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Introduction

Tools:

fpmods.py: a sage package for calculating with finitely presented
A-modules written by Mike Catanzaro (masters thesis)

ext.1.8.5: the latest version of my C code for calculating minimal
resolutions and chain maps for A and A(2)-modules
incoporating Tyler Lawson’s dual module code.

Applications:

Revisit Don Davis’ 1975 Bol. Soc. Mat. Mex. paper in which he
calculates H∗j and considers its Adams spectral sequence converging
to π∗j .

Next, find a sequence representing v82 . This gives a fairly
straightforward calculation of the cohomology of A(2), simplifying
work of Davis and Mahowald from 1982.
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Adams spectral sequence for j What was known

Don Davis’ conclusion:
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Adams spectral sequence for j The cohomology of j and j/2

The cohomology of j

We start from the fiber sequence given by the Adams conjecture

j // ko
ψ3−1 // Σ4ksp

and the known cohomology modules

H∗ko = A//A(1)

H∗ksp = A/A(Sq1, Sq2Sq3).

It will be useful to also reduce mod 2.
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Adams spectral sequence for j The cohomology of j and j/2

Proposition

H∗ko/2 = A/A(Sq2,Sq(0,1)) and H∗ksp/2 = A/A(Sq2Sq3).

The natural maps H∗j/2 −→ H∗j and H∗ksp/2 −→ H∗ksp are the evident
quotients by Sq1.

Proof.

H∗ko/2 = H∗ko ⊗ E [Sq1]

= (A⊗A(1) F2)⊗ E [Sq1]

∼= A⊗A(1) E [Sq1]

= A⊗A(1) A(1)/A(1)(Sq2,Sq(0,1))

= A/A(Sq2,Sq(0,1))
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Adams spectral sequence for j The cohomology of j and j/2

Proof.

H∗ksp/2 = H∗ksp ⊗ E [Sq1]

=
(
A⊗A(1) A(1)/A(1)(Sq1, Sq2Sq3)

)
⊗ E [Sq1]

∼= A⊗A(1)
(
A(1)/A(1)(Sq1, Sq2Sq3)⊗ E [Sq1]

)
= A⊗A(1) A(1)/A(1)(Sq2Sq3)

= A/A(Sq2Sq3).

Proposition

The maps H∗ko ←− H∗Σ4ksp and H∗ko/2←− H∗Σ4ksp/2 induced by
ψ3 − 1 each send the generator to Sq4ι0.
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Adams spectral sequence for j The cohomology of j and j/2

Proof.

The homomorphism (ψ3 − 1)∗ : H∗Σ4ksp −→ H∗ko is determined by its
value in degree 4. This is either Sq4 or 0:

sage: A2 = SteenrodAlgebra(prime=2,profile=(3,2,1))

sage: ko = FP_Module([0],[[Sq(1)],[Sq(2)]],algebra=A2)

sage: ko[4]

[[Sq(4)]]

sage: komod2 = FP_Module([0],[[Sq(2)],[Sq(0,1)]],algebra=A2)

sage: komod2[4]

[[Sq(4)]]

It must be Sq4 since, if it were 0, the Adams spectral sequence would
imply that π3j had order at least 32. The result is also true mod 2 since
the map H4ko/2 −→ H4ko is an isomorphism.

Robert Bruner (Wayne State University) A(2)-modules Northwestern, March 2013 12 / 62



Adams spectral sequence for j The cohomology of j and j/2

Definition

Let C , C2, K and K2 be the cokernels and desuspensions of kernels of
(ψ3 − 1)∗ and its mod 2 reduction.

0 Coo H∗kooo H∗Σ4ksp
Sq4oo ΣKoo 0oo

0 C2

OO

oo H∗ko/2oo

OO

H∗Σ4ksp/2
Sq4oo

OO

ΣK2
oo

OO

0oo
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Adams spectral sequence for j The cohomology of j and j/2

The cokernels of Sq4 are easy.

Proposition

C = A/A(Sq1, Sq2,Sq4) H∗ko = A/A(Sq1, Sq2)
qooo

C2 = A/A(Sq2, Sq(0,1),Sq4)

qko

OO

H∗ko/2 = A/A(Sq2, Sq(0,1))qo2
oo

qc

OO

The maps are the evident quotients.

