)p | xeAr,l! m < r+s <o, t=minle,r+s+l-m)}.

mma 4.3. A, is an isomorphism for all Y.

?

Wie shall reduce the proof of 4.1 to the case where Y Is a wedge of Moore

1

The proof of 3.12 is the usual couniing argument, and ig left io the reader. ‘speetra. First we need some notation. 4s In section 1 we write M, for 8™, .
P

“The set {ur} is & subbasis for MT. We write M for the colimlt of the 1\@, with
:-'r_espect to the maps M, » M,,, having degree p on the bottom eceli. Then Kl{Mw;r) =0
or all r and KO(Mm;r) is a copy of % ., generated by the lmage of w.. Let

a8
s Rox)P

“r-s%-l bas, ( r+i-l
B T+t

Br-s+t.R x

U e KoM ;=) be the element which projects to the image of u, for all r. Tnen {u,}

s a4 subbasls for M.

e let fy be any map which restricis on each E§

M M, %o & representaive for the mod
x

For each x¢ 4, we can choose a map fxu':lxh\(T + KAY representing x. {If » = »
X
M, and let £:Z » KAaY be the wedge

p_r reduction of x.) let % = \/ VoI

In this section we give the proof of Theorem 3.10, except for two lemmas which lerg A
Tée X g
r

f the fys We give Z the subbasis B copsisting of the fundamental eclasses of the
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le’Mr. Then fyy:Kglf;r) » KelY;r) gives a one-to-one correspondence hetween B, anid

wumma 4.5. @is an isomorphism, and the diagram
Temus 4:0+ ¢

Lemmie :-

&,, and in particular it is an isomorphism for all r. Now consider the diagram )

% ®
(f (D B ® D ) » D, B
Dkﬁ -——————g—k—-—*—*——a-nka 120 ki 2 X
{r, @ ) A
M B l M 3 @M g X
(Dkf)** k I’M
K*(Dkz;z} K*(DkY;l) , iEO(I{A*{Dizml\«ir;l) ®K*{D ;E 310 —————!-K (D Z,l)
ommutes .

which commutes by 1.3 and 1.4(31) and {iif}. If 4.1 holds for Z, its validity for ¥

will be immediaste from the diagraem and the following lemma. The proof is the same as for 2.5. The lemma implies that 4.1 will hold for 7

once we have shown the followlng. We write x for 3:nl;.r € K{anr;r}.
Lemma 4.4. Let bW » KA X be any map. If hyp:KplW;1) » K (X;1) is an isemorphism,

then Temma 4.6, AyiD{x} > I{*(Dkzn%;l) is an isomorphism for all k > 1 and all n.
(1) fyu:Ke{W;r) » Ky(X;r) is an lsemorphism for all r, and =
(1) (D £) Ky (D W;1) » K (D X;1) is an isomorphism for all k. ‘Proof. By induction on k. Firet let k = jp with j > 1. We need the commutativity

‘of the following diagram for i = 0,1 and 2.
Preoof. (i) By induction on r. Suppese the result is true for some r > 1 and

congider the short exact sequence !

Y
D, & : > D, (y,2}
O — 3z Mzrﬂwzr—»{). J
P P D, (g,)
Fy (81 )x
This gives rise o the following commutative diagram with exact rows. .
D, G- . D, {x}
(w; r}-——bK (w; 1)m~—>i{ (W; r+1)—--—=~K (W; r)————-e-i{ (W:1)
far) -1 * = =) A A
f f f f f B,
%% *% ¥ *% *¥ %
l i Ky (D; D M;1) mwmﬁl&u—-—s-x*wkm;l)
I{G+1(X;r) — KG(X;ZL) o KQ(X;I'+1) e KQ{X;r} MK{;—&(X;}"} (D)
: 2y Pgi % Eile |
Y

i
. Jp* - .
Part (i) follows by the five lemme. The proof of part (11} is now completely K*(Dj Dp{MVM)’l) - K*(Dk{M vi);1)

parallel to that of Lemma 2.4.

;'Here M denotes };nMI. and ¥,z ¢Xy(M M;r) are the fundamental classes of the first and

gecond summands. The sets (b and (L' are subbases for DPM and DP{MVM} which will be

. specified later. The maps g;:MvM + M are defimed by g5 = 1v1, g = 1¥¥, and

Next we reduce to the case of a single Moore spectrum. We assume for
simpiicity that 2 is a wedge of two Moore spectra }:mMrvz Ms’ the argument is the
same in the gemersl case. Let B, and B, be the subbases {r™u,} and {z™u.}, so that

'gz = ¥v1, and the Fi are determined uniquely by the requirement that the left-hand
B = Blu 82. There is an evident map CB1 & CB2 + CB which on passage to the

.'_'_trapezoid commute. To complete the diagram we need
aggoclated graded glves a map

X

9 :iEO(DiBl ®D,_;B,) » D,B.

‘lemna 4.7. There exist s a, y; and Yj‘ independent of 1 such that diagram (¥)
k

“eommutes for i = 0,1 and 2.
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- quence would be nongero for &ll m. But the transfer emb in
seqﬁeneeAﬁﬂ(DkEMr) 0 > or all m % e transfer embeds E’:DkEMr

The proof will be given in Section 9. ILike the proof of 2.7, it cénsisté of
jﬁszmr’ end the latier is zero for pm'"r"'1 > J by Remark 4.2 and the inductive

systematic simplifications of the elements of Ihﬁt and ZﬁCL'. The details are muelh

K
more complicated, however, because of the nonsdditivity of the operations. ﬁyﬁothesis of 4.6.

Now consider the imner square of the diagram. Since ij* oty is an Finally, part (iii) follows from {i) and the equation

isomorphism, we see that b 1s onto. letting 6 =y, o a;l ¢ T, 0 Ak’ We see as in” Pugel 8 r-s-1.8
gection 2 that & induces an lsomorphism of the subspace & of Dk{x} spanned by the - Ay Gx=m Qu,

decomposable standard besis elements. In particular, A 18 monic on & . “ﬁile (iv) follows from {1il) using the argument given for (i1).

The remainder of the .proof differs from that in Section 2, and is in fact
conasiderably simpler since there are only a few indecomposables. It suffices 1o

show the following. . This completes the proof of 4.6 for the case X = jp. The remaining case, when

¥ 18 prime to p, is hendled exactly as in Secticon 2.

Lemma 4.8, let we £. If n = 1 then

4 Ak{gr“smlqsx - W) 70, where k = p°, 2 iesT e Caleulation of K, (D 5%z »
(11) Ak(ﬁr+s-18rstsx -w) £0, where k = p°, r < =, 2 <§ <m, P b
If & = O then In order to construet and analyze the Q-operation we shall need z precise
Pes-1.8 s &escription of K*(Ebanr;r—l)- In this section we give some facts sbout K*(stn;rJ
(111) lk(" Qx - W) 70, where k = p°, 2 i,s T ﬁhich will be used in Sections 6 and 7 to obtain such a deseription. We work with

(iv) Ak{qus_zﬁr_sQSx - w) # 0, where k = ps, 2<e<r <m, EK-theory on spaces in this section.

If X is a space there is & relative Thom isomorphism
Proef. We need two factsz about the map A*:K*(EDKX;r} * K*(Dkzx;r) , namely that s 5
A*E(“i,k—l)*(x @y} =0 for 0 <1< kand that, when k = p, @:K*(Dpx;r) e K*(DPE Lr)

0

fid

alsx) if Ixf gorresponding to the bundle

A*ZQX # I

B ox. (XPY o« #Py . om o« x(P)
p 5, Pz,

n
=
.

(p) .
Ty (Ex) + p@Ex  1f (x| and the inclusion

The first fact is shown as in the proof of 2.8, while the second, which is the

external version of 3.3(viii), will be shown in section 7.

\ (p}
Br_ =, (%) s Ep_ =, X°F7,
k I
P 7 . 1y P
Now consider part (1). We have A,fw = 0 and As we have seen In VIIS3 and VIISS, thli 1somgrphism can in fact be defined for an
arbitrary specirum X. In caleulating K*{DPS ;) we may therefore sssume n = O or
Q +
= BE_ .
P

reg~l
y:1

]
byl Q% = nr"ll*(XX}P N n = 1; in the former case we have D?S

T

8
1 . . .
But 1*(Ex}? is nonzerc sinee Ay is monic on decomposables.

M = = ¥ lu
lemmg 5.1. Ka(ﬁzp,l} is zero 1f a = 1 and ZIJCD Zy 1f o = 0. Ka(DpS ;1) is zero if

a=0and 2, 1if o = 1.

Combining part {i} with the fact that Ay 1s onto and is monic on decomposables, D

we see that
Proof. We use the Atiyah-Eirsebruch speciral sequence for mod p K-homology. By

[40, I11.1.2] the differentials d; vanish for 1 < 2p-1 and dzpml is BPi - Piﬁ

{nere P! genotes Sq? if p = 2). For spaces of the form DPX, a basis for the Eo-term
congisting of external Dyer-Lashof operations is given in (68, 1.3 and 1.41. The
differential dpp-y an be evalusted using the external form of the Nishida relations

Ak:Dk{x} > K*(DkzMr;ij

is an isomorphism in degree 1 and is onto in degree zerc. It is monie In degree O
if and only if part {ii) holds. But if not then Bqo(DyEMy, ;1) and K (DM, ;1) would
have different dimensions as vector spaces, and therefore the Bockstein spectral
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168, 9.41; the explicit result is that d2p~1(ei{® ¥P) is a nonzero muitiple of 7 In arder to give a speeific generator for ﬁ*{Dpsl;r) we-consider the map

(Bejan. 2p)(3 7 - ®j+1p ® (8y)® A*:ﬁ*(D?Snwl;r) > K*(xDpSn;r).

for any ¥y ¢ Hy(X;1}. Letting X = SO or Sz we see that E2P is generated by e ® u?
and egp_2(3 W in the former case and by ®p-1 @ (su)P in the latter. Then E2P = o
for dimensional reasons and the result follows.

I e Thy it
EEEEE—ZJE e composite

% %
KO(DPSZ;r} ——45——>Kp{szsl;r) —LEALvKO(zzﬂpSO;r) z KO(sz;r)

1]

Using 5.1 and the K-theory B3S we ccnclude that K*(Bzy;r) ig free over Z r OB

™ 1 R P ) to zero.
two generators in dimension zero and that K*{st ;r) is free over 2 ,, on one )

) 1 % %
—_—{pl -
takes ‘é(l} to =171 pl =~ 11, sd ofs Le
P .
generator in dimension one. We wish to give explieit bases. It is convenient %o

As an immediate consequence we have
work in K-eohomology, as we may by the following.

: * s
Coroilary 5.5. A #{1l) generates K {D Si;r).
femma 5.2. The natural map T T p
K*(Dpsn;r) . Hom(ﬁ*(DpSn;r},Z r) Before proving 5.4 we give the desired bases for K*{sz;r) and E*(gpslgr}.
P

is an isomorphism for all r < =. Deflnitlon 5.6, The cancndcal basis for K*(sz,r) is the dual of the basis

{i, - 1)1 {pl -1 1 )} The canonical basis for K, (D gt ;) is the dual of

Proof. When T = 1 a cell-by-cell induction and passage to limits gives the results 58 a(1)}
LA .

for an srbitrary space; in particular it holds for Dpsn. The result for general r

follows from the BSA.
‘ Note that the unit n in KO{Bxp;r) is the firgt element of the canonlcal basis

for this group. We shall always write v for the remaining element and v' for the

Next we give a basis for KD{BE ;7). We write 1 for the anit in this group and . 1
P vasis element in Ky (D S%;r).

lig) for the unit of Ko(pt.;r). let T be the transfer I (BX b > o(me’) = 8.

Proof of 5.4. Consider the subset of Ezp Ay (B?)P consisting of points for whieh

sas ¥ . ¥
Propesition 5.3. X (Bf,;r} is free enerated over Z ,, by 1 and 1 1,y . . .
P’ e o’ v (e} the sum of the RP-coordinates is zero. The Eroaectzon to Br

P makes this subset the
total space of a bundle £ over sz. Now DP82 ig homeomerphic to the second
suspen81on of the Thom complex Tg of g, and under this homeomorphlsm the map

Ao EA: Z:EDPS{J + Dp82 is the second suspension of the inelusion Bz c Tg, while
#(1} sgrees with the Aityah-Bott-Shapiro orientation for . Thus it suffices to
‘show that the Euler class of £ is Tﬁ:%TT (p! - T*l(e})' If = = Zp and 1: @ Ci,is
the inclusion it suffices to show that the pullback (Bz)*g has Euler class

P- (T')*l(e) in k%(Bv) = Re C)Z%, where 1! is the tramsfer :™(Bz™) + 8. Let

X ¢ Hr be any nontrivial irreducible. Then (Bt)*g ia the sum of the bundles over Brm
induced by x,kz,...,xy'i. Thege bundles have Euler classes l-x,...,l- p—l, henee

(B:)*a has Euler class (l-x}ee+(1-xP71)., Evaluetion of characters shows that

Proof. let n = Zp and dencte the inelusion = C EP by t. Then Kl(Bn;r) = 0 and the
natural map

Rr ® %, » K9(Bn;r)
P

is an isomorphism. If p is the group of automorphisms of w then a standard iransfer -
argument shows that the restrietion

1*:K*{Bxp;r) » K (Br;r)

15 a monomorphism whose image is contained in the invariant subring K*(Bn;r)p- Now
1*1 is the unit 1, of KO{Bn;r}, while the double cosei formula gives

I*T*}”(e) - [p—l)[(-[')*l{e , where 7' is the transfer 5”(Br’) » 8. Sinee 1, and
T'l{e} form a basis for K {(Bm;r)? the result follows.

(1=x) ons (1-xP°1) = p - {1 + x # eon + P71y

and the result follows.
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Next we colleet scme information about the elemenis n,v and v for use ip
section 7.

: Foz-'lpart {v) we observe that T*l(e) @ T*I(e) is T*(l*‘t*}.(e)) by Frobenius

: . * %
reciprocity. Now 1t 1y =pll,, end thus

e)

- - 1 * p *
Proposition 5.7. (4} ﬁ:K*(DPSn;r) - x*(nps“;r~1) takes v to v and v! to v!, [w (pl -t l{e)” = T})_—;.‘E:T (pt - < l(e})
(i1} A*:ﬁl{z(BE*);r) + "Kl(D Sl;r) takes In to zere and v to v',. .
§ PZ in KO(BEP;I‘); the result follows by duality.
{ii1) A*:]{O{ED 8T} > KO(D 87;r) takes Iv' to 3(n + pvi. : ’
P p {p} ¥or part (vi}, consider the composite
(iv) T*:ﬁ*(DpSn;r} + %i*((s“) p ;7). takes n to plu and v to ~(p-1)lu when :
A* 6* 1 3
n = O and takes v' to zerc when n = 1. R (s(85));r) — (D Sl;r} e B (D 8> A BL ;7Y .
1 P 17p 17p P
(v} &,:K. {Bf ;r) +» K. {BL_ x B ;r} takes n ton@® n and v to :
O 0P P’ : We have Agiv = v', and
VA +n@v +olvedv). :

. o i = 1 +
(vi) 6*:K1(Z)PS ) > KE{DPS ABEp;r) takes v to vi@n + plv' ® v).

=3
sk
=
P
g
H

= (AAL),E8,v

#

(vii) G*KO(DPSZ;I') > 'KO(DpslA [}psl;r) takes ¢(n) to zero and ¢(v) (8,20) ® n + (A,Zn) @V + Dlagiv) @ v

tovt®@v'.

vi®@n+ plv' @vi.

