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Abstract

This paper is devoted to the connective K homology and cohomology of finite
groups G. We attempt to give a systematic account from several points of view.

In Chapter 1, following Quillen [50, 51], we use the methods of algebraic
geometry to study the ring ku∗(BG) where ku denotes connective complex K-
theory. We describe the variety in terms of the category of abelian p-subgroups
of G for primes p dividing the group order. As may be expected, the variety is
obtained by splicing that of periodic complex K-theory and that of integral ordinary
homology, however the way these parts fit together is of interest in itself. The main
technical obstacle is that the Künneth spectral sequence does not collapse, so we
have to show that it collapses up to isomorphism of varieties.

In Chapter 2 we give several families of new complete and explicit calculations
of the ring ku∗(BG). This illustrates the general results of Chapter 1 and their
limitations.

In Chapter 3 we consider the associated homology ku∗(BG). We identify this as
a module over ku∗(BG) by using the local cohomology spectral sequence. This gives
new specific calculations, but also illuminating structural information, including
remarkable duality properties.

Finally, in Chapter 4 we make a particular study of elementary abelian groups
V . Despite the group-theoretic simplicity of V , the detailed calculation of ku∗(BV )
and ku∗(BV ) exposes a very intricate structure, and gives a striking illustration
of our methods. Unlike earlier work, our description is natural for the action of
GL(V ).
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CHAPTER 0

Introduction.

0.1. Motivation.

This paper is about the connective complex K theory ku∗(BG) and ku∗(BG)
of finite groups G. The first author and others [3, 4, 5, 6, 8, 35, 48] have made
many additive calculations of ku∗(BG) and ku∗(BG) for particular finite groups
G. The purpose of the present paper is to give a more systematic account.

More precisely, ku∗(X) is the cohomology represented by the connective cover
of the spectrum K representing Atiyah-Hirzebruch periodic complex K theory.
Their values on a point are

K∗ = Z[v, v−1] and ku∗ = Z[v],

where v is the Bott periodicity element in degree 2.
Connective K theory is relatively easy to calculate, and it has been used to

great effect as a powerful and practical invariant by homotopy theorists. However,
it is not well understood from a theoretical point of view. Although it can be
constructed by infinite loop space theory, and there are ad hoc interpretations of
its values in terms of vector bundles trivial over certain skeleta [54], these fall short
of a satisfactory answer (for instance because they fail to suggest a well behaved
equivariant analogue). Similarly, ku is also a complex oriented theory, and is the
geometric realization of the representing ring for multiplicative formal groups if we
allow a non-invertible parameter. This does appear to generalize to the equivariant
case [27] but, since ku∗ is not Landweber exact, it does not give a definition.

Our response to this state of affairs is to exploit the calculability. In practical
terms this extends the applicability of the theory, and in the process we are guided
in our search for geometric understanding.

Our results fall into four types, corresponding to the four chapters.

(1) General results about the cohomology rings ku∗(BG), describing its vari-
ety after Quillen. In the course of this we exploit a number of interesting
general properties, such as the behaviour of the Bockstein spectral se-
quence and the fact that the Künneth theorem holds up to nilpotents for
products of cyclic groups. The use of Euler classes of representations is
fundamental.

(2) Explicit calculations of cohomology rings for low rank groups. The input
for this is the known group cohomology ring (processed via the Adams
spectral sequence) and the complex character ring.

(3) General results about the homology modules ku∗(BG), and the curious
duality phenomena which appear. The connections with the cohomology
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2 0. INTRODUCTION.

ring via the local cohomology theorem are highlighted. Phenomena are
illustrated by specific examples.

(4) Finally we turn to elementary abelian groups. We calculate the cohomol-
ogy ring and the homology module. These turn out to be remarkably
complicated, and the detailed geometry is quite intricate. Nonetheless
we are able to give a complete analysis which is a good guide for the
complexities arising in more general cases.

There are several reasons for interest in results of this type. Our results involve
the introduction of a ‘character ring’ together with a character map ku∗(BG) −→
Ĉhku(G). The point is that the character ring is reasonably calculable, and the
kernel of the character map consists of nilpotents so we can obtain useful new
information on the ring structure of ku∗(BG).

Secondly, there are equivariant versions of connective K-theory. For any rea-
sonable version, a completion theorem holds in the form

ku∗(BG) = (ku∗G)∧I

for a suitable ideal I. One example is May’s MU -induction [45] of non-equivariant
ku [32], but this equivariant version is much too big to be entirely satisfactory. As
a result of the present work, the second author has constructed a better version for
groups of prime order in [25], and for general compact Lie groups G in [28]. In
any case, the results of the present paper give information about the completion
of the coefficient ring ku∗G for any of these theories. Our calculations show that
a number of naive expectations are unreasonable, and also provide calculations of
the coefficient rings of the equivariant theory of [28].

Thirdly, the case of connective K-theory is of interest as an introduction to
some of the methods of [33], and a step on the way to extending them to the
general case of BP 〈n〉. N.P.Strickland [56] has calculations in BP 〈n〉∗BV when V
is elementary abelian of rank less than n + 2, suggesting further progress may be
possible.