The kernels of Sq4 are a bit more complicated.
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Adams spectral sequence for j The cohomology of j and j/2

Proposition

K =
Σ7A

A(Sq1, Sq7,Sq(0,1,1) + Sq(4,2))
.

and

K2 =
Σ7A

A(Sq(4,1),Sq(0,1,1) + Sq(3,0,1) + Sq(1,3) + Sq(4,2))
.

H∗ksp = A/A(Sq1, Sq2Sq3) ΣK
iooo

H∗ksp/2 = A/A(Sq2Sq3)

qksp

OO

ΣK2

SqK

OO

io2
oo

Here, io(Σι7) = Sq4ι4 and io2(Σι7) = (Sq4 + Sq(1,1))ι4, while the vertical
maps are the evident quotients.
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Adams spectral sequence for j The cohomology of j and j/2

sage code to compute kernel and cokernel

ko = FP_Module([0],[[Sq(1)],[Sq(2)]])

ksp = FP_Module([4],[[Sq(1)],[Sq(2)*Sq(3)]])

sq4 = FP_Hom(ksp, ko, [[Sq(4)]])

ko2 = FP_Module([0],[[Sq(0,1)],[Sq(2)]])

ksp2 = FP_Module([4],[[Sq(2)*Sq(3)]])

sq42 = FP_Hom(ksp2, ko2, [[Sq(4)]])

C,qo = sq4.cokernel()

SK,io = sq4.kernel()

C2,qo2 = sq42.cokernel()

SK2,io2 = sq42.kernel()

qko = FP_Hom(ko2,ko,[[1]])

qksp = FP_Hom(ksp2,ksp,[[1]])

qC = FP_Hom(C2,C,[[1]])

cando,SqK = lift(qksp*io2,io)
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Adams spectral sequence for j The cohomology of j and j/2

sage code to print the results

print "\nCokernel C degrees: ",C.degs

print "Cokernel C relations: ",C.rels

print "\nCokernel C2 degrees: ",C2.degs

print "Cokernel C2 relations: ",C2.rels

print "\nKernel SK degrees: ",SK.degs

print "Kernel SK relations: ",SK.rels

print "\nKernel SK2 degrees: ",SK2.degs

print "Kernel SK2 relations: ",SK2.rels

print "\nio values: ",io.values

print "io2 values: ",io2.values

print "Lift SqK exists: ",cando

print "SqK values: ",SqK.values
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Adams spectral sequence for j The cohomology of j and j/2

sage output

sage: load j1.py

Cokernel C degrees: [0]

Cokernel C relations: [[Sq(1)], [Sq(2)], [Sq(4)]]

Cokernel C2 degrees: [0]

Cokernel C2 relations: [[Sq(0,1)], [Sq(2)], [Sq(4)]]

Kernel SK degrees: [7]

Kernel SK relations: [[Sq(1)], [Sq(4,1)], [Sq(0,1,1) + Sq(4,2)]]

Kernel SK2 degrees: [7]

Kernel SK2 relations: [[Sq(4,1)],

[Sq(0,1,1) + Sq(1,3) + Sq(3,0,1) + Sq(4,2)]]

io values: [[Sq(4)]]

io2 values: [[Sq(1,1) + Sq(4)]]

Lift SqK exists: True

SqK values: [[1]]
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Adams spectral sequence for j The cohomology of j and j/2

Factoring the long exact cohomology sequences, we get short exact
sequences defining H∗j and H∗j/2, with a map between them.

0 Koo H∗joo Coo 0oo

0 K2
oo

OO

H∗j/2oo

OO

C2
oo

OO

0oo

We next compute that

Ext1A(K ,C ) ∼= F2
∼= Ext1A(K2,C2).

We then use the order of π7j to show that j and j/2 determine the
nontrivial extensions and compute them.

Robert Bruner (Wayne State University) A(2)-modules Northwestern, March 2013 19 / 62



Adams spectral sequence for j The cohomology of j and j/2

Proposition

H∗j/2 = A⊕ Σ7A/A(Sq2ι0, Sq
(0,1)ι0, Sq

4ι0,

Sq14ι0 + Sq(4,1)ι7,

(Sq(0,1,1) + Sq(3,0,1) + Sq(1,3) + Sq(4,2))ι7).

and

H∗j = A⊕ Σ7A/A(Sq1ι0, Sq
2ι0, Sq

4ι0,

Sq8ι0 + Sq1ι7,

Sq7ι7,

(Sq(0,1,1) + Sq(4,2))ι7)

The induced map is the evident quotient.