For the proof we need a preliminary resuli.
For part (vii) observe that part (iii) implies that the map
lemma 5.8. (i) If X is a spectrun with E' = ET in the K-theory BSS and if Y is any (an1),:E (D Sl)-D Sl'r) > %D San Sl-r)

LA P’ 17p P’
spectrum then the external product map :
is monic and that (AAL} (Ev'®@v'} = ¢ln} @ V' + pelv) @v'. Hence it suffices

Ee(Xir) ® Ky{Tjr) » Ku(XaTsr) to show that {aald (zége(n)) is zero and that

is an isomorphism, where the tensor product is taken in the Z,-graded sense. {4 A1), 56,8(v) = #ln) x v' + pplv) @V'.

(i) If in addition Ky(X;1) and K, (Y;1l} are finltely generated then the . Now let L1 L1 ) s 1
external product map h:S:L 52 e Slf\ {(SA8) ={8 a8 )8 =8"A8
K*(X;0) @ KN (¥;2) » KN (XA ¥;r)
is an isomorphism. be the asscciativity transformation and consider the diagram
Proof When r = 1 the first statement 1s well-known {see [13, Theorem 6.2}, for D 82 L8 Y.Dpsl ADpSl
example). It follows that the external produet induces an izomorphism of K-theory P
o A
Bockstein speetral sequences. Henee if B is a basis for Ky(X;r) and A is a subbasis Dh
reg . : I 2y — B, 2, ol
of height r for Y then the set {x x®y | x¢B, ¥ €A} 1is a subbasis of height r : 5 DP(S ~87) DP(S NS a1
for XAY and part (i) foliows. The case r = 1 of part (ii) follows from part (1} by - 5
duality, and the general case follows from it as in part (1). -
’ £ p EDPSEA By —r DpSza 81, —Led DPSQA DpSl

flext we turn to the proof of 5.7, which will conclude this section. In each
cage it suffices by 5.8 to show the dual. Then {i) is immediate and (ii) and (iii)

The upper part clearly commutes, and the lower part alsc commutes since h 1s

follow from 5.4. The first and second statements of part (iv) are trivial, as is omotopic to the ma‘.p switching the factors sl and o2, tNow

the third when p = 2. When p is odd we observe that 14v' must be invariant under

the Ep action on ﬁ*({sl}(p};r}. Clearly zero is the only invariant element.

G*ﬁ

2. 2 +,
O(DEJS T} o+ R‘O{Dps A sz,r)
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e¢learly takes ¢(n} to ¢(n) @ n and $(v}) to

$n)@v + (V) @n + p2iv) @ v.
Hence

(Aa 1) {26,0(n)) = (1Aaa), (2{n) & In) =
by the diagram and part (ii), while

{aa 1) (58,8(v}) = (Zan),leln) @ zv + 2{v) @ &n + pe(v) & &vl

sin) @y + pivi®V .

6. Calewlation of T{*(DPX;ZP}

In this section we define Q on Ky(X;2) and prove lemma 4.3. We work with
K-theory on gpectra in this section.

Qur first result collects the information sbout K*(DpanT;l) which will be used
in thig and later sections. We let i and j respectiveély denote the inclusion of the
bottom ceil of EnMr and the projection onto the top celi. Note that j%re:r"mr =
and 1,50y = 8,8M,, where u, and u are the fundamental classes of M, and s,

Lemma 6.1. (i) For any n €¢Z and o €2, KG(DPZn}\dl;l) has dimension 1 over Zp.
{ii) For any ne¢?, o« ey and v 2 2, Ka(DpEnMril) has dimension 2 over Zp.
(iid} {Dpj)*:KO{D?Mr;l) > KO(DPSO;I) is monie, and if r > 2 it is an

isomorphism. :

. R b R
(1v) (D )y ® t53K) (D EM, ;1) » Kl{DPsl;l) ® Ky ((zM) P);1)°P 45 monio, and is
an igomorphism if r > 2.

(v) (Dpi)*:KO(DPSO;l) > KO(DpEMI';}“} is onto. If r = 1 it has kernel generated

by nand If » > 2 it is an igomorphism.
{vi) The sequence

(D 1)y

——b-» (P) P 38
K) (D8 -—~lim-vxlt ", r,1) K ()P 1) 0

is exact, and if r > 2, {Dpi)* is a monomorphism.
z
In parts (iv) and (vi}, Kl{(ngr)(P);l) P genotes the subgroup invarisnt under

the evident Ep—~action; this subgroup can easily be caleulated using 5.8(4}. The
proof of 6.1 is similar to that of 5.1 and is left to the reader.
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We can n‘ow define elements vy ¢ KO(DpMz;I) and v]'_ eKI(BPzMz;l) by the
equations {Dpj Yyvy = v, (D?j }*vi = ¢!, and 'I*Vi = 0., We use definition 1.6 to

: econstruet Q.

Y pefinition 6.2. Q:KG(K;2) + KG(DPX;E.) is the generalized Dyer-Lashof operation Q"l
ifa=0and Q, if o= 1.
’ 1

' Observe that vq = ng and v' Qi;u2

Next we turn to the proof of 4.3. We use the speciral sequence of I.2.4 with =

equel %o ZP or I, and £ = X. This spectral sequence will be denoted by Ez a{“;x);
y

" py Bott periodieity it is Z x Zo-graded, so that o ¢ Z5.

We can describe E *{1: ;K) = H ('II,K. (X; 1)® Py} as follows. When q = O it
iz just the ccinvar:.azlt quotient of Ky lX; AR P, let x ZP with » odd. If
x ek, (X;1) then ¥P K (X; ;1@ P generates a trivial g-submodule and we write

e @ xIJ for the image of e, ¢ K (Bn 1} under the inclusion of this submodule. Now

q
K*(K,l)@’ P can be written as a dlrec‘t sum of trivial s-modules of this kind and free

n-modules generated by xq ® <+ @ X with not all x;'s equal. Hence the map
K(G1) » B (250

taking x to eq® xP is an isomorphism if q > 0 and p is odd. We continue to write
eq® P for the image of this elemenit under the natural mep

P (ZX) - B (3,5%)-

e P q,e
By [68,1.4} we see that this map is onto in all bidegrees, is an isomorphism when
g = {2i-a){p~1) or (Zi-a)}(p-1)-1 for some 1 > 1, end is merc in all other bidegrees
with q > 0. Finally, if p = 2 then by 3.2(vii)' the Zy-action on K*(X;l)@’ 2 is
given by x @y by @x + gy @ 8x; in partieular, %% is invariant if and only if
gx = 0. Using this it is easy to see that the map taking x io eq® x2 induces an
isomorphism from ker 8/im 8 to zq’o(zg;m iff g > Q, while Eq’l(zz;X} =0 for g > 0.

Our next two results describe the groups E:.l cL(}:p;}{). Iet A be a subbagis for
— >
X end let Azc K (X;2) be the set

-2

{1 "x | xeA 2<r<m}u{nr—28x xeh , 2 <y < o},
rt T - - T T -

Let A2’ 0 and Az,l be the zero~ and one-dimensional subsets of Az.

Proposition 6.3. (i) The kernel of the epimorphism E *(z sER) o+ E *{): ;X) is
generated by the set {{8X)P | x éK (X;1)} if p is odd and by

{{rrﬂzx)2 + {nx}2 | % « K,{X;2)} if p = 2.
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{ii} The terms E:: a(ZP;X) with ¢ > O are freely generated by the sets
¥

{ezp~2 ® (mx)Px GK.?,G}
e, ® (m)P | xek, )

and, if p is odd, {e, »® F | xed 1,10

Proposition 6.4. (i) If x ¢ 32’0 then Qx is represented in E:*(Ep;x) by & nonzero”

miltiple of ey, o {ax}P.

{ii) If x 512 1 then Qx is represented by a nonzero multiple of €p-1 @ (nx)P. :
’

(111} If x ¢4y ; then QB,Dxx 1s represented by a nonzerc muliiple of
H

ep_2 & xP.

Hote that lemma 4.3 is an immediate conseguence of 6.3, 6.4 and the external

versions of 3.3(iii), 3.3(v), and 3.6(iv}.

When p is odd, Proposition 6.3 is Corollary 3.2 of {77]. We shall give a
different proof, using the methods of Seetion 1, which also works for p = 2. First
observe that there are two equivalent ways of eonstructing the spectral sequence
EL(H;X) ; one csn either apply mod p K-theory to the filtration of DPX given in

Seetion I.2 or one can apply mod p stable homotopy to the corresponding filtration

of KADPX. The latter procedure has the advantage that the map

D.f:D. Y + KA DX
induced by any map £:Y » XA X clearly gives rise to a homomorphism
(B £) gy By (751 > Ep (%)

of spectral sequences.

legma &.5. If 1 = Zp or I_ and ye Ky(¥;1) {with gy = 0 if p = 2} then

P
(D f)yyleg @) = e @ (£

#

Proof of 6.5. It suffices to consider the case n = Zp. The composite
px=p(xas®) 2ap xap e’
k4 W kS m
induces a coproduct
B (15K » Bhy (1300 ® ED, (;80)
and we have

¥ o (B £l = (B £),,®1 ov.
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The. lemma clearly holds for q = 0, and it follows for all q sinece the component of
: . 2 Q
2(e, ®7) in By (1Y) @ oy(m;8) is (e @) @ e

{1} Let x be represented by f:My » Ka X. Then fyu; = x,
= B Py = P
Qx, and (Dpf‘)**{ep__z@euzJ ezp__2 ® x¥. Hence we may assume that
X = Mz_and X = Uy, and 1% suffices to show that v, = Quy is not in the image of

: {p), .
_, . KoOGPT51) » KD py50) -

But this is clear since (Dpj Ty = V.

Part (ii} is similar. For part (iii) we may assume that X = EMy and x = Iuy.
In this case it suffices to show that Q,pyuy is nonzero. But B,pyuy = iyu, where
1 @KO(SO;Z)' is the unit, and Qu = v. Hence QBopyuy = (Dpi)*v is nonzerc by

Proof of 6.3. First let p = 2. 3Sinece every element of ker g Llifts to Ky (X;2),
Proposition 6.3 will be a consequence of the following facts.
(a} d2 =0

2y -
(b) d3{e2q_a-1 ® {ax)*) = 92(1_&_4@ (ﬁszx)z
: (e) dgley, @ (n2)%) = €29-0-3® [(32)? + (n82x}2}-
i\lote that, when g x # 0, formulas (b} and (¢) differ from those given in

(99, 3.8(a){ii)].

: First consider the case X = SO. Then the spectral sequence of I.2.4 is
isomorphic to the Atiyah-Hirzebruch spectral sequence, so that (g), (b) and (e} hold
in this case by 5.1.

Next we need the coproduct ¢y defined in the proof of 6.5. this has the form

9
Lif(eq®x2) =

2
Lo (e, ®x )Q’s)eqwi ,

énd it follows thei if x and y satisfy

d3{33® x2) = g, ®y2

then we also have
dqle ®x) =e @7
3 2a+l 28-2

d3lepgp ® x%) = epe 1 ® I5° + )

Now let X = S In this case dy = 0 for dimensional reasons, and there are
Ol}ly two possibilities for d3 consistent with the coproduct, namely



330 33t

dgleng ® (WP) = ey 3 ® (z0)?

"ﬁrh-ile ) \?'d;{e3® (7:5:11)2} = (eo @ {vzu}g} ® [eo® {‘i‘l"ﬁlz}z + e0® (n82u2)2]

or d3(ezq__1 & (zu)?) = €24 ® (zu)?.

é,nd the result follows.

Only the second is consisbtent with 5.1, and hence (b) and (¢) hold In this case. Next let p be odd. We must show the following

Next observe that, by 6.5, dx vanishes in general if it does for J\E&% and EM.?‘,. : {g) d; = 0 for i < p-2
In each of these cases, d 1s zero for dimensional reasons except on 2,07 and the:

only elemeni that could be hit is (nzauz)(nszi:uuz) in Eg,l‘ But ’t.?{e eorrespond- " -
ing element of Kl(Dzz“Mz ;1) is nongerc since its transfer it nonzero in

Kl((EaM2){2})o Hence éz = (O,

(b}, 3leq ® ¥ = €qelp ® {gx}P
(e} 43 = 0forp gig2p-2
() dypnleq @ x%) = equq oy, ® .

Finally, (b) and {c} will hold for all x if they hold for ¥ = up and X = zuz.‘
First consider Iug. It suffices to show that

fe) d; = 0 for i > 2p.

As before, when X = SO the spectral sequence is iscmorphic to the Atiyah-
bruch spectral sequ that - hol <1

dj(e3® (mz)z} B (Kuz)g . ("52u2)2° Hiz-zel D quence so that {(al}-(e) hold for 5.1. They also hold for

X = 8" by 5.1 and the coproduct. HNow 6.5 implies that (2} and (b} will hold for all

From inspeciion of the maps ¥ if they do for X = M) and X = IMy. Inspection of the maps

r -1
Bex (255677) > BL (555,

B2 {7,380) » Bpy(zy;ny)

. g r X
1 d By 2 ,2%M) » B (Z ;8
and Bl (B,31M,) » Egy(Z,;80) an wn (B, M ) > By (2357

‘and the coproduct shows in each case that either {a) and (b) hold or (a),{c),(d),
and {e) hold with dp-l = 0. Ooly the former gives an E  term compatible with
_6.1(:‘.). Henece (a) and (b} hold for all x.

we see that & (e3® (nﬁzzuz)z) is gero and that d3(e3® {TTELXQ)a) projects to (zu)?

3 .
in EO,O(ZIZ‘S ). Hence

d3(e3® (nzuz)z} = (n2u2)2 + a{ﬁ622u2)2 Mow applying 6.5 again we see thai {¢), {d) and (e) will hold in general if
- they hold for My and ZM;. Bul one can see that they do by inspection of the maps
for some ¢ €%, and there are no further differentials. But by the external version

2] 2y . . = r L qa~1 r "
of 3.3{x) we have 1*(1r§:u2){ = 1, (8, 50,) in Kn{D,IMy;1), hence e = 1 as E**{EP;S by B (15070,
required. :‘gnd Ei*(zp;EG‘Mz) RS E;'*(zp;s“),
It remains to show that

and the proof 1s complete.
2, _ 2
d3(63® (11112) ) = (TTB2U2) .

For this we use the map 7. Construction and properties of Q.

r r 1 T
Y1IE, (Z,50M,) » B (2,;87) ® By {2, ;1,)
Rl A % ¥#1E2072 In this section we complete the construction of Q and prove external and
induced by internal versions of Theorem 3.3.
l H
8:D,EM, > b, AD2M2 . As in section 6, we shall construct Q by specifying elements v, 1 eKO(Der;r—-l}
‘end v;_e Kl(DPZMr;rwl). In order to do this we need a stronger versien of 6.1.

fie have

q .
) (ei® (TrEu}z} & (Eq”i x (Tru2)2)

2
¥iH(e ® (nfu,)}”} =
4 2 120

‘Lemma 7.1. let r 3 2. The maps
and therefore

0
(D 1y + KD Mse-1) > Ko(D 875r-1)

d ¥ (e

e, ® (w)?) = (e, ® (mw)*) ® (a,0e,® (rm3?) + ey ® (muy)?]
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I
. ! (p) P
(Di}, ® 1K (DM ;r-1) + K.{D S";r-l) @K, ((zM )7 ;r-1) .
I e e . k%*%(kp-k)m*x(p} 1 a = 0
. . 0_ " iy (kx} =
and (Dpl)*.KO(QpS ;r-l} - KO(DPZMr,r 1) Q
kQx if a = 1.
are igomorphisms, and the sequence
(D_i) T L Qix if o = O
1, p* . l {pl, P
0 K (D 8" 5r-1) B K (DM 52-1) —— K () P 5p-1) P om0 w 550 = |
is exact. al*{zx){P + pAnx if o = 1.
(p-1)
Note that the terms in 7.1 which involve iterated smash products may be : QBx ~ Pmiylx e Bx) 1f a =0 N
caleulated by using 5.8. Assuming 7.1 for the moment we may define v, ; and v! , by 2 ivl) B = o)
' - : P =
the equations (Dpj)*vr,l = v, (Dpj)*v%_} = v', and Tevl 9 = 0. n1*(6rx} * pQBrx if o = 1.