0.2. Highlights of Chapter 1.

In the first chapter we prove a number of general results giving a description
of the coarser features of ku∗(BG) as a ring in terms of the group theory of G.
Quillen [50, 51] has given a descent argument which shows that the variety of the
ring ku∗(BG) can be calculated from that of ku∗(BA) for abelian subgroups A
using the category of abelian subgroups of G. This shows that most of our general
purpose can be achieved if we can calculate ku∗(BA) for abelian groups A and
describe it in a functorial way. This is easy if A is cyclic. For other cohomology
theories that have been analyzed, the general case then follows by the Künneth
theorem, but the Künneth spectral sequence for ku does not generally collapse
to a tensor product decomposition. Nonetheless, by a fairly elaborate argument
using special features of connective K-theory, we can show that we do have a tensor
product decomposition up to varieties, and this allows us to give useful general
results.

As might be expected, the answer is that the variety is a mixture of that
of ordinary cohomology at various integer primes and that of K theory. Quillen
proved that the mod p cohomology ring has dimension equal to the p-rank of G,
whilst periodic K-theory is one dimensional. It follows that ku∗(BG) has dimension
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equal to the rank of G if G is non-trivial, and the variety is formed by sticking
the variety of K∗(BG) (with components corresponding to conjugacy classes of
cyclic subgroups of G) to those of H∗(BG; Fp) (with components corresponding to
conjugacy classes of maximal elementary abelian p-subgroups of G). Considering
the degenerations as v or p becomes zero, it is not hard to identify the components
of the variety of ku∗(BG) or equivalently the minimal primes of the ring.

The ingredients in this analysis are interesting. First, we use Euler classes
and Chern classes of representations. It is very valuable to have a good supply
of classes under tight control, and we discuss their behaviour under a number of
natural constructions such as tensor products and change of cohomology theory.

In view of the coefficient ring ku∗ = Z[v] it is natural to study ku∗(X) according
to its p- and v-torsion, and in both cases the Bockstein spectral sequence gives a
structure for understanding this torsion. For integral ordinary homology it is not
hard to use the Bockstein spectral sequence to show that the Künneth theorem
holds up to varieties; nonetheless, this is not a formality. The analogous result for
connective K theory involves more careful analysis, and comparison with periodic
K theory. Furthermore we need to compare a number of filtrations that occur
naturally and show they coincide in favourable cases.

0.3. Highlights of Chapter 2.

Next we give exact calculations of the cohomology ku∗(BG) as a ring for a
number of groups of small rank. The only examples previously known were the
cyclic groups, where the result is clear from complex orientability and the Gysin
sequence. We are obliged to use more elaborate methods.

The additive structure largely follows from the Adams spectral sequence. Be-
cause the mod p cohomology of ku is free over A//E(Q0, Q1), where A is the mod
p Steenrod algebra and E(Q0, Q1) is the exterior algebra on Q0 and Q1, the E2-
term of the Adams spectral sequence for ku∗(BG) only requires the ordinary mod
p cohomology groups as modules over this exterior algebra. The higher Bocksteins,
the action of the rest of A, and a simple fact about the action of the represen-
tation ring on ku∗(BG) (Lemma 2.1.1) determine the differentials, and this gives
ku∗(BG) up to extensions. The multiplicative relations then follow by this lemma
and by comparison with ordinary cohomology and the representation ring. This
step is most effective for periodic groups, and for this reason we restrict attention
to low rank groups (which are also those with low dimensional cohomology ring).
Amongst rank 1 groups we calculate the cohomology of the cyclic and generalized
quaternion groups, and the non-abelian groups of order pq. We then proceed to
calculate the cohomology ring of the dihedral groups and the alternating group A4.

For rank 1 groups, ku∗BG is a subring ofK∗BG, so that once we have identified
the generators of ku∗BG using the Adams spectral sequence, we can use K∗BG
and R(G) to determine the relations. Even so, this produces rather complicated
relations when the order is large. The appearance of the Chebyshev polynomials in
the relations satisfied by the quaternion and dihedral groups is somewhat surprising
(2.5.3), and the number theory involved in the non-abelian groups of order pq is
tantalizing.

Among higher rank groups, the calculation is complicated by the presence of
(p, v)-torsion. This makes direct use of the Adams spectral sequence less helpful
on the face of it. However, in each of the cases we consider, the Adams spectral
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sequence does show that there is no (v)-torsion in positive Adams filtration, and
hence that cohomology together with representation theory will completely deter-
mine the multiplicative structure. It is interesting to note that some of the p-torsion
in integral cohomology comes from (p, v)-torsion in ku∗BG, whilst other p-torsion
in cohomology reflects v-divisibility of non-(p, v)-torsion in ku∗BG. The quaternion
and dihedral groups in particular, show the relation between the order of torsion
in cohomology and the v-filtration of the representation ring (Remark 2.5.10). All
of the (2)-torsion in ku∗BD2n is of order exactly 2, is annihilated by