Note: these are defined over A(3) but not over A(2).
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Adams spectral sequence for j The cohomology of j and j/2

Resolving K

K = FP_Module([7],[[Sq(1)], [Sq(7)], [Sq(0,1,1) + Sq(4,2)]])

Kres0 = FP_Module(K.degs,[])

Kres1 = FP_Module(K.reldegs,[])

Keps = FP_Hom(Kres0,K,[[1]])

Kd0 = FP_Hom(Kres1,Kres0,K.rels)

Kres =[Keps,Kd0]

Kres = extend_resolution(Kres,2)

print "\n\nK resolution"

for j in range(len(Kres)):

print j,": ",Kres[j].domain.degs

print Kres[j].values
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Adams spectral sequence for j The cohomology of j and j/2

Computing Ext1

print "\nCochains: "

for n in Kres[1].domain.degs:

print "Degree ",n,": ",C[n]

print "\nCoboundaries: "

for n in Kres[0].domain.degs:

print "Degree ",n,": ",C[n]

print "\nCocycles are in the kernel of d1 dual"

for ii in range(len(Kres[1].domain.degs)):

dd = Kres[1].domain.degs[ii]

print "Degree ",dd

for x in C[dd]:

print "Acting on ",x

for c in [v.coeffs[ii] for v in Kres[2].values]:

print (x*c).nf()
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Adams spectral sequence for j The cohomology of j and j/2

Results (cont.)

K resolution

0 : [7]

[[1]]

1 : [8, 14, 17]

[[Sq(1)],

[Sq(7)],

[Sq(0,1,1) + Sq(4,2)]]

2 : [9, 15, 17, 18, 20, 21, 23]

[[Sq(1), 0, 0],

[0, Sq(1), 0],

[Sq(6,1), Sq(3), 0],

[Sq(0,1,1), Sq(4), Sq(1)],

[Sq(6,2), Sq(0,2), Sq(0,1)],

[0, 0, Sq(4)],

[Sq(2,2,1), 0, Sq(0,2)]]
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Adams spectral sequence for j The cohomology of j and j/2

Results (cont.)

Cochains:

Degree 8 : [[Sq(8)]]

Degree 14 : [[Sq(0,0,2)]]

Degree 17 : []

Coboundaries:

Degree 7 : []

Cocycles are in the kernel of d1 dual

Degree 8

Acting on [Sq(8)]

[0]

[0]

[0]

[0]

[0]

[0]

[0]
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Adams spectral sequence for j The cohomology of j and j/2

Results (cont.)

Degree 14

Acting on [Sq(0,0,2)]

[0]

[Sq(0,0,0,1)]

[0]

[0]

[0]

[0]

[0]

Degree 17
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Adams spectral sequence for j The cohomology of j and j/2

The nontrivial extension

There is one nonzero cocycle, which sends ι8 to Sq8 and the other
two generators to 0.

If H∗j gave the split extension, then the E2 term of the Adams
spectral sequence converging to π∗j would be as shown on the next
slide, where we have shown two d2 differentials.

The first d2 must exist because ν2 = 0 in π∗j . The other is the first
possible differential into the 7-stem. The result would still have
π7(j) = Z/(32), which is too large.

Hence,
0←− K ←− H∗j ←− C ←− 0

must be the nontrivial extension.
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Adams spectral sequence for j The cohomology of j and j/2

ExtA(K ⊕ C ,F2)
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Adams spectral sequence for j The cohomology of j and j/2

The nontrivial extension

H∗j and the extension are computed as follows.