The consiant w in parts (1) and (iii) will turn out to be i, as requlred for
1.3{vi}. In order to avoid elrcularity, we shall prove 7.1 and 7.3 by a simul-
'taneous induction. More precisely, we shall assume that 7.1 holds for r £ rp and

Definition 7.2. QK (X;r}) » Ku{DpX;r-ll is the operation Q"r-l if o = O and QV'..l

if « = 1. F
Observe that Vpoir Vs vI',__l and v' are equal respectively to Qur, Qu, Qzur, and .

Qiu. PFrom now on we shall always use the latter notations for these elements. “that 7.3 holds for r < ry (vacuously if ry = 2) and then prove 7.3 for r = 7 and

t -1 . n 17.1 for r = ry + 1. Before beglining, we need two technical lemmas.
¥e shall prove 7.1 by showing that E- = EF™" in the K~theory BSS for Dpz: M.

when r > 2. For this we shall require a formula for the Bockstein of the external : f h -
‘lemma 7.4. let Y =2 £pof = 3Y be a cofiber sequence in hd and let

’r > 2. Suppose that B, ; vanish on K (Z;r-1). ILet y ¢Ky(IY¥;2r-2), ze KylZ;r-1)
and w <Ky (Cf;r-1) be any elements satiefying nr'ly = hyw and pi'l{zz) = fyy. Then
p BpalW = Ex2.

Q-operation, and this in turn depends on the other formulas collected in the
following lemma.

lemma 7.3. let %,y eKa(X;r) with r > 2.
Proof Consider the following diagram in nd.

o ifq =l
1 n_ 1ogf 1 3e
() 1,0 = { ~(p-1)1nx P if o = 0and p is odd Kaoe Kazy K32 £k A20f
- }
B 21r(5rx}(2) fa=0andp=2. w Tzzr ¢ LW
i
M) > DM, s B ——n I

Tl
Here w Z, is independent of x. :
Here the bottom row 1s the evident cofiber sequence, with the first msp induced dy
{ii} adx = Qux if r > 3. “the inelusion 2 p-1C Z op o and the second by the projectlon Z gnp + Z .1+

Precomposition with the first, second, and third maps in this sequence induces the

p-1 . » - "
Qe + Qy ~ mr, [ ] % ( I;}x(l) ®y P ifa=0andpisodd transformations w71, p§~l and (because of the suspension) -Bpsy, Tespectively. The
i=1 ' left-hand squere commubtes up to homotopy since Trr'ly = hyw. Hence there exists an

s Tl .
(111} Qlx+y) = Oy - i x®@y) w2 Tug (B x) @6y if « = Oand p = 2 element ¢ making the other two squares commute, and we have -, 1w =(Iglyxg. Now
le

the map

+ if o = 1.
v * £a 2 M) » KaZZ

{iv}) let k ¢ Z. Then mekes the middle square commute, hemee ¢ - Iz restrlets trivially to Mg, ». Thus
z - L2 extends to a map
£:1%M, » KALZ
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with Bpo1f = & ~ Bz Since B,.q vanlshes on Ky(:Z;r~1) we have ¢ = fa. Thus .
-Bp_1IW = E{gge} and the resuit follows.
Lemma 7.5, If £:X + KAY is any msp then fyy commutes with w, f,., Dx and E.

The proof of 7.5 is trivial.
3.2(4v).

Before proceeding we use 7.5 to dispose of

Proof of 3.2{iv}. For any x ¢Ky(¥X;r-1) and ¥ XKyx{Y;r} there exist maps

x -
£izl |Mr_1 > KAX and g:z‘yimr > KaY with f**zix!ur_l = ¥ end g**z!”'ur = y.

Thus by 7.5 and 1.3(3ii) we mey assume X = Elleral and ¥ = zl?fer with x m?:lxlur

and ¥y = § y|u.'[.. By 3.2{vi) we may assume |x| = ly| = 0. Clearly the set

{ux'—-l ® W By @ "Brur}

is a subbasis for Mr—-lA M,. Hence by 3.9 we have

{1) (p*ur__l) ® w, = alpd,k(urm1 ® "ur) + azf;rp*(urm:i @ nsrur)

for some 87 ,89.€ Zpr—-l‘ Applying n# to each side gives

Py @ LSS LN | @ iy, ¥ 8231'—1(“1-—1 ® 1‘fmr)

= 8P, g ® Uyt apB, W @ TR, .
Hence as = 0. Now applying (ja f)x to each side of equation (1) gives
plo®@u) » apelu®@u) = a;plu@ w

in KO(DPS" DPS;I') R

pe Henmee a; =1 in Zpr-l'

P
Next we give the proof of 7.3 for r =
similer to that just given for 3.2(iv).
7.5 we may assume in each part except (iii) that X is EC‘MI. and that x is the
fundamental class I™w..
(i}, If & = 1 the result holds by Definition 7.2.
the map

PO.

z
jip):Ko{Mip};?_l) P > KO(SO;T—})-

This 1 monic when p ie odd and has kernel generated by 2r“2"(3rur)(2) when p = 2.

The result follows since 3?%?’ = U KO(SO;r) and

-1

The proof of eamch part will be quite :
First we observe that by 1.3, 1.4, 1.5 and

Suppose o = O and consider .

335

B o, = 00,0 = e = Dy

the last equality is 5.7(iv).

(1i). ILet a = 1, By 7.1 it suffices to show thai
. (Dpj)*thZur = (Dpj)*QﬁEur
and that
'r*erS:ur = -:*erxur .

This second equation foliows from part (i) and the firet from 5.7(i). The. case

= 0 is similar.

(13i). Let ¢ = O with p odd. By 1.3, 1.4 and 7.5 we may assume that X is

MrVMr with x and 3 being the fundamental classes of the two summands. Let

: 7

F:\/
i=0

be the equivalence of IT.1.1 and let {:M. + M,v M, be the pinch map.

'(Dpf)*caur = Q{x + y), and it suffices to show that

DyM, A D M > D (v M)

Then

. -1
-1 ” 1. {1) (p-1)

Fy (Dpf)*Qur *Qu ®u+u®Q - iz}_ > {Flrun” @1y

since Fy applied to the right side of this equation clearly gives the right side of
:the desired formuls. Now the projecition of F“l

‘the transfer

o DPf on the i-th wedge summand is

Ti’p_i : Der + DiMrA p—«:LMr N

When 1 is O or p this transfer is the evident natural equivalence, hence it guffices
to show

(1} (p-1}
T

; 1
(2) Gy o_ghs@uy = - m (?]m*ur ® wu

P

for 0 < 4 < p. Now the tramafer

. {p}
'DiMrA D .M +M

T'
i,p-4 p-i'r r

induces a monomorphism since the order of 71 g ¥ xp—i is prime to p for 0 < 1 < p.
We have

(1] gt

- - ip) ~
ip-t )*Qur = T*Qur = ~(p—1)lur

i,p-i
by part (i) while

(r‘ilp_i)ﬁm*uii) ® m*uip-i)] = il(p—i}lul(,p}



" 338 337

by the double coset formula. Equation (2) follows. The proof when p = 2 or g = 1 ;

]Zn particular, when 8 = r-1 the map (Dpf)* is zero, and since ]_{R(Dps5r'1) = 0 we see
ig similar.

_ that
Part (iv} follows from {iii) by induction on k. When p = 2 and o = O we nead - By 1Ky (O5r-10 > Kl{zD}’S;rml)
-2 (2) _

(2} -
to know that 2 m*{Brx) 0. If v > 2 this is evident since i*(BrX) hag s an isomorphisn, Thus there s a wnique w ¢ Ky(G5r-1) with hw = 50u. Letbing
order 2 by 3.2(viii}. If r = 2 then by 6.4(1ii) we have
¥ 5 ifu e Ky (¥1D5;2r-2)
1*(11823()(2) = QB,2ywB,x = O. %

#

“and .z = pQu ¥ e KD S;r-1)

(vl. Iet a = 0. By 7.1 is suffices to show

e have frr"ly = hyw and pi—lzz = (D f},y, hence by lemma 7.4 we conclude that
(2D J)ya,2Qu = Qiw = in ¥, {C;r~1} F

D T BaqW = ExZ 1{C;r-11,
and T*A*EQur = 0. Next we shall show that yyw = Qz:ur. Assuming this for the moment, we have

The first equation is Immediate from 7.2 and 5.7(ii1). For the second, consider the - )

- - - - (p
B QB0 2 Yo W ¥ Yy = (Dpi}*z. pOB u + miyle u )
diagram

1 A 1

5 ADPMT e e VIR £ NMI_) “yhich gives (vi) when @ = 1. To show yyw = Qiu,, we must show that (Dpj}*y*w = gu
l 1At " l ‘and Tyyxw = 0. The first equation is immediate from the disgram and part (v). For
. 4
SlA M{p) Al (SlAM )(P) . _the second, we observe that Dpf and vy are obtained by applying EEP /\z () o
T b

: ertain Ep—equivariant. maps F and I', so that by naturality of  we navB the
following commutative diagram of nonequivarisnt speetra.

Here the map a' is induced by the diagonal of s, By definition, the map A 1s
obtained by aplying the functor E2; A, ()} to the map of & ~spectra

5 D ¢ == Ez;,\z OF ———F 3 CF
p
(p) {p}
Sy A MR s (5 AM P
+
induced by the diagonal of Sl. Hence the diagram commutes by nsturality of 7. But Y Ex Agpr r

the diagonal map of S1 is nonequivariantly trivial, bence ryiy IQu, = 0 as

required. The proof when o = 1 is similar. DsM = ErTA . (5M }(p) T (sM )(p)
»"'r ) zp T T

{vi). Suppose first that a = 1. Consider the following disgram
Tmus it suffices to show Fyty, = O on E;(C;r-l). As 2 nonequivariant map F is the
£ : .
4

B8 D 8 g o, h D 8 ap S + 8 of degree Ppr’ hence the cofiber CF is nonequivariantly equlvaient te
P P P g EMPI.. The resuliing z?maction'is clearly trivial on KO(EMpx.;pr), hence also on
b Pi Y A '-Kl(EMPr;pr) gince the Bockstein 51)1' is an isomorphism between these two groups.
A D i * Thus
1 .
DM, ——EB—a D § (p)
T hs ?*:Kl(szrmr) > Kl((zMI_) ;pr)

. r :
Here £:8 » § bas degree p and the top row is the cofider sequence of Dpf' e map lands in the £ ~invariant subgroup. We clalm that this subgroup is generated by the

v is that constructed in I11.3.8, where 1t was called §, and the diasgram commutes. P

element
For any s > 1 the map

P2l ) @ (8 2u )P

{Dpf)*:KO(DPS;s} + KO({}PS;S)

iwhen p 1s odd and by this element together with
is given by the formula {Dyf)yn = PP and
r-1 r
2777, 2 iz ) @ (zu )]
Pl . 2y T r
(Dyfhatu = QlpTu) = pfou - ¥ - p" 7l
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when p = 2. From this it will follow that “pr~r+l vanilshes on this subgroup aﬁd:
therefore that I'y vanishes on Kl(prp;r“l), since wPrT*L maps onto the laiter
group; thus we will have shown TIytyW = O ss required. To verify the claim we
cbaerve that the set

c&éles since t%ey clearly 1ift to KG(SPMT;rnl). Next we bave .

d ﬂ?_BQX = ﬁrMBB r-3

= F-3 -
r_zQx = ermzx 7

Qpy = 0,

here the 2nd 4ng 4th equalities follow from 7.3(vi) and 7.3(iv) respectively.

u @ X e @x | % = fu or :
o, ®@x, ® @ g | i r Bptuy) “aimilarly,
r

a7y = a2 oy = R, P -

is a subbasis for (EMr}(p). Using the basis for Kl((EMr}(P);Pr) glven by 3.9, W o.

see at once that the elements : ‘
This completes the induective proof of 7.1 and 7.3.
. = pPT=T {p-1}

=py (B ) ® (8 ) i

.

pr-r -l (1) (p-i-1)
and z, = BP ¥ L@ [igl (Brﬂur) ®zu, ® (g 1u ) H

Next we shall prove the extermal version of 3.3. Rether than write out the
omplete 1ist of external properties, we give rules for chenging the internal
are a basis for the I, x 5, y invariant subgroup. Now if T is the map switehing thé: _statements to their erternal analogs. Ml internal products and Dyer-Lashof
Pirat two factors of (zMr)? : Perations are to be changed to external ones, with the map 14 prefixed to any

' wfold product which is to lie in K*(DpX;r}. The map 84 1s to be prefixed to the
‘left~hand side of each Cartan formula. In the sisbility formulas, ¢ 1s to be
‘changed to & and Ay prefized to the lefi-hand side. These conventions give the

orrect external analog for each part of 3.3 except for part {ii) which has no

P) we have TyZ, = 27 and

prer

2 = %y = 26Px I(Eur)(Z) ® (Brzur}(P—E)l

Tym ;

the eleim follows.

Finally, we must prove part (vi} with a = 0. DBy 7.1 we have xternal analog.

{p-1}
{3} B = a,Q8 0 + a {u u )
r—lQur 1%rr 2"t Yy ® Bplly ‘Proposition 7.6. The external Q-operation satisfies the external verslons of each

for some aq, a, ¢ Zpr~1‘ Applying Ayl and using part (v) gives ‘part of Theorem 3.3 except part {ii).

By QEu, = allnl*{BrZur)(p) + pes_tu l. Before begimning the proof we need a lemma to deal with the prime 2. {(See

. 11.4.3 for another proof of this lemma,)
Comparing this with the case o = 1 of (vi) glves a; = 1. Now applylng ty to (3) and 8

uging part (1) glves g
lemma 7.7. Tet X be any spectrum. The sequence

Pil NES)

(p-i-1})
i50 T @ Bou, @ uy =

o (ply . _ 2
(pl}l(ﬁr_lrr{uz_ ) 82(p1)1w£ BDZX——‘iai)zwafmwﬁle(XAx)%ngzx
{p}

Vel B pnsr{u;p)) and 1t follows that a; = -p as required.

But g, 4 mlu ;18 2 cofibering.

Proof. Consider the cofiber sequence
This completes the case ¢ = To of 7.3, Next we must show 7.1 for r = r0+l > 3.

Tt suffices to show that EX = E°°1 in the K-theory BSS for DPMr and DpEMr‘ We shall
give the proof for Qp , the other case being similar. Iet x asnd y denote the
elements wu, and @Bruf. by 6.1,7.2 and 7.3(1ii) we see that the set

: ('-4} Sl A 1. al 2 - S2

—2 %g8"A 8 «mmwszns

f Zy-spaces. Here 22 sets irivially on the first and fourth terms and by switching
actors (respectively, wedge summands) in the second and third terms. HNow stagl is
. the one-point compactification sV or the regular representation V of Z,, and it is

asy to see that the second map in the sequence {4} sisbilizes to the iransfer
¥ .
3

{“r—Zt*x(p), "r-BQx, "r—z (p-1})

Lx P ey, TP

1s a basls for Ky(D| 31}, Sinee all elements of this basis 1ift to K*(Dp ;r-2) we

+ ZEI~SV. The sequence of the lemma is obtained by applying the functor
nave EL = 2 in the BSS. The elements n7~2x(®) ang T2(xP1) @ y) arve (r-2)-

: 4
-H%Az(?AXAm to the sequence {4).
; 2
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Next we turn to the proof of 7.6. Part (i} is trivial and parts (111), (v) ang

(viii) are contained in 7.3.

{iv}. We may assume X = £,, x = ®w.. Suppose o = 1. By 7.1 and 7.3(vi) e

see that the set
(@, 1yltm) ® (8,50, "1 a8 pyru )
1 r rr By PxE Uy
is a subbasis of height r for DPEMr, hence the set
{p-1}
{pyREu,, a*i(ﬂuzj @ (Brﬁur) i}

is a basis for KltDpzMr5r)' It follows that the map

. 1
(D)5 ® 2, ¢ Ky (DBt sr) —K (D 8500 + X (o) )

is monic. Now

(Dpj)*Qp*z:ur Qpydyiu,) = Q(pEu) =pQzu

¢ if r =1

(DoddepyQon, AT r 2 2,

and r*Qp*zur =0 for all r. The result follows, and the case ¢ = 0 is similar.

Next we prove part {x}. The proof is by induction on r.
1*x(2) = QBa24x by 6.4(ii1). Suppose r > 2. We may sssume x

{Qzu,,, 1y (Zu, @ B 20 ),Q6,, 5 2Tu )
1s & subbasis of height r for LszT, hence by 3.9 we have

(2)
(5} 1 (zu,,)

- alﬁr2*QEur * a2Q8r+12*2ur

with ay ¢ erul and a4 ¢ er. Applying 1y to (5} gives
0 = -aylppiu,) (2

hence a5 = 0. Now applying = to {5) gives

{6} 1*(nzur)(2) = 838, 1Qu.

If r = 2 the Inductive hypothesis gives

(2}

1glnin,,) = QBRy(niu,) = QI2E,5u,)

{where the third and fourth equalities follow from 7.3{iv} and 7.3({vi)} and we
conclude that #; = 1 as required. If r 2 3 the inductive hypothesis gives

= nl*(822u2

If r = 1 we have
Lo, The set

52)

= BQzu2

34

1*(nzur)(2) = Qr_BBr_12*Q(w:ur) = 2r—28r“1QZur -

2ra2

aﬂa_comp&ring with (6} gives ay = as required.

. HNext we show part {vi). This will follow immediately from 7.3{3i1) and 7.3(iv)
onse we show that o = 1 in 7.3(i). Ietting X = M, in 7.7, we have

= (221)*T*Q22u

<
1

r
(2)

3

@2 (s gu ) ?
(2)

(zzl)*;[~(zzur)

Eznt*[(zur)(2} + mzr"z(srzur)

i

I

By part {ix}, we have

r-2 rm2 {2}

{2) _ o
migliu ) =278, s = 27 T, (e g ) # 0,

Hence « # 0 as required.

: (vii) Let p = 2; the odd primary case 1ls similar and somewhat easler. First
et |x| = lyl = 1. We may assume x = Iu,, y = Iu,. We assume by induction on r
nat we have chosen mod 2° multiplications for s < r such that the desired formuia
olds. We begin by giving a basis for

KO{DZEMT " DziMr;I‘"'l) .

(e, @ 800 ),my (8,200 ) qo 08 2u )

15 a subbagis of height r-1 for DoiM, and in particular it is a dasls for
Kg(DaiMn;r-1). By 5.8 we have

K*(DzzMthQEMr;r-l) £ K*(D2E:Mr;r-1) ® K*{DzzMr;rnl)

with the tensor produci taken in the Zy-graded sense. We therefore obtaln a basls
or Ky{DaEM, ~DoEM;7-1) by taking all 16 external preducts of the elements in the
et given above. It wlll be convenient to denote i, by x in the first factor and
bj ¥ in the second factor. Let a;,...,8y ezgr_l be the coefficients of 6xQ(x ® y)
th respect to ithis basis, so that we have

Syx @) = a3, (x @ 6.x) @ myly ©8.y) + ,x @ my(y @ py)
+ aBm*(x ®p X O +a,x® + a5m*(3rx}{2) @ m*{sry)(‘?)

+ aém*(srx)(z) @ QY + e B x ® m*(ﬁry}{g) +a 08 x @ Q8 Y.

e claim first that 2a5 = 0, so that ag is either 272 or 0. When r = 2 this is
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trivial, while for r 2 3 it follows from the inductive hypothesls and the equation.

U Next let |x| = 1, |y| = 0. Consider the following commutative diagram
H{x @y) = Qnx @ ny). Now ag in Remark 3.4{iv) we see that changing the choiee o '

mod 27 multiplication changes the value of a5 without changing the other a;. We can’ ih, (X AY) _—i DX ALY
therefore choose the mod 27 multiplication for which a5 ® 0. (When p 1g odd the
A
commutativity of the multiplications gilves &g = 0.} rA T Al
A \
It remains to determine the other coefficients in equation (7). If we apply D, (ZXAY) DX ALDY
the map {Doj ADyjly to this equation, the left side hecomes QRu @ Qfu.by 5.7{vii}
while the right aide becomes a,Q%u ® Qru. Hence g, = 1. Next consider the ‘ DE(TA“ tas
following diegram D;(XA P4 JE. R DX A D,IY .
8 - .
Dy X AY) > DX abyY If we let X = M,, ¥ = 5"IM, we obtain
l N Tal o) 5xID,(TAL) ] (8,300=00, ® T70) = (Las)f(Ta1),(26),Q0-20, @ £ u,)

1a?al 1a
EAYAXAY Xaxay Y x'\x"sz iWe can evaluate the left side of (10) using 7.3{v}; the result is S*Q(Eur® ur).

On the other hand we can evaluate the right side of (10) by using 7.3{v} and the

The commutativity of this diagram will be proved In VI.3.10 of the sequel. With ':_'part of 7.6(vil) just shown; the result is

X=1= :Mz, we obtain .
{21} 2 Pl (23
Qzur ® myu m*(srﬁur) ® QBrur.

" + 2Qzur @Qur + 2

(tal)y 8, Ax @y = 1a1), {(1aTal) 1,AxRDy)
: Thus equation {10} gives the desired formula when x = I, and ¥ = u,, and therfore

“this formula holds in general.

(Iahy(IaTallal-x @y @x @y + 2" %6 (x @y ® 5 (x® 7)1

Finally, let |x| = |y| = 0. We may assume x = w., y = v.. The set

(2) 2r~2x{2) )(2)

@

+

y{2)

{Lardgnlx ®(Br.'¥

{m*x{p) ® m*y(p),Qx ® m*y{P) s m*x(P) ®Qy, &,

N 2r«23rx® x@y D8y + 2T-2, ©8x@5yOY + 2:t'-~2(3rx}{2) ®y(2)]
T (x @ 8.x) @ m,(y @ 8.¥),06,%x ® myly ®8y),

e (2) , yr2 (2) ,(2)

@ g,y + 2 ® my sy

Ty (x @ B X) @ Q8,y, UBx® QBY)

# 2" P @ 8 x) @My @8 y) + 2" Pnip )P @ m P

is a basis for K (DM, ADM ;r-1). ILet a;,...,8s be the coefficients of §,Q(x ® y}
2 2 2 1+ 28 *

2 in this basis. By 5.7(v} we have
= 21'"2"1* w(x @ Brx) ® i ly ® Bry) + 221"411(31_1()(2} @ m*(sry}(z), :

D JAD)8,0x @) = 6 QUuUB U » W@ n * 7@ + P Qu,

with the last equation following from part (x). Now applying (v~ 1)y to the right “hence a; = 0, a, = ag = 1 and a, = 2. Diagram (8) gives
slde of {7) and comparing coeffliclents glves ay = 2”"’2, g = 0, ay = 2274 gng _
8g = 2a4. Similarly, applying (lat)y to equation {7) gives 25 = 0 and 3¢ = 22r~4’ '

whence ag = 2ag = 0. This completes the proof of part (vii) when ix}] = jyf = 1.

{rAl) 5,8z @ y) = (a1l 8,00 ® )
©and it follows that as = 272 and ag = 0. Similarly,
(TAath s, Ux @ y) = (1A 1), 1, Qx B Y)

and hence ay = 0. Thus we have
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- (2) (2)
(31} 5,Q0x @7} =@ m,y ™+ xS @y + 2 @ Oy
+ 2"‘"2m*(x ® B.x) @ 1,y ®@8Y) +a08x® Q8.¥

and it remains to determine 4g. Consider the following commutative diagram

I8
I:DZ(X AY) ED, X ADY
(12} A Aal
§
D2(EXAY) DZE;X ADZY

With X = Y = Mr we have
(13) (aAal},08,0(x x ¥y} = 8,4,70(x ®y).

We evaluate the left side of (13) using 7.3(v}) and equation (11}; the result is

(2)

Qzx ® m,y' % + 2x @ qy + agmi (B, 1) @ QB.Y + 22,08 Ix @ U8 Y.

fvaluating the right side of (13) using 7.34(v) and the part of 7.6(vii) already
shown gives

Qx ® m*y(z) + 2QIx @ Qy +22r—4m*(ﬂrzx)(2} ® QB.¥.
Hence ag = 2°T=4 45 pequired.

(ix) We have szeen in VIII.7.4 that wk is an H_ ring map of K(p) for k prime
to p. Hence we have

(Epf)**apk - ¢k{ﬁ?f}** Ky (D Y57-1) » Ky(D Xr-1)

for any map £:Y¥ » KAX. Thus we may assume X = zaur with o = O or 1. TFirst let
‘a = 0. Since the map

(Dpj)*:Ko(Der;r~1} * KO(DPS;r—l)

is monic and since wku = U, it suffices to show kau = Qu. Dmally, it suffices to
show that ¢k is the identity on KO(BZp;r—l). But this is immediate from 5.3 since
¢k commutes with 7. Now, if a = 1 we have

X, - - oo - -
wANL, = A QUL = A, TyQu, = A 3Qu = Q.

This completes the proof of 7.6.

Next we must prove 3.3. Hach part of this theorem is in faet an easy

consequence of the corresponding external formula excepi for parts (ii) and

(viii}. ¥For part {ii) we mey clearly assume X = S, and it suffices to show that Qu

‘sequence w

345

s + 0 . .
goes to zero under the nontrivial map from BEp to §°. But the induced map

Rs%r) » Pt ir)

;20 _I7n, eyt AL

&s naturaily split by the evident retraction wixt - . m particular, there 1s a

npatural transformation
vin®x » ¢

'and the Ineclusion

K* {X;r} C K* (X;r)

can be identified with vg. Now let Y be an H, space, let Z = q¥, and let g2 + Y

° be the counit. Then

a:ﬁa(uY;r) + Kq@l(Y;r}
is the composite vyexl.

Let x eﬁo(ﬂY;r); the case jx| =1 is simi}ar.+ ?iritowe mist show that Qx‘ls
in ¥ (a¥;r-1), i.e., that uxQx = 0. But uil (@) » 8 is clearly an H, ring
map, :né therefore u,Qx = Quux = 0. HNext we sitate the required formula more

precisely as follows:
(14) oA Quyx = Qox.

Since uyx spplied to each side of (14) gives zerc, it suffices to show that Ay makes
the two sides of (i4) equal, i.e., thgt

E*ZA*QV*X # Ry Qe X,

This in turn follows at once from 7.3(v) and the commutativlivy of the following
disgram in hd {where we suppress i* to simplify the notation).
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D Z 3
E s DPEZ

l Dpa

by
P

I
[ 4 J, PV
(15} D Z Dp(?i+)

Le

iz Y+

E

ZDpv

s 4
£(z") LN 2

Here ¢ and £ are the H_ structural maps for Z* and Y respectively. In order to see
that (15} commutes we need two further diasgrams. The first 1s the following in the:
catgory of gpaces.

o N D+ I3 . p
xDP(z) ;:I(Exp " 7)) = B 5 (52)
P P “
npuzzf'“l/so
(16) g
DP(E+)

2(zT) — Bz By b Bi, *; P = p_(vh)/8%

P

Here A 1s the evident diagonal map. This diagram commutes by definition of r; see ™
(69, lemma 1.5]. Next we have the followlng diagram in-};A’ (where we again suppress :

¥},
A
Wal 7 £
o DP(WAZ)
Anl /w\l)
P
A
D Z P
Ul D22
(17} D v
D
22Dpv 1 @
1AD +
Pv Dpl(I:Z) i Dp(lf\v}
+ A + 0
D 2
o ?)p[(EZ) /s
AAl
9§ 4

4+ A +
WaD
A p(Z ) DP(WAZ )

. either of the meps A:(SlAZ

C i
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Hei'e W= (Sl)+ and the uniabeled arrows are the evident quotient maps. It suffices

to show that the immer square of this disgram commutes, sinece combining it with

diagram (16} gives diagram (15). Since

AaliWa DPZ - IZDPZ

is a split surjection, the commutativity of the inmer square will be a consequence
. of the commutativity of the resi of the disgram. Fach of the remaining parts
:'c‘learly commutes except that marked @. To show that @ computes 1% suffices to

ghow that the composites

WAz 220 wazt = (88 2)" — (sha 2"
and Waz 22l g Y gtany?

are equal. Bub is 1s easy to see that these composites agree when composed with

¥ 5aZ and u:(S*A 207 » 80, they are therefore

equal since wedges are products in ®8. This cocmpletes the proof of 3.3.

¥We conelude this section with the proof of 1.6. First we calculate
" = {p)
B PyQEu = 8 QpeRu = 1,08 Tu ) *PAB . Pyl
in KO{DPEMI,;I'). Multipiying by pt-L gives
_oor=l _ .11 (p}
O=1p Brp*Qzur =D z*{srzur) ,

hence t*(BrZur)(P) hag order X pr'l. Now suppose K, has an H, structure. Let

:H:S + K, be the wit map for this structure. Then W= ou eKn(S;r) for some ¢
prime to p. let f be the composite

= unl "
M, = SAzMr——-»KAzh&P = K,

and let F be the composite

{D_£), £y
KO(DPZMr;r) —E—-——»KO(DPKr;r} _“"KO(KI.W) ‘"""""'-"KO(S;I‘),

where the last map is induced by %the product for Kr We claim

cpﬂFx*(Brzur)(p} = u, which contradicts the fact that 1*(8rzur)(P) has order
F~1, The claim is a eonsequence of the commutativity of the following dlagram
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= (p)
s e s ag'P unrlel) 7 g agen (@)
T T
\ In: 1Az
waD (cl)
sas 225 saps 14 > X_aD M
— j4 T pr
a _ _
1Ay unDpu ll AD £
r
b ) Lag
Kr b Kr!\ Kr n Krl\ DPKI‘

Here the composite {(lat} o [EA(ci)(p]] represents ct*(cBrZur)(P) and the
diagram eommuies eince MJ is an H, ring map. ’

8. Construction and properties of R and 2 .

In this section we construct R and J and prove the external and internal
versions of 3.6 and 3.7.

We hegin with the consiruction.

Lemms 8.1, The map
814Ky (DPZMI'_;rﬂ y — KO(DpzMr ;T+1)
is an iscmorphism.

lemma 8.2, The map

(Dpj)*:Ko(Der;s) *—PKO(EPS;S}
is monic if s = r or 8 = r+i, and n ¢ KO(DPS;r+1} is in the image of (Dpj}*.

Definition 8.3, Iet e« I{l(DpEMr;Nl) be the unique element with

2
Bpe1® = er*ap*xur. Let ef ¢ KO(Der;rﬂ) be the wmique element with (Dp,])*e' = 7.
Then
TR:K (X)) -+ K}_(Dpx;rﬂ.)
and

DK (XKsr) » KO(DPX;J:"PIL)

are the operations Qe and Qe,.