0 Koo

∼= gg

��

K0
Kres[0]oo

I[1]

""
e0

��

K1
Kres[1]oo

e

��

||

0oo

MM
pr

||
0 NNoo j

qqoo

p

^^

C
ioo

I[0]
bb

0oo
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Adams spectral sequence for j The cohomology of j and j/2

Results (cont.)

e = FP_Hom(Kres[1].domain,C,[[Sq(8)],0,0])

MM,I,P = DirectSum([C,Kres[0].domain])

j,pr = (I[1]*Kres[1] - I[0]*e).cokernel()

i = pr*I[0]

e0 = pr*I[1]

NN,qq = i.cokernel()

vv = [Kres[0].solve(g)[1] for g in Kres[0].codomain.gens()]

gg = FP_Hom(Kres[0].codomain,NN,[(qq(e0(x))).coeffs for x in vv])

cando,p = lift(qq,gg)

if not cando:

print "Can’t lift quotient map from j"

print "\n\nj.degs: ",j.degs

print "j.rels: ",j.rels

print "\ni: C --> j: ",i.values

print "\np: j --> K: ",p.values
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Adams spectral sequence for j The cohomology of j and j/2

Results (cont.)

sage: load j3.py

j.degs: [0, 7]

j.rels: [[Sq(1), 0],

[Sq(2), 0],

[Sq(4), 0],

[Sq(8), Sq(1)],

[0, Sq(7)],

[0, Sq(0,1,1) + Sq(4,2)]]

i: C --> j: [[1, 0]]

p: j --> K: [[0], [1]]
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Adams spectral sequence for j The cohomology of j and j/2

H∗j/2 and the induced maps
It is helpful to break the transition from H∗j/2 to H∗j into two steps, as
follows:

0 Koo H∗joo Coo 0oo

0 K2
oo

qK

OO

J ′oo

OO

Coo 0oo

0 K2
oo H∗j/2oo

OO

C2
oo

qC

OO

0oo

The three extension cocycles map to one another,

e(H∗j) 7→ e(J ′)←[ e(H∗j/2)

under the induced maps

Ext1A(K ,C )
qK∗−→ Ext1A(K2,C )

qC∗←− Ext1A(K2,C2).
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Adams spectral sequence for j The cohomology of j and j/2

Both qK ∗ qnd qC∗ are isomorphisms, so that H∗j/2 also defines the
nontrivial extension.

The four modules K , K2, C and C2 are cyclic, and the maps qK and
qC are the identity on the generating classes.

It is then easily verified that H∗j/2 −→ H∗j must send ι0 7→ ι0 and
ι7 7→ ι7.
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

ExtA(H∗j/2,F2)

We now run the ext code on the module H∗j/2. Through the 44 stem we
get
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

d2(ι7) = h2
2

There is an obvious d2 which kills ν2.

Robert Bruner (Wayne State University) A(2)-modules Northwestern, March 2013 35 / 62



Adams spectral sequence for j The Adams spectral sequence for π∗j/2

E3 = E∞

The remarkable thing is that all the differentials are d2s.
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

E3 = E∞

Robert Bruner (Wayne State University) A(2)-modules Northwestern, March 2013 37 / 62



Adams spectral sequence for j The Adams spectral sequence for π∗j/2

Definition

Let ΩM denote the kernel of a minimal homomorphism from a free
module onto M.

This is well defined for Frobenius algebras like A(n).

Remark

Since A is free as an A(n)-module, tensoring up from A(n) -Mod to
A -Mod is exact. Since A(n) is finite, calculations involving finitely
presented A(n)-modules are finite. These are the facts which allow the
fpmods package to work.

Proposition

There is an epimorphism Ω2C2 −→ K2. The kernel F exhibits ‘Bott
periodicity’, Ω4F = Σ12F , and ExtA(F ,F2) is the E∞ term of the Adams
spectral sequence for π∗j/2 in the range s ≥ 2.
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

sage code to compute Ω2C2

C2 = FP_Module([0], [[Sq(2)], [Sq(0,1)], [Sq(4)]],algebra=A3)

C2res0 = FP_Module(C2.degs,[])

C2res1 = FP_Module(C2.reldegs,[])

C2d0 = FP_Hom(C2res1,C2res0,C2.rels)

L2C2,i2C2 =C2d0.kernel()

print "\nLoops^2 C2: degrees: ",L2C2.degs

print "rels: ",L2C2.rels

SK2 = FP_Module([8],[[Sq(4,1)], [Sq(0,1,1) + Sq(1,3) + Sq(3,0,1) + Sq(4,2)]])

ff2 = FP_Hom(L2C2,SK2,[0,0,[1],0])

F2,inf2 = ff2.kernel()

print "\nKernel of Loops^2 C2 --> Susp K2, degrees: ",F2.degs

print "rels: ",F2.rels
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

ker(Ω2C2 −→ ΣK2

sage: load j4.py

Loops^2 C2: degrees: [4, 5, 8, 9]

rels: [[Sq(0,1), Sq(2), 0, 0],

[Sq(0,0,1) + Sq(1,2) + Sq(7), 0, 0, Sq(2)],

[Sq(1,0,1) + Sq(2,2), Sq(0,0,1) + Sq(1,2) + Sq(4,1), 0, Sq(0,1)],

[0, Sq(0,1,1) + Sq(4,2), Sq(4,1), Sq(0,2)],

[Sq(1,2,1), Sq(0,2,1) + Sq(4,3),

Sq(0,1,1) + Sq(1,3) + Sq(3,0,1) + Sq(4,2), 0]]

Kernel of Loops^2 C2 --> Susp K2, degrees: [4, 5, 9]

rels: [[Sq(0,1), Sq(2), 0],

[Sq(0,0,1) + Sq(1,2) + Sq(7), 0, Sq(2)],

[Sq(1,0,1) + Sq(2,2), Sq(0,0,1) + Sq(1,2) + Sq(4,1), Sq(0,1)]]
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

Ext of the kernel
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

Periodic resolution of the kernel F

F0 = Σ4A⊕ Σ5A⊕ Σ9A

F1 = Σ7A⊕ Σ11A⊕ Σ12A


Q1 Q2 + Sq(1,2) + Sq7 Sq1Q2 + Sq(2,2)

Sq2 0 Q2 + Sq(1,2) + Sq(4,1)

0 Sq2 Q1



OO

F2 = Σ12A⊕ Σ13A⊕ Σ14A


Sq(2,1) Sq(0,2) + Sq(6) Q1 + Sq(4,1) + Sq(7)

0 Sq2 Q1

0 Sq1 Sq2



OO
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

Periodic resolution of the kernel F (cont.)

F2 = Σ12A⊕ Σ13A⊕ Σ14A

F3 = Σ14A⊕ Σ15A⊕ Σ16A


Sq2 Q1 Sq4

0 0 Q1

0 0 Sq2



OO

F4 ∼= Σ12F0 = Σ16A⊕ Σ17A⊕ Σ21A


Sq2 Q1 Q2

Sq1 Sq2 Sq6

0 0 Sq(2,1)



OO
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Adams spectral sequence for j The Adams spectral sequence for π∗j/2

Proof that E3 = E∞

If we let K2 ←− P∗ and F ←− F∗ be free resolutions, then we have a free
resolution

0←− Ω2C2 ←− F0 ⊕ P0 ←− F1 ⊕ P1 ←− · · ·

and therefore a free resolution of H∗j/2

0←− H∗j/2←− P0⊕C0 ←− P1⊕C1 ←− P2⊕F0⊕P0 ←− P3⊕F1⊕P1 ←− · · ·

The d2 then cancels all but C0, C1, and the resolution of F .

Remark

This can all be viewed as a consequence of the relation ν2 = 0.
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Adams spectral sequence for j The Adams spectral sequence for π∗j

The integral case is somewhat more complicated. We still have

Proposition

There is an epimorphism Ω2C −→ K. The kernel F exhibits ‘Bott
periodicity’ modulo h0 towers.

Presentation of F :

F0 = Σ2A⊕ Σ4A⊕ Σ5A⊕ Σ9A

F1 = Σ3A⊕ Σ6A⊕ Σ10A⊕ Σ11A


Sq1 Sq4 0 Sq(2,0,1) + Sq(6,1)

0 Sq2 0 Q2 + Sq(1,2) + Sq(4,1)

0 Sq1 0 Sq6

0 0 Sq1 Sq2



OO
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Adams spectral sequence for j The Adams spectral sequence for π∗j

The d2 coming from the epimorphism Ω2C −→ K cancels almost all of
ExtA(H∗j ,F2), leaving only the eta multiples and Z/8s which persist to
E∞, together with adjacent towers every eight dimensions.
These towers already started to cancel with a d1(β) truncating the tower
generated by σ. The general formula

dr+1(x2) = h0xdr (x)

now truncates the remaining towers in the well-known 2-adic pattern.
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Adams spectral sequence for j The Adams spectral sequence for π∗j

ExtA(H∗j ,F2)
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Adams spectral sequence for j The Adams spectral sequence for π∗j