Note that e and e' are equsl %o quT and 2;11!. respectively. We shall always
use the latter notations for these elements. Also note that Qu = n in KO(BZP;NI).
Proof of 8.1. let r > 2; the case r = 1 1Is similar.

Dpwr‘ By 6.1 the set

Consider the K-theory BSS for
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' _{nr'zaxuz_,nr'zqarzur,nr'l1*Izur ® (srzur)(p“}‘) ],nr“le.,*{srzur}(p)}

;

_:' ig & basis for EL. By 7.6(v) we have

d
r—

(1) lnr'zaxur = ﬁr"lx*(ﬁrzur){p),

‘while clearly dr_lnr‘gQBrzuT =0 and

Tl (p~1)y _ @,
; . d, 3% glie, @ (s gu ) 1 =0;
henee the set

Tl

{n QBrEur,nr-ll*[Eur ® (Brzur)P'll}

ig a basis for . Now dr-sr"zQBrzuT = 0 by 7.6(v), and

drﬂr-il*[ﬂur ® (Srur}(p‘"l)} = “r~1l*(£rmr)(p) ,

"which 1 zero in E'. fThus there is an element x in Kl(D?EMT;Ml) with

Ty = nr'11*{2:ur ® (Brxur)(pml}],

2
and the sei {er,x,QBr +2P*Eur} 1s a subbasls of heiglzrt r+l for EPEMr. In
particular the group Ka(DpzMr;ri-l) has the seme order p°F for @ = O and « = 1. The
lemna will foliow if we show that B,, & Zp maps onto KO(DPZMr3r+1) ® Zp. But the
map

r . . « .
T ® ZP.KO{DPxMr,r+1) & Zp » K. (D M ;1) & ZP KO(D ™ ;1)

o M r? P’

is an isomorphism, hence it sufflces to show that wrsrﬂ_ maps onto Ko{mer?l)' New

- equation {1) shows that nr"l1*(3rzur)(p) is In the image of nrﬁrﬂ, and it
- vemaing to consider nr'zQBrxur. By the exact sequence
r vl
K, (DM _jr+1) — frl K (D_IM_31) —mmsK_ (D IM_;1+2)
1 pmr’r 0 pz r’ (o }gz Pk
¢ it suffices to show p§+l"r«2QBrmr = 0, But 7.6(vi) givesn
« anFtl 3 . 3 _ yPrtp~l T 2 {p)
0= Qp "8, 40fu, = P TQB ,Dyiu, {p P 1{B, o Pein,)

+1 ]l e
P pdnu, = gy

QBrEur

. which completes the proof.

. -1 r-1 {p-1}
Proof of 8.2. It is easy to see that =¥ 3r1*UT(P) and 1 Bra*iur ® Brur) are
. #zero, hence by the exact sequence
. ﬁr-lsr
Ka(Der;rd'l) —--~"" Z{G(’Der;r) WKuwl(Der’l)
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' S ) B . {p-1) .
there exist elements x and y with mx Lyl and 1y = 1*£ur ® Brur].

Clearly the set {x,y,Qur} is a subbasis of height r+1 for Der‘ In particular the

set {x,piQur} ig a basis for KO(DPMr;r+1). Sinee {n,Qu} 1z a basis for
KO(DPS;r+1) we have

(2} (Dp,j)*x =an + a2Qu.

where a;, a, Zpr+1' Applying w to both sides of (2) gives

n = (DPJ)*I*U\I(‘P} = apn + a,0u

in KO(DPS;r}, hence a, =1 + aipr gnd a, mgaépr’ for some a&,8y e 2.
together with the equation (Dpj)*p*Qur = p Qu, shows that (Ebj)* is monie on
KO(DP se+l). A similar argument shows that (ij)* is monic on KG(Der;r). i

r > 2 we have

-1 -
(Dpj)*[x - aipr p*l*uip) - alp

so that n EKO{DPS;r+1} is in the image of (9?3)* as required. If r = @ we must chow

(Dpj}*(Dpé')*(x) {1 + &iP)n + aépQu

ki

(Dl el (1 + apuf®) + agp 0l
Sinece (Epj)* is monic we conclude
(D 3, {x) = (1 + a‘)u(p) + g}
o8 Y paj i, 2Py -
Hence
{3) nBz(Dpj'}*(x) = ayBQu, = 2,080, .

On the other hand, 6.i{vi) implies that 1*[u{?—1) ® pw ] generates K}(Dle;ll,

hence ﬁBzx = c1*(u§pml) ® Bull for some ¢ ¢ Zp and

(4) W8, (D 3 (X0 = (030, (uB%) = er,t(gu) P @ 1ypu1 = 0
since jisu, = 0. Comparing (3) and {4) glves a, = 0 and thus
(Dpj)*[x - aip*l*uip)] =1

which compietes the proof.

Next we shall prove the external analogs of 3.6 and 3.7. The conventions
preceding 7.6 give the correct external version of each statement except for

3.6{viii) and 3.7(ix). For 3.6(viii) we must prefix (BP P)* to both sides, where
L]

This fact,

31

is fbe natursl mep D DX » D X defined in I.2, and for 3.70ix) we prefix

QP D

;P P
}x to the left and {“p,p,.;.,p)* to the right.

®p,p

Proposition 8.4. The operation

R:Kltx;r)—*bKl{DpX;r+l}

‘satisfies the external analog of each part of 3.6.

{Proyosition 8.5. The operation
4 :Kpi¥sr) » KO(DPX;r+1)

satisfies the external analog of each part of 3.7.

Theorems 3.6 and 3.7 will follow a% once from 8.4 and 8.5 by the same proof
“given for 3.3. The rest of this section ie devoted to the proofs of 8.4 and 8.5.

“Proof of 8.4. Part (i} is trivial. In eaeh of the remaining parts except (v} we
‘mey assume X = IM, with x = Iu,; part {iv) now follows from Definition £.3.

Observe that by the proof of 8.1 the set {Qﬁur,Rzur} is & subbasis for DpzMr if

‘r22while {Rfu} 1s a subbasis for DaM;.
# (1ii). The mep
ﬂ3r+2:Kl(DpzMr;I‘+2) S KO(DPEMP;r+1)

Tis an isomorphism since it takes the basis for the first group to that for the

~gecond. Now

By BRI, = ﬁQBr+3922ur = Qﬁr+2p§$ur
" 8r*lREur = ﬁgr+29*qur
;&nd the result follows.
. (iv}. The map
Br+lp*:K1{DpﬁMr;r) ¥ KO(DPEMr;r+l)

is monic since it takes the basis elements uﬂzu? and {when r > 2) p*QXﬂr to
psrflﬁxur and Br+1pinur respectively. We have

8. .pyrBRIu_ = pe_, . Riu_ = pLB pzzu
1T ¥ p o PBpa PR 2% T

z*(6r+1p*zur)(p)

3

2
Br+lQp*£ur v

(y—l)]

= By Pal@pyBu, - 1 (Iu, ® (8 70 )
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which gives the first formuls. For the second formula, we have

Rutuw = Rp*wzu

Bpe1Px r " Brel RpEu,

r+l

QﬁrizP*(PEu ) Qpﬂr+gp*zu
{p]

4

-1
PQBr+2P*Eur - (P - Ly (B, Dyiu )

2 -1 (p)
8yp QIR = o7, (B, PR, P
By PxlQpyBu - PP N1 (B0, ® (8 u ) (p-tly)

and the result follows.

{(vl. Iet z denote su, and fix i with 0 < i <p. 4s in the proof of 7.3(iii)

it suffices to show that the equation

(i-1) (p-1)
{5) (Ti,p-ij*ﬁx = a11pes ® (B, 1Pya) J @ 1,08, 42}

. e
e Pelig(z® (8,2 ) @ (20 (Brz)(P =ty

holds dn K; (DyEM. A Dy oM. ;T+1) with a, = - *~( } and a, = (® } First

observe that the group Ky(DyiM.;1) is the Ll~coinvar1&nt quotlent of Kyl {EMT)(i)'l)

= Ky(EM,;1) @)1, so that the set {1,(z® (8 z} (i~ 1) is a subbasis for DyIM..
Thus the set
felz @ (8213 @ 1,8, P Y s e 6 @l e (6,2 P

is a subbasis for DizMrA _1IM, and we see that equation (3} holds for some

8;,85¢ Zpr. Now applying (z )*S to hoth sides of (5) gives

1,p-1 % pe}

- 4 . (p)
*sr+1 = 1!(p~1)!a1(6r+1§*z} .

On the other hand we have

Teboy B2 © T*Q6r+2p§z = «(pml)!(Br*lp*z)(P);
hence a; = - E%%;%%%?-= - %'[ ? ). HNext we apply % to {5) %o get
(1-1} {p-i}
(6) (x5 o g xBe = = Y Yylz @ (8,2) 1@ 1yle,2)?

e i@ (g, P11

r oAy, (B2)
2 @ (8.2 T 1@ e 0 P,

But we have

gl
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i,p-1 Tx

-

'thdumz=(T @%2—1#z®(ﬁzﬁplk

(p~1)
~(rg peglerelz @ (82 T

#

- nze (Brz){i"l)} ® 1*(Brz){p-i)

. (P;}.)I*(Brz}(i} ® 1*{.2@ (Brz;(P"i'—l)}’

where the last equality follows from the double-coset formula; comparing with (6)
gives a, = - P;l ] as required.

.

(vi). Zet r > 2; the ease r = 1 is similar. Iet f be the composite

-2
z“lM? = §7%A a1 SRS KAEMI_ By A

»

“where B is the Bott equivalence. We have f**z“lur = IW,, hence it suffices to prove

-1 _ {p) 2
L LR(E ur) T Dylgu ot p*Qur.
Now

#

(Dpj)*A*R(E"lur) A*zR(ﬁ"lu} = A*ER{HE—lu)
= A*EQpﬁmlu = pA*zQz”lu

= P¥*G{p) + p2Qu

= (0304 (peru®) « pdu);
the result follows since (Dpj)* is monic by 8.2.

X _k ok 2
(vii) 8 ¥ RIu, = ¢ 8 Riu. = Q8 DR,

2.k
U8y pPyE¥ Uy = B REuL
the last equality following from the faet that ¢ “r o The result now follows
hy 8.1.

(viii). Iet @ denote fu,, and abbreviate (B ) by By and (qp p}* by ax
(the reader is requested to remember that By is not a Bockstein). We must show

o ifr=1
ByQRx =
ByBQz 1f r > 2

in Kl(Dp2 iMu;r).  We shall need the equation

n
(7) 5™ = 7 (Op* m 1 PH BN g (V)
i=1



354

which holde in KQ({DPX){n};r-l) for each x eKO(X;r) provided that p 1s odd (the B
proof is by induction on n from 7.6(11)).

¥irst let r = 1. The set {QRz,RRz} 1s & subbasis for Dprzml, and 1t follows

easily from Proposition 3.9 that the map

2 - .
B4R Ky (DD 3M; 51) —> K, (D D2y 53)

is & menomorphism. Since Kl(DPE IMy;1) is imbedded in Kl(DPDPle;l) by the transfer

we see that
2 . .
BBP*:Kl(Dpzz Ml’l) —~rKO(DP2 le,B)

z .
" is a monomorphism. I% therefore suffices to chow that s*sjp*QRz is zero. We have .

B8040 = 8,800, (Bp,z) by 7.6(iv) and 8.4(111)

- -1
BeBolBrin,s + 21 (Rpya © (8,80y2) P01

ﬂ*sBRlQpiz - 1, (pz ® {sz*z}(P"n)] + pp“18*1*(8322p*z)(p),

where the last two equalities follow from the second and first parts of 8.4{11}.
Now Qpoz = 0 by 7.6(1v), and

- -],
B*BBRE*(P*Z ® (sz*z)(P R a*ﬁ*BBR(p*z @ (sz*z)(P y by I.2.12

= ay8,00(8,732) P by 8.4(1v)

3

pp"ls*z*(%np*z)‘l’) by 8.4(iv) and 1.2.11.
We concliude thet 3*33p§QRz = 0 a8 required, which concludes the case r = 1.
Next let r = 2, We have

76, {08z -~ RQs) = By{QlApgz - 1,0z ® (82} P

- OpyQz * 1,(Qz @)(Br_le)(P"Z))]'

(=015 ® (8.2 P+ ez @ (5 0n P

ay [~8,0{z @ 5rz)(9“l)) + Q2 ® (sr_laz)(?“l)% by I.2.11
and I.2.12.

ayl-Qz ® (at*(ﬁrz)(p})P_l - plz @ G*Q(Brz){P_l)

L3

+ @ ® (1,08 2) P+ pas 2P,

ppdla*(Qﬁapzz)(P} by 7.6{vii} when p = 2 and equation (7) when p is odd

" of 1
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“Wnen p = 2 the last expression is clearly zero, while if p is odd it is zero by (7}.
‘Hence we have

- (8) ' 1By (QRz - RQz) = 0.

A similar caleulation gives

9 6r+2p§8*(QRz - RQz) = 0.

'

To proceed further we need the case k = p2 of 4.1. TFirst we must check that the

" grgument is not circular, since the present result is certainly used in the proof of

4.1. However, it enters only through the proof of 4.7, to pe given in Section 9. An
inspection of Section 9 will show that only the case r = 1 of the present result is

uysed in prbving the case k = pz of 4.7. Thus we may proceed. We suppose r > 3; the

cagse r = 2 differs only silghtly. By Remark 4.2 we obtaln a subbasis

A b o by by by

for Dp2 EMI, with AI"'"Z = {B*QQZ‘})

(1) {p~i-1}

Ap11 ™ {loy(Qz @ (B, ;02) 7" @ (1°8_.Rz) 1] 0<i<p2},

r+l

Bopo ™ (510 ® PR @ (8 1) TV @ (P m) P 1 < < py,

A, = {B4RQz} and A, = {ByRRz}. Therefore the set

(26,000,778, 80z, 1" B, RR2} L 7T A L 2
E

- Br1tr-1,0

is a basis for KltDPZMr51}J and the subset “rnzsr—lAr—l,O ig & basis for the image

r"ZBr_l, hence for the kernel of pﬁnl. By {8) we see that B*(Qaz ~ RQz) 1is

in the image of pi“l, hence there exist constants a,b,c,do,...,dp_2 Zy with
(10) By(QRz ~ ROz} = pﬁ”l[anr"Bs*QQz + bur’ls*RQz

.2 P32 1 i
R SEALTI R L L) 14,02 @ (8,198 " ® (%, re) P11,
=

If we apply Br+2p§ to both sldes of {10} then the left side becomes zero by {9),

. hence we have

- -1 2 +
0 = ap™ %, 078,00 + "t pis,Res + o0 T8 ,6,RR

P2
- z diPr_2
w=() °

b, oPouel0s ® (8 _,00) Y @ (o5, ma) PR,

. Slnece the set A 1s a subbasls this glves s = b=c=dy® ene dpnz = 0 as required.

This completes the proof of 8.4.
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Proof of 8.5. Part (1) is triviael.
{11) We may assume x = w,. We have

(D)1 20, = n = Ll = 0
(p)

hence n&ur = U, by 8.2. If ¢ > 2 then

{Dpjl*ifrur = Jau = du = (Epj)*t*ui,p} ,

hence J.mxr = i*u](_})) by 8.2.

(v} As in the proof of 7.3{iii) it suffices to show

(pul)ip*ui_?) if pisodd orr > 2
e (2) 2002 ifp=2emdr=1
240,77+ (B2 p=2adr=1.

We prove this when p = 2; the odd primary case is similar. The element T*Q.ur is in -

the Ip~invariant ?B‘?group of KG(Ml(_z) ;7+1), and this subgroup has a basis
consisting of 2yqu,  with order 2" and 2r“1{8r+12*ur)(2) ‘with order Z. Thus we have’

(2),

(2)
(11) z*ﬂur = 220 r)

r-l
a22 (Br+12*u

wlth a) € er and &, € Z,.  Now

{2)

I gdu, = (D3l 2w, = Tym = 295

thus applying jLZ) to both sides of (11) glves 2u = 2a;u in K,(S;r+l) so that

a, = i. Next we have
! (2)
24

T
N
r

iftr>2
'E{T*Jnur = T*l*

(2)
(ﬂuz)

if r =1,
nence applying 7 to {11) gives a5 = 0 if r > 2 and ay = 1 Iif r = 1.

(iv) We may assume x = .. Tet r > 2; the case r = 1 is similar. The set
(p) (p-1)
Qo 1eu =, dy(uy @b u )}

is a subbasls of helght r for Dp , hence we have

{p~1)
(12) L alt*(urp © Bu.) + oy pyu,

with a) € 2 pr B € Z rit let J':M. + M,y be the map induced by the inclusion

zprc zprﬂ. Then § o §' = J:M, » 8, hence (3" )y = mup,q and (J')gfpuy, =

PrBpUpsye  Thus

T
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‘ ; . (p)
(Dp‘ji)*ﬂsr*}.ﬂ‘ur = Bl ATy T MRy Ty
' _ (p-1}
B pm*(ur+1 ® Br+1ur+1}

and comparing with (12} gives ay = O. Next we have

= p-1tpa®) = o, P

z‘.*ﬂﬂrd—}.‘a'ur =18, (P11 lp*u(p) T

- ® Brur)
end comparing with (12) gives ay = 1,

{1ii) By part (iv) we see that the set {Qur,a ur} is a subbasis for Der if

r > 2, while {3-ur} is a subbasils for Dle‘ It follows that the map

(Dp,})*:KO{Der;x“rm * KO{DpS;r+2)
is monilc. But

. -1 1
(Dp.])*j.p*ur =dipu) = J {npu) = t*(pu)(p) = P pen = (Dpj)*pp pedu,
and the resuliy follows.

{vi). let p = 2; the odd primary case is similar. First let |x| = |y} =0
with » > 2., We may assume X = W, ¥ = . The set

{9x ® ;y,m*xtz) @, m*y(Z},Qx POy, 2 x5, 127,
2% ® 6, 4,0,0x ® 18, 27,0x ® 6y}
is a subbasis for DM, ~ D.M., hence we have
(13} 8, 2x®y) = 82X @AY+ ay2x @ 4,0y ¢ 334*@{@ 4y
* e b @ Q) *+ 848,41 2X® 8,27
* 8B X @B At B 4B B, By

*ogB Ak ® B A

-with 8,85 ¢ er+l and Bp,83,8,,8g, 87,88 ¢ er_l. Since

oy 2(x B y) = 6*1*(x®y)(2) ® z*xm) ® :*y(2)

we have ag = 85 = ag = 0. The equation
DI ADI N8 R(X®Y) = 8,2U % Sn = n @ n
impiies a; = 1 and a, = iy = 8, = 0. Hence we have
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(14) 5,21 @7) =2x Oy + 858 1 LA B B, 12T _ hence él * 1 and ag = 0. To determine a, and a, we caleulate.

with a5 depending on r. A similar argument shows that (14) holds also when r = i, gzgmla*ﬂ(x ®y) = G*Qgr(x ®y) = ﬁzgr{_llf{x @Ay + b lx ® Gy},
Now let Tl and T2 switeh the factors of MI,"MP and D2MI,AD2M,1,. Then

hence a, = 0 and 8, = 1. Next we calculate

5 2(T, (X @Y} = 1,6, 2x@y) =dy @Ix ~ a8, .47 ® 8, 2x. 14R(x ®@ ¥} = §,1R{x @ ¥)

On the other hand, if r > 2 then = (BX @ 1LY * why Q% ® Qy) + 2r_2sr2*Qx ® "Br+133

(2)

6*3,(T1*(x @y)) = 5,2y @x) =2y @Zx + sy LY ® B, 3%, 1x(B_%) ® Q8

+ RT3 a¥.

T+l

= . =1 th : )
hence 2a5 = O as required. If r en Now the element 2°F 31*(ﬁrx)(2) is zero when T > 3 since 2r-3 > r while when r = 2

, we have
= ®x + ®8
6*9‘('1‘1*{3& By 5*&{3 X 8y X 0 = 2822*QX = 282Q2*X = 21*(82){)(2).

8y Jly @) + 252,23( @ Bzﬁ.x.
Thus applying = to both sides of (15) gives Reg = ag = ag * 0 and ap = oT-2, gy
remains to show ag = 2rer, where e, ¢Z, is the constant in the formula for
S5 {x @y). But this follows from the equaiion

Henee in this case -a5 = a5 + 2 mod 4, so that ag = 1 mod 2 as required.

Next let |x| =1, |y| = O with r > 2 we mey assume X = Iu,, ¥ = &,. Choosing a
subbasis for DzzMr/\DzMT as in the preceeding case, we see that (16) (5A1)*5*R((gur ® ur) ® uz-) m {1aA GJ*G*R(Sur’ED (ur ®ur))

{15) 5*3{;( ®y) = alﬁx ®ay + asz ® 4,Qp + a34*Qx Ray if we expand both sides using the formulas already shown.

Next let x = Zu; , ¥ = u;. A suitable cholee of subbasis for DoiMy AD,M, gives
+ e, @ Q) el Rx®8, 2T

+ aéﬁr*lﬂx ® 3r+14*@ + &,?Br+l4*QX ® 8,7 BY §Rx @yl = alﬁx Raky + 8,8, % ® B.0Y

* aSBNlA*Qx @ Brﬁly*Qy and we see as before that a; = 1. Evaluating both sldes of equation {16} in this

case gives a5 = -(1 + 2el). Finally, we have
with 8y,85¢ er+} and the remaining a; in sz,_l. If f denotes the composite

s Ry ®@x) = §,RIT, {x ®y + Bx ® By))
D2§;Mr'~ D2Mr —— e DzzMz_ADZS NN BZI:MTAS # D22Mr ‘
= LySyRix @y + px © By)
then the diagram = Sy @ Bx + (1 + 2e1)62 a2y ® B Rx
§ a8 required.
Dl ( zMrA Mr) ——— DzzMr A D2MI_
Now let x = zu, and y = ¢ with ¢ > 2. We have
Dy(1AJ) lf U, L >

8] [
Bz(EMr!\S } Draasnd D,IM,

,EM, (7 S (x®y) * R @Ry + a Ry © 4y + 2B Ry

. + a4 (Qx®Q) +a.8 -Bx®p_ By +ap Rx®3 .40
commutes. Applying fx to {15} and using the equation £,Qu = O ({which was shown in 4% 57wl ] 6 p+l ]t

the proof of 3.3(ii)) gives . a'iﬁr+14*Qx © Br+1Ry + 885r+14*Qx ® 8r+14*QY
Rx = ale + &34*@3’.,
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with ap,3, 522r+1 and the remaining ay in 221,_2. The equation
(18) wy x@y) = s xen? < P ey - s x e 2

shows that ag = ap # 0, ag = 221""4, and also that a, = 0 mod 2" ang that
ay 5 ag =8, = 0 mod 272, Next we apply (Dod AD5J}y to both sides of (17).
The left side becomes

(DyJ ADJIy8y R(x B y) = &y (v @ pul = wéy, 2(2u ® ru),
which is zero by {(18). By 8.4(ii) we have
(Dz,j)*azur = Rfu = Rafu = 2Qfu,
hence (since 8a, = 8a, .= 833 0 mod 271} the right side of (17) becomes

434(;223; % Qtu, so that a 4= 0 in er_“l. Next we caleulate

r2

78,16 2{x @ ) = 27 %ng . [Ax @ 4,y + 4,0x @ By,

hence a5 = ag = 272, Finally, if we expsnd both sides of the eguation

(6 ALY 6ol (zu ®Fu ) @u) = (14a8)65, LI, & (Eu, @a))
using the formulas already shown, it follows that &y = 0. The proof when r = 1 is
similar.

{vii). We may assume x = L Iet r > 2; the case r = 1 is similar. Then

2
{19} agEdu = a Rru, + oa,p 0

with a;¢ 2 .9 and a5 eZ . 1. Applying = to (19) shows thet & = 0 mod p*, hence
applying ( pj Jx to {19} gives a, = 0. It only remaine to show that A*E.Zur # 0 when
= 2. But Lemma 7.7 gives the exact sequence
(£}, Ay
K (ZM A M, ;1+1) ——-~>—K (XDZM ;T+L) —-—'-**"KI(D IM, iT+l).

© Since rdu, has order 2%}, it cannot be in the image of (I1)y and the result
follows.

{viii). We may assume x = w,. We have
X k X o . k
(Spj)*w Qu, =y du=y¢nEa = (DPJ}*an w,
gsince ‘{:kur = W5 the result follows by 8.2.

(ix} By equation {7) in the proof of 8.4(viil) and I.2.14 we have the
following egquation in KO(D 2){;3'-1) when p is odd and r > 2.
P

asy

P R " T
S0 e = s e™® s 0T et g PP @ (oo .
. i=1

When p = 2 this equation follows from 7.6(vii) sinece 1,{x® BX®Xx® srx) and
t*(QBrX ® erx) are zero by 7.6{x).

let ¢ =2l, % =1u. The set {$u;} is & subbasis for DPME’ hence by 4.3 the set
@ aul,rt*u (p )} is a basis for KO(Dprmi’l)' lemma 4.3 also implies that the set
2

@9u,,uP '} ¢ Ko (0,0, 8;1)

is linearly independent. Hence {Dprj )¢ 1s monie on KD(D D Mr 1}. Bince the
‘transfer

z*K(D M1 » K, DDMll}

is monic and {DPDpj)* ot " 1y 0 (D jly, it follows that (D 5 jly is monic on
KD , M31). But P
0 p2 1

(ng J )*B*Qﬂ.ul = gyQ du = B*Qi*u(P),

which is zero by (20), hence ByQ uy = O as required.

Next. let r > 2 and le} ¥y denote the element

D 1-2 > ;
ByQ2u, ~ 1ty ig}(?)p E:*ui‘p)](y 1) ®p*{(Qur)(l)l

in KO(DP2 M.;r). Then (20} implies that wy = O and (DP2 Jyy = 0, and we must show

y = 0. Since vy = O we see that y is in the image of ;Jr“l. To proceed further we
need the case k = p’z of 4.1; we may use this result wi‘bgout cireularity since only
the case r = 1 of the present result is used in proving it (see gecilon 9). Now as
in the proof of 8.4(viii) we see that the union of the sets

- 1 (p)]{i}

{iyl(n &t )P ot

ylin - l {p),{i-—l) r-1 ta (p -1)

@1 Ti,lu ® 8.0}

T2 {p-i-1) -2
® (r "“Qu}'P ®n 8, j0ul | 1< <py
and, if r > 3, {ﬂr”BB*QQu }, 'is a basis for KO(D 2MI';1)' The second of these sets

generates the kernel of p§ -1 and also the kemel of {D 2 Jix, and it follows that

-]

(Dp2 i)y is monic on the image of p, . Since (Dp2 3)*y G we conelude y = 0 as

required.
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9. Carten formulas

Tn this section we shall prove lemma 4.7. &s in the proof of 2.7, the basie
1des is to "simplify" each expression in ¢ {respectively C Q') to obiain &n expres-
gion in C{x} (respectively C{y,z}). We shall refer to the simplified expression as

a Cartan formula for the original one. Some explicld exsmples of such formulas will

be given below. However, some of the formulas we need are too complicated to glve
explieitly, and instead we shall use an inductive argument to establish their

existence.

In order %o do so it is convenient to work in & suitable formal context. Let
E1sveesby be indeterminates and suppose that fo each has been assigned a mod 2
dimension denoted igi} and two positive integers called the height and filtration
and denoted Hgi& and vgi. Intuitively, &y should be thought of as an element of

K (D
[54] v
com%lnati%ns E(gl,...,gt) involving the gy and the operations of sectlon 3, nemely

K;ﬁgiﬂ) for some spectrum X. We wish to consider certain finite formal

those combinations which would represent elements in one of the groups Ka{DJX;r}
when interpreted "externally" as in section 4. More precisely, we define the
alloweble expressions E(gi,...,gt) and assign them dimensions, heights and
filtration by induction on their length as follows.

Definition 9.1, {i} Fach indeterminate g£; 1s an expression of length 1. For each
nely, T2, )2 1 there is an expression Oa,r,j (zalled zero sub «,r,]) having
length 1, dimension a, height r and filtration j. These are the only expressions of
length 1.

{11} Suppose that the expressions of length £ & have been defined and assigned
Gimensions, heights and filtrations. The expressions of length ¢+l are the follow-
ing, where B ranges over the expressions of length 2.

{a) pyE. We define |pyE| = |E|l, ipyEi = #Ei + 1 and v(pgE) = vE.

3

(b) 8,E if BN = r. We define |.E|
v{g E) = vE.

|E{-1, 8 E = 4En end

(e} nE if 2 < §El. We define |nE| = |El, 1sEr = 1Ei-1 and v(¢E) = vE.

(d) o E2, where B, and E, are any expressions whose lengths add up to £+l
and which satisfy |Ej| = {E|, 4EjN = 1Ey1, and vEy = vE,. We define

?
|y + By| = 1By}, WE + Ejb = iE1 andzv(Ei + By} = vE;.
(¢} EpoE; (the formal product) where Ey and E, are any expressions whose
lengthe add up to £+l and which satisfy &Elﬂ = HEzu. We define
|E1-E21' = §E1! + [E2[, I, B, = IE;1, and v(E By} = vE; + vEs.

(f) QE if 2 < iEy. We define |QE| = |Ej, ®QE1 = #Ei-1 and vQF = peE.
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g 2Eif |E| = 0. We define |RE| = 0, 52EF = §E1+l, and v&F = pvE.

{h) RE if {E| = 1. We define |RE| = 1, UREf = (Ei+l, and vRE = puE.

Note that we have not required formal addition and multiplication to satisfy
commutativity, assccistiviity or other properties. However, in writing down
particqlar expressions we shall often omit some of the neecessary parentheses, since

thelr precise position will ususlly be irrelevant. We shall also abbreviate Ou r
2
by C.

1

. We have given Befinition 9.1 in complete detail as a pattern for other indue-
"tive definitions asbout which we will not be so scrupulous. For example, let E be an
expression in the indeterminates £q,...,£4. If By,...,E are expressions in another
set of indeterminates ny,...,ng with |E] = Jg,], E N = Ug,0, and vE; = vuy for

1 £1 <t then we may {inductively) define the composite expression E(El,...,Et) in
Nyseeesigs Agaln, if X is any speetrum and xieKl

{D\}g X;rg.0) for 1 4 <% then
we can define 1

£

E(xl,...,xt)e K§E|(DuEX;ﬂEE)
as in seetlon 4 by interpreting Q, 2, R and the multiplication externally and
applylng oy and By to formal products and composites.

Definitior 9.2. Iet &y,...,; be & fixed set of indeterminates. ZEqulvalence,

denoted by ~, is the smallest equivalence relation on the set of expressions in
E1s++,E4 which satisfies the following.

{1} ~ is preserved by left composition with Q,2 ,R, 7, px and 8, and by Tormal
addition end muitipiication.