ExtA(F ,F2)
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v82 v41

v 4
1

As a warm-up exercise, let us do such a calculation one chromatic level
down.
We will compute a relative projective resolution of H∗ko = A//A(1),
where our relative projective class consists of modules extended up from
A(0) -Mod.
It is simplest to work in A(1) -Mod. Here, we want a relative projective
resolution of F2. This is easy and classical:
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v82 v41

0 ◦ ◦oo

1

2 ◦ ◦oo ◦oo

3 ◦ ◦ ◦

4 ◦ ◦oo ◦oo

5 ◦ ◦ ◦ ◦ ◦ ◦

6 ◦ ◦ ◦

7 ◦ ◦ ◦ ◦ ◦rr ◦oo

8 ◦ ◦ ◦

9 ◦ ◦ ◦

10 ◦ ◦ ◦

11

12 ◦ ◦oo

Robert Bruner (Wayne State University) A(2)-modules Northwestern, March 2013 53 / 62



v82 v41

We get a couple of interesting consequences from this.

Tensoring such relative projectives with Q0-acyclic modules gives free
modules. It follows that any Q0-acyclic A(1)-module M satisfies
Ω4M ' Σ12M. E.G., M = H∗RP∞ or a mod 2 Moore space.

It computes ExtA(1)(F2,F2) for us:
I The A(1)//A(0) at the start gives an h0-tower starting in (0, 0).
I The A(1)//A(0) at the end gives an h0-tower starting in

(s, t − s) = (3, 4).
I The free modules give F2s in degrees (1, 1) and (2, 2).
I Periodicity gives the rest.

It represents v41 when restricted to ExtE(1)(F2,F2).
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v82 v82

v 8
2

Davis and Mahowald, in their 1982 paper “Ext over the subalgebra A2 of
the Steenrod algebra for stunted projective spaces” produce an analogous
sequence representing v82 .
With the fpmods package, it is easy to experiment with alternatives. A
somewhat simplified version of their sequence emerges from these
calculations.
A(2) has many more subalgebras, with respect to which we can consider
relative projectives.
An alternative perspective is that we can choose which Exts we consider
“known”.
Each such sequence results in a spectral sequence from 8 easier Ext
modules to the cohomology of A(2) analogous to the Postnikov tower for
ko.
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Sequence representing v 8
2

For brevity, let us write A = A(2).

F2

A/(Sq1,Sq2)

OO

Σ4A/(Sq1, Sq2Sq3)

OO

Σ8A/(Sq1)

OO

Σ15A⊕ Σ18A/((Sq1, 0), (Sq3, 0), (Sq4, Sq1), (Sq4Sq2,Sq3))

OO
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v82 v82

(cont.)
The first half was the same as in Davis and Mahowald. This half is
substantially smaller.

Σ22A⊕ Σ24A/((Sq1, 0), (Q1, Sq
1), (0,Q1))

Σ26A⊕ Σ30A/((Sq1), 0), (0,Sq2))

OO

Σ33A⊕ Σ36A/((Sq1, 0), (Q1, 0), (0,Sq(0,2)))

OO

Σ39A⊕ Σ39A/((Sq1,Sq1), (0, Sq2), (Q1, 0), (Sq(0,2), 0))

OO

Σ56F2

OO
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Equivariant postlude

Let T = T n be the n-dimensional torus.
Known:

Theorem (RRB and JPCG)

ku∗T n = ku∗[y1, y1 . . . , yn, yn]/(vyiy i = yi + y i )

with yi = cku1 (ti ) and y i = cku1 (t−1i ).

New:

Theorem

ko∗T = (ku∗T )C2

where the C2 action, τ(v) = −v and τ(yi ) = −y i , is given by complex
conjugation.
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Equivariant postlude

If we want explicit generators and relations, let N = {1, 2, . . . , n} and
recall that ko∗Sp(1)n = ko∗[z1, . . . , zn]. We get a presentation of ko∗T using
its ko∗Sp(1)n -module structure.

Theorem

ko∗T
∼= ko∗〈1〉 ⊕

⊕
∅6=I⊂N

ko∗[zmin I , . . . , zn] ⊗
ko*

ku∗〈zI 〉/(zi − z{i}(0))

Here, ku∗〈z〉 is additively ku∗ suspended by the degree of z , with the
ko∗-module structure that ku∗ has, and with “z(i) = v iz”.
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Equivariant postlude

Thank you
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