(2) For each r > 1 the equivalence classes of expressions of height r, graded

by dimension and filtraticn, form a Z, x Z graded ring {(without unit} with the
‘ IE | E, |
Oa,r,j as zero elements. The relation El-EZ = (-1} 1 E,+E, is satisfied and

271
left composlition with w, B, or py 1s additive.

{(3) If x and y denote expressions Eﬁ and Eé having height r and the required
dimensions then the following hold with = replaced by ~: 3.1; 3.2(3i1},(iv} and
(v); 3.3(1i1), (iv), (v), (vi), {vii} and {x}; 3.6(i1), (414}, (iv), (v) and (viii);
370440, (314), (iv), {v}, (vi) end (ix}.

Roughly speaking, two expressions sre equivalent If one can be transformed into
the other by using the relations of Section 3.

it is easy to see that equivalent expressions must have the same dimension,
height, apnd filiration but not necessarily the same length. Mn Inductive argument

shows that E(E),...,E;) and E'(E],...,E) are equivalent if E~ E' and E ~ E]
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for 1 <i < t. A similar inductive argument using 3.1, 3.2, 7.6, 8.4 snd 8.5 giveék
the following.

Letma 9,3, let E and B' be equivalent expressions in £q,...,8;. Let X be any

spectrunm and let x; be an element of KIE i(Dvg X;Hgi&), for 1 <1 <+%. Then
i

E(xy,00,%y) = B{xy, 000,340 i

If A= {g,+--,84) 18 any set of indeterminstes we can define the filtered
algebra CA and the subguotient groups EBA with their standard bases exactly as in
sections 3 and 4. If A' iz another set of indetermipates and f:A + A' « {0}
preserves degree, helght and filtration we say that f is subbasie. OClearly, the
constructions CA -and EBA are functorial with respect to subbasic maps. We can think
of the elements of DBA ag expressions in Epsevsby DY inserting parentheses so that
addition end muitipiication are treated asg blnary operations. (Of eourse, up to
equivalence it doesn't matter how the parentheses are Inseried.) This identifies
DbA with a subset of the expressions of height 1 and filtration j in £,...,84« By
a Carten formuls for an expression E of height 1 we mean simply an equivalent
expression in D gh. The next result, which will be proved later In this sectlon,
provides some examples which will be useful in the proof of 4.7. We say thet two
expressions E; and E, are equivalent med p if there is an expression E' with

IIElE-—l liEzli—l

Ey ~ B + pE'; in particular this implles = E o~

E,.
Proposition 9.4. Let g;, &5, €3s &y be indeterminates of helght r with dimensions
0, 0, 1, 1 respectively., let 1 <8 < r and let % > 1.
(1) 8, Q% ~ Q%8¢ ot p-
(1) Q 53 ~ {158 §3 mod .
(111) @° (al£3i ~ (x gl)P 0® £q mod p if p is odd or r > 3.
(iv)  @° (656,) 1s equivalent %o (Q3g3}(QS£4) if p is odd and to
Sml

r-s=1 105 e 1 (n%8_g,)° 2% {wQ Mg LE )2
3 r*3 4 4

8 =
(Q EBJ(Q Eé) + 2
ifps2andr > 3.
s
3 8_ .\ a8 8
(v) Q (515354} ~ {rg ) (@ 53)(Q 54) if p 1s cdd.
(vi) If 1 <1 £ p-1 then

8 S
EEE e 0 ) (g P ) (o8 e

8 8 .
- i{wsgl)ip (Br_SQEZ)(wSEZ)p (p-i-1) 1ed p
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(vii) If 1 < i < p-l then ﬁr+t = r+tR ({8 al)gl Epmi] g equivalent to
i(ﬂr---lg ){i-z}pt( r—t-lB Q; Ve r-1 j(p-i-l)pt( r-1-1 Qt j
1 K P DAL LY m Brat® B2
if + < r and to zero otherwlse.
(viii)  8Q°% g ~ 0.
{ix) If s <t then QSple; 1s equivalent mod p'~5%2 4o
t-s+1 s-1 psnl t-5, 8, \p°
‘ ¥ QEE) + C‘»]_P (= 5.1) » b
where
lLifpisocddaor s < %
e =
-1 if p=2sand g = 1.
Qsps*lgl is equivalent mod p to

( a1 ps-l s 3)s
T le) + 02(ﬁ gl) s

where
0 if p is odd

1if p=

There remain expressions, such that QT3 £y, for which the Cartan formula 1s too
complicated to give explicitly. Our next result will guarsntee the existence of
sueh formulas. Iet A = {g1,...,5;}+ We say that an element of IBA ie homogeneous
if 1% 1 2 sun of stendard basis elements each of whieh involves every £3e Note
that such elements are in the kernel of Iﬁf whenever f£:4 » A'w {0} takes at least
one gi to 0.

Propesition 9.5. Any expression E of height 1 in E1s++,8¢ 18 equivalent to an

expression in DBA for some j. If the £; have helght r and degree O then the

r=8=1n8
Q

expression = (£1+++54) 1is equivalent to & homogensous expression in EﬁA for

each s < r. If the £; have height r and degree 1 then

r+g-1
7 r+sR (51(8 52)---(8 gt)) is equivalent fo & homogeneous expression in Eh

for each t > O,

The proof of 9.5 will be given at the end of this section. Unfortunately,
there seems %o be no direct algebraic proof that the Cartan formulas provided by 9.5
are unigue, that is, that distinet elements of EEA cannot be equivalent as
expressions. If we had uniqueness in this sense then Lemma 4.7 would be an
immediate consequence of 9.5. Instead we shall have to give a much more elaborate
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construction of Y; and yj., making use of the expliclt formulas of 9.4 in order to
avoid appesling to wniqueness. (A& similar difficulty in ordinary bomology is
implieit in cur proof of 2.7). On the other hand, it Is easy to see from 4.1 and
9.3 that uniqueness does hold, but of course such an argument cammot be used im
proving 4.7. However, we can and shall use uniqueness in filtrations less than k in
the following induetive proof of 4.7.

Proof of 4.7. We shall give the proof for r < «». The case r = =, which is similar
and somewhat easier, requires some straightforward medifications in Definition 9.1

to allow for infinite heipghts; detalls are left %o the reader.

First let M = M, with r 2 2 (the r =1 case 1s similar and easier}. We
define ( %o be {Qx,Lx}. Let y, and v, respectively demote 2P ™ and (Bry}y‘m 1p-m
for 1 < m £ p-) and define &' 1o be

{Qy,02,27,22) wlw | 1smspl} wivy | 1<m<pil.

Lemma 4.3 impiles that @ and (' are in fact subbases for D Mf and D (Mr ML)
Note that {D 51)* takes Qy and 2 ¥ to Qx and 2x and tekes all other elements of i
to zero. In particular {D gll*. @ +@&w{0} is a subbasic map and hence

Fp = D (D gl)*. Similarly, Fp = D (D gz}*. On the other hand, (D go)* is not
subbasic since it takes U 1o m?.x and Vi to Thpyl 2%, hence FO is not induced by
functoriality from (E)ygo)*. It is determined by (D gO}*, however, in the following
way. If

BQy,Qz, ¥, 2%, ul""’up—l’vl“"’vp—-l}
is any expression in D,j (' and E' is an expression in Dja, equivalent to
E{Qx,Qx, 2%, 3X,7 ;z.x,...,n,?x,ﬂﬁr+lg,x,...,nﬂrﬂgx)

then by 9.3 we have AJ(FO(E)) = xj(E'), nence FuE = E'.

Next we shall construct Yj and yj. We assume Inductively that y . and T;L with
the required properties have been constructed for all g < j. By using the values of
g and Y' on indecomposables and extending multiplicatively, we can define
Y i and Y on the decomposables of I}j & and D- (L' so that the diagram commutes when
restrlc‘ted to decomposables. It remains to define YJ and y! j onn the standard
indecomposables of DJ i and Dj ', VWe may assume that } p for some s, since
otherwise there are no indecomposables in filtration j.

let ¢4, seasbp be indeterminates with dimension zero, helght r, and filtration
L. If 5 < r we use 9.5 to chooge s homogeneous expression E In Dk{gl,...,gp}
equivalent to PEEE E(;} (z-;l--'EP). If ¢ = r, let E be an expression in Dk{gl,..,gp}

equivalent to Q*2 ;. We define subbasic maps
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, fpillyseensgy) o A (0}
for 0 <m £ p by

y for £ <n
f‘m(gl) =

z for4>m.

Finally, we define h:{gl,...,gp} + A by h{k;g) = x for all ¢. Note that
(go)* o f =h for all m.

We define Yy and yj on indecomposables in table i. The first columm lists the

‘standard indecomposables in D @', and the second colwm {(we claim) gives the value

of ¥y on each. The first fcmr entries in column 2 are precisely the standard inde-
composables in Dj ., and the corresponding entries in columm 3 define Y on each.
The remaining entries in column 3 then give the resulting values of y j cn the other
entries of columm 2. Finally, columm 4 defines yj’ on each entry in colum 1.
Note that we have denoted iterates of = In the %able simply by n; the precise

iterate intended ean easily be determined sinee sll entries in the tsble are to have
height %.

The values of FO claimed in columm 2 are either obviously correct or follow
easily from 9.4 or the formulas of sectlon 3. For example, in line 10 we have

r—-g s -3 s r-g+l 8
# Br-—s+1Q T X~ 0 Br—s+1“Q 2x ~ pu BT_S+2Q a2x ~ 0

and in line 12 we have

r+a-1 ] r+5-1
7 8. R ﬁﬁrﬂlx ~

s 28
g U BLy0gPx By 2x ~ 0.



Table 1

ES

¥

(Dkfp){E)
0% ifs<r {

{Dyh) (E)

w5 x)

0%¢g ¥}

1.

{ﬂy)(p—zzz—l)j “3!‘_6(253: if s <y
gifs=r

(o) (P g
0 ifs=1r

2. nBr_s‘le{z ¥) nBr_S,,_lQS(Q, x) {

,;QB"'}‘y

05Qx) 25 1x

3. (e

" Brusnlqs+1y

(Dyf} (B}

|

“Br—s-lgs*lx

{Dyh) (E)

185197 (Q)

4o wBp_g.1Q%(0y)

05@x)

@5 idz)

5.
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(gz) Pm=1)] "ﬂ'r-sQSz ifs<r
Oifs=r

same a8 line 2

nﬁr_s+lQS(lx}

"Br—s+1QSL22)

6.

Qs+lz

1

§Q3+Ex

R*ax)

025Gz}

7.

“Br-s‘1Qs+1z

“Br—s~1Qs+lx

{DnHE)

*By_gs_1Q°(0%)

n8,._5_105(Qz}

(D £} (E)

W (Ax)

9. =%,

16. = BT;SQSU\m

m(ar—sQSY)(ﬂy)im‘l)j{“z)(P~m)j

—mlmy ™ ¢ 3r-sQSZ) {um (P21

(o) =10 (g} (PY g 0By

() (P-1W g Py

1281._‘5_,,1(25 (3x}

il. ﬂstm

mtmy) 8108 () $P-100 (g Q) (B, Q%)

12. “Br+sﬂsvm

0 otherwise

if s <r,

in lines 1,2,5 and 6 we require s < r;

in lines 9, 10,

The listed genmerators occur only for certain values of s.

and 11, 8 £ r-1; and in lines 3,4,7 and 8,

8 € r-2.
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Tb'qomplete the proof of 4.7 for M = M, 1t remains to show thet diagram (*) of
gection 4 commutes for 1 = 0, 1, 2. In order to see that the inner square commutes
it suffices, by Lemma 9.3, to show that the first four entries in columms 2 and 3
are equivelent as expressions in x. This is clear for lines i, 2 and 4 and for line
2if 8 = r {by 9.4(viii))., If s < r in line 2 we have

r-s
BI‘—*S"‘

w 1QS(Q.X} ~ 13.'7?—3-1€-Js?rBr"'1 2% ~ ﬁr—s_lQS(xP_lBrx}

whieh is equivalent to the required formula by 9.4(iii}.

- To see that the outer square commutes, we must show that the entries in colums

1 and 4 are equivalent as expressicns in y and z. The first eight cases follow as

in the preceding paragraph. Line 9 follows from the definition of E, line 1C from
9.4(vi}, line 11 from 9.4{ill), and line 12 from 9.4(vii}.

For commutativity of the upper trapezoid when i = 1, we must show that Bk(gz}*
takes the first four entries in column 4 to the corresponding entries in column 3
(which is obvious) and takes the remaining entriesz in column 4 to zero. Thisg
follows in line 9 from the fact that E is homogeneous (since {gl)* o fm takes at
least one £y to zero 1f 1 < m £ p-1) and the remaining cases are elear. Similarly,
we see that the upper trapezold commutes when i = 2. Finally, we cbserve that each
entry of column 4 goes to the corresponding eniry of column 3 under D, (ggly, and
hence the upper trapeszoid commutes when 1 = 0. This completes the proof of 4.7 for

M= M.
Next suppose M = IM,. We define &= {Rx} when r = 1 and &= {Qx,Rx} when r > 2.
let u, = y(Bry}m"}(Brz)p"m and v = y{Bry)m"lz(ﬁrz)P”m"1 for 1 <m £ p-i, We define
(A" = (Ry,Bz} o lugll <m < p-1} O {vg[l < m < pel}

when r =1 and

' = {Gy,08, Ry,Bz} v (uy|l S < p-l} v {wyll s m g p-l}
when r > 2.

Then {ngl)* and {ngz)* induce subbasic maps from (&' to L and we thersfore
have Fy = Dj(DPgi}* if 1 =1 or 2. The map {ngG)* takes u, to ~mRx when r = 1 and
to peQx - wBx when r > 2. it tekes v to zero when p is odd. When p = 2, 3.3(x)
implies

Q522*x uf r

LI}
—

{ngo)*vm B

v
38

2r_281,2 LQx ifr>

We begin with the case r = 1. We define 1j and Yj on decomposables by
Inductive hypothesis as In the M = Mr cage. To define Yj and Yj on indecomposebles
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we use Table 2.

Table 2
fg Y, O FO Iim
1. QiRy) Q{Bx} 0 0
2. TBguoRS(RY)  wg,oRS(Rx) BganB x 80"ty
3. Q(Rz) Q(Rx) 0 0
he TBeioRR(RZ)  wBg,oR°(RX) FBgapR 1x BgeR® e
5. nBgeEuy FolnBgeROuy) 0 0

Here the first column lists the indecomposables of qjCl' and the second column (we
claim} gives the value of Fy each (note that lines 1 and 3 are relevant only when §
=1, i.e., when k = p2). The first two entries in column 2 are the indecomposables
of de., and the corresponding entries in column 3 give our definition of Y3 on
each, while the remaining entries in column 3 are claimed te be values of 5
determined by the definition we have just given. The entries in eolumn 4 define Yj
on indecomposables. The necessary verifications are similar o those in the case
M =M., and they are straightforward except in line 5. Here we must show that
that ijO{nSBS+1RSum) iz equal to zero and that nsss#lﬁsty{3y)m'1(sz)9'm) is
equivalent to zero as an expression in y and z. For simplicity we assume that p is
2 differs only slightly. First recsll that to ealculate

Fe{nsss*lﬂsum) we need only find an element of Qjél which is equivalent to

odd -~ the case p =

"RBS+1RSW{RX} as an expression in the indeterminate Bx. Now

s s 8.8 28
- BS+1R wlBx) ~ -1 Q 823+1P* w{Bx) by 3.6(iv)

~ p(ss+lp* (Rx)).

We see by induetion on % using (3.3(vi} and 3.3{vii) that ot of a multiple of p is
equivalent to a sum of terms each of which has either p or a p-th power as a factor.
Hence FO(wSBS+lRSum) is a sum of ierms each of which has a p-th power factor, and
the same is true for the element 15F0(ﬂ ﬁs+1R u )} of Dk{x}. But by definition all
p-th powers in C{x} are zero when r = 1, 80 that Yj O{F Bt R u } o=
The procf that ﬁsss+lﬁs(y(sy)m'1(az}p“ ) is equivalent to Z8T0 is similar. We

have

0 as requzred.

8 Ry ()P ~ 1°0%, 02y (e a) P

s+1

~ Q7 (LB, pe) ™ (8, 052 P ),
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,and‘j.j{ﬁi) and 3.3{vii) show that Qt of a product of elements of degree zerc is
equivalent to a sum of terms each of which has either p or & p-th power as a factor.
But again p-th powers in C{y,z} are zeroc and we see that

nSBS+IR${y(By)m—l(ﬁz)Pum) ~ ¢ ag required. This completes the proof of Lemma 4.7
for M = IM, .

Next let r > 2. We can define v and yj on decomposables precisely as before.
In defining il and 15 on indecomposables when r > 2, it will be convenient to modify

the standard basis we have been using as follows. Let ny and na be indeterminates

with dimensgion 1, filtrstion p and heights We use 9.5 to

in, i =
1
obtaln an expression E{“z:ﬂz) in D {“l’"2} equivalent to #

We c¢laim that the coefficient of “r+s 26

r-1, anﬂ = r+l.
r+s-18r+SRS (p*nl - ““2}
prg— 1R n in Elnqy,ny) is 1. To see this,
write E(”l’"2) a8 El + E2, where E1 involves only ny and every standard basis

element in E, involves ny. If f:{nl,nz} > {“l} {0} takes np to itself and ny
to zero then (DSf)(E(nl,nz)) = El' On the other hand,

r+g-2 5

r+g5-1
r+s~1R -

s
(th)(ﬁ(nl,nz)) ~ E(nz,O) ~ o Bragh Pyly ~ @

Sinece uniqueness holds {by inductive hypothesis} in filtration j we have

- r+sm2
By o= Breg-12n1

proving the claim. We can therefore give new bases for the indecomposables of D

d
and D (L' when r > 2 by replacing nr+8a28 R (0x), "r*s—2 Brrge 1R {Qy) and

E(Qy,Ry) and E(Qx,Rz)

T+g=1

rre-2 in the standard bases by E(Gx,Rx),

o
Brog-q K (22)
regpectively.

Next let El"“’gp be indeterminates with dimension 1, bheight r and filtration
1. We use 9.5 to choose a homogeneous expression E‘(gl,...,gp) in Dk{gl,...,gp}
equivalent to

Tpegal 1"-1-5PL (El{ﬁrag)"‘(ﬁ E,' ¥,

Finally, we define the subbasic maps fm and h exacily as in the case M = Mr’

The first

The second colum (we

Ve can now define Y and Yé on indecomposables by means of Table 3.
ecolumm lists the new basis for the indecomposables of qjﬂl .
elaim) gives the values of Fq on each basis element.
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5 " The first six entries in this column are the new bagis for the indecomposables
) @ . . c
z ﬁ ﬁ of Dja., and the firsi six entries in eolumm 3 define Ty while the remaining
- U’E - é Gl entries in eolumn 3 give the values of Yy on the remaining enirdies in column 2. The
\1: :' i cg"‘ ’,_.; E"' vg eniries in columm 4 define vy!. The verifications necessary to prove 4.7 in this
© w ""-’gh wg iy - - case are again similar to those in the case M = Mr‘ The less cbvious ones are the
o -~ s
p - € ] =T following. If & < r we have
1 ! " T = - g g —g—
5_; ‘Ei é x s e . 505k ~ T }‘anﬂx ~ T8 1Q5+1p*x -G5S EQS(x(S x}pml)
. = 3 - - =4 I r
2" = T - mh B T — >§»« — hh -~ — = .
LAY oOE R - .? o E_ g m;, %, . _(ﬁr-—s-dst)(“r—lB x}{p--l).] N
R T L I S oo ’
mG' b F}n :{ fmo v(;:i’ : -2 r_g h: b‘g’ ‘.-qa lﬂq :él 3 g
= ) [ T . . . s .
< T 4% é” - & € 9 8 F 55“ £ -~ § in lines 1,5 and 9 by 9.4(iii). (In particular we observe, as claimed in the proof
;_\,.__.ﬂ ey - PRy
B e E, of 8.4(viil), that the relation 3.6{viii) is not used in the present proof when
t 1 + 8 =1and r>2.}) If s =1 we have
v A r‘\-’l s s-1
N N E QBx ~ QRQ™ "x ~ O
e sl
- - — B in iines 1 and 5 by 3.6{viii). In line 11 with p = 2 we apply 9.4(ix) to show
o L-:fb?; '1’: ;:l H..
) R — = o
& = “ B res~l.s r-g=l .8 T=2
;% R :} . T,{ ,;“ Y g} FO(Tr Q Vm) " Q72 S?Z*Qx)
T e b - F o G, -~ ¢ - % " o
= e Ty M o~ oo, B N éﬂ 0 if s < =2
DECEI I T T - A B
RIS M A M e I : r-1 2
T e B2 B Y TR E LD LI s oo o2 ~ An TR _2,Qx) if 5= r-2
S Sy e U = T 2
— vi " = _ r~2
g 7 - (1" 208 2,607 ¢ (Tle2,00%  if s =21
i It o r X
o o . and the claimed values of Fj follow from 3.1(ii), 3.5 and 3.6{iii) snd (iv). This
w " 'é concludes the proof of 4.7.
oo 5
5 = 8 .
_ _ o ’_r|n| ° Proof of 2.4. let =~ denote mod p equivalence. Parts {1}, (4i), (iii), and (iv)
g é E f‘j,: ] - follow easily by induction from 3.3(v) and 3.3(vii). For part (v) we have
L, B . 333 23 % | s
ol i ) % o= g Al
E I 58 5 2% g 2 o g gy)g,) = €M 5,00%g,) ~ (¢ (%) (0%,)
| & A 5 & Su, & g @ 8 ¥ ° @ 3 4 1 3 4
@ T e v < PR s fE 2 2 & o -,
R 5;,. by (i1i) and (iv). PFor part {vi) we have
A3
g7 i p-i i p-i
5 : LT SPEVREE o
i % 5 O
I~ — T Y -~ 8 I w 0 by 8 i~l_p-i L i i-l
2 :{: 5 i 3 3 n;% £ % . %, 24 = Q%1088 )5y ED T = (p-1)eg(B, 80P
) e bl ~
2 O 2 "23 & °’%- =4 ‘?g Y “’% o 5w . i .
A 2 P 2 £ 2 o 105 i-1 p-1, _ L48,1 p-i-1
. . . $’§ Q78 g 0E) gy ] - 4Q [gl{srgz)gz ]
. . . + . . . = -t ™ ﬁ N 8 8
& A 4 & o o o = - = -t w1068 e Sk }(1-1)p (=% )(p~i)p
r-l 1 2
<1 (S )P (0%, (2%, ) (PE-1ID°
1 rf2/ ' 5
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and the result foliows by part (i).
{vii) First we claim
(%) Q"R DyE, ~ O.
r+l TR

This is true when r = 1 by 3.3(iv) and 3.3(v). If r > 2 we have

r -1
Q Bl‘*‘lp*gl ~ Q 81.QP*51

-1 p-1 P

~ Q778 0,0,

and the claim follows by induction on .

Now we have

r+t-1 -1 P"ii r+t-1.% i-1_p-i
i ~ T

b 2t
Bopp B [(BLE )G &) Q78 0ePx (B Eq)E7 765 7]

-1t 26 . 2t i-1 _p~i
~m TR B Py 6y 0P (8 e T

r+t-1.t

- i-1 i
A LT I b AR Al G e b

If + > r then

Qt

rttel 2% 1 L
T BaotPx 61 ~ Q By Pylpy &),

which is equivalent to O by (*). Otherwise we have
r+t-1.% 24 r+t-l b 2, 1 p-i
(0 By Py B 10T QBB (68 )
r-t-1.t r—tel.b i p-i
~ {n Q8 & ) Q8. (518 3
and the result follows from part (iii).

For {viil), we have

T -1

2
1 r-1_-{p ~p)lr-1).r=1
=} ) x)'P P O e pdx if T > 2
0 if r =1,

but the expression for r > 2 is also equivalent to zero by (¥},

Finally, part (Ix} follows from 3.3(vi) by induetion on s.
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It.rgmains to prove 9.5. In order to keep track of when an element of
Ik{gl,.oo,gt}‘ is homogeneous, we make the following definition. ILet S be s fixed
set and suppese that we have assigned to each g, 8 subset higy) of S called the
homogeneity of gy Then we define the homogeneity of an arbitrary expression in
Ejsaeesby by requiring that Oa,r,j have homogeneity S, that p*,sr,n,Q,;Z.and R
commute with n and that h{E + E'} = h(E} N h(E') and h{E.-E') = n(E} v h(E'}. We say
that an-expression E(El""’gt} of height 1 1s reducible with respect to h if
there ig an 1° Dj{gl:""gt} with E' ~ E and h{E') 3 h(E).

Propogition 9.6. If S is any set and bi{gq}, ..., hig,} are any subsets of S ‘then

every expression of height 1 in Eqseessby is redueible with respect to h.

If 8= {gl,...,gt} and hlgy) = {4} for 1 <3 ¢ % then the expressions listed
in 9.5 have homogenelity S, while an expression In Iﬁ{gl,...,gt} has homogenelty S
if and only if it is homogeneous. Thus 9.5 follows from this case of 9.6. The
extra generality allowed for S and h is technically useful in proving 9.6.

In the remainder of this section we prove 9.6. We fix a set S and assume from
now on that any indeterminates mentioned have been assigned homogeneities contained
in S a5 well as dimensions, heights and filtrations. I% will be convenlent to let
g, n and 8 denote indeterminates and to let E, F, G and H denote expressions. We
say that two expressions (possibly involving different sets of indeterminates) match
if they have the same dimension, height, filtration and homogeneity. We shall
frequentiy use the fact that a sum or product of reducible expressions is reducible
and that homogeneity is preserved by substitution, l.e., if F ils any expression in
Npsesesng @06 By, .0, B matehing ny, ... ng respectively then h(F(E;,...,E;)) = h(F).
Note, however, that eguivalent expressions generally have different homogeneities;
for example, pt is equivalent to 0 Af #£4 = 1 but hic) is nod neecessarly equal 4o 3.

For our next two results we fix a setb {nl,...,ns,ni,...,né,ni,...,n;} of inde-

terminates such that each ﬁi matches Qni and each n; matches Rni. Here and else-

where we shall interpret Qng as 01,1,3 if ﬂniﬁ =1 and Rn; as Ol,l,l if Inii = 0.
We say that an expression is elementary if it does not involve Q or R.

Leama 9.7. lLet G be an elementary expression of length 2 in ng,...,ng and let @
mateh G.

(1} 1If F is wﬂeﬁ*la or n"eﬁ—lﬁ 6He then there is an elementary

H
expression G! DvG{ni"'°’ns} with &' ~ F(G)} and hG' D LF.

(11) If F = Q8 or F = RO then there is an elementary expression
G' g, eee,ng,ng,eeeonl,nd, vee,nl)  with BG' D HF and '

F(G) ~ G'(nl,.--,nS,in,---,QnS,Rn},---,RnS)-
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Proof. The possibilities for G are =ny,Pxng,Bpng. ni+nj, ni“j and Ny The
result ecan be checked in each case from the formulas of section 3.

Next we define the complexity e(E) of a gtandard indecomposable E in
Dj{ni,.;.,ns} to be the total number of (Q's and R's that appear in 1t. We define
¢(E) for an arbltrary expression E in Dﬁ{nl""’“s} to be the maximum of the
complexities of the indecomposables that appear as factors in the terms of E.

Lemns 9.8. let H ‘§3{“1’"'»“s’“i’"'r“é’“i""’“éi' Then there 1s an
B'eD,{n,,«ee,n_} such that h(H'} 2 h{H}, e(H'} < ¢(H} + 1 and H' iz equivalent %o
Jr? g

H(nz,...,nS,Qni,...,QnS,Rnl,...,Rns).

In particular, the latter expression iz reducible.

Proof. We may assume that H is a standard indecomposable and hence that it involves
only one of the indeterminates. If it involves one of the ny the result is
trivial. Otherwise H bgs one of the forms

ﬂniﬁﬂt-Z 4 in, b2 in, =t "

N n 4+t-2
W Q'nl, w sﬁaiﬁ—t-ZQ ni, w @ny, @

t
Bﬂnia+t—1R nj, or

in “+t+1RFn;~ In esch case the result follows either trivially or from the
i

formuias of section 3.

Lemma 9.9. let Ej,...,E, be elemeniary expressions In Eqseeesby and let
Bys00e,0, mateh Ey,...,E, respectively. let F EDB{Bl,-o,er}- Then there is an
H Egj{gl""’gt} such that ¢(H) 2 e{F), h{H) D h(F) and H ~ F(E;,...,B ). In
- particular, F(E;,...,E.) is reducible.

Proof. let ¢ be the maximum of the lengths of the E . If ¢ = 1 the result is
trivial. We shall prove the result in general by induction on ¢(F) with a
gubsidiary induction on 2. We may assume that F 1s a standard indecomposable, and
hence that it involves only one of the 685, say 6;. Now by Definition 9.1, E; ecan be
writien in the form G(E,;,E,,}, where zlltgl""’gt} and 3&2(51""’Et) are
elementary with lengths lese than £ and Ginp,np} is elementary with length 2. If

Helﬁul' Hﬁlﬂmi

¢(F} = ¢ then F hag the form ¢ % or T 8 and the result

H91ﬁ~lel
follows by 9.7(i) and the subsidiary induetive hypothesis. Otherwise F has the form

S0 that
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FUF"), where F" = Qg or Roy and e(F') = e{F) - 1. Thus

F(E;) = FUFM(B(E LB )00 If nl,ni,nd,ng are as in 9.7 then by 9.7(1i) there
is an elementary expression G’(nl,nz,ni,né,n{,ng} gueh that h{G') h{(F") and
G’(nl,nz,in,an,Rnl,an) ~ F“(G(nl,nz)). Thus

F(G(nl:ﬂg)) ~ F‘(G’(nl,nz,in,an,Rnl,an))-

Now since e(F') < e(F) the inductive hypothesis gives an expression
He Dj{n},né,;;i,né,n'}z,ng with o{H) < e(¥') < e(F}, h(E} D £{F') 2 hi{F), and

~

B~ F‘(G'(nl,az,ni,né,n{,ag)]
F(Glnymp}) ~ H(ng,ny,Qn;,0n, 80 ,Bny ).

Now by Lemma 9.8 there is sn expression H' ¢ DB{“l’“2} such that

e(H') < o{H} + 1 < o(F) and h(H') D h{H) ) h(F) with H' ~ F(G(ny,n,}}. Hence F(E;}
~ H'(Ell,Elz). Sinee E; and Ej; Doth have lengths less then 2, the result now
follows by the subsidiary inductive hypothesis.

Finally, we complete the proof of 9.6. Ie% G(gq,...,5¢) be any expression of
height 1. The proof is by inductlon on the length of G, which we may assume is >
2. It is easy to see from definition 9.1 {by another induction on the length of G)
that G can be written In the form G'(gl,...,gt,E), where G'(El,...,,gt,n) has length
iess than £ and E has length 2. Then G' has height 1 and h(G'} = n(G). By
inductive hypothesis we may assume G* e DvG{EE""’gt’“}' If E is elementary the
result now follows by 9,9, while 1f E is Qn or Bn the result follows by 9.8. This
eoncludes the proof.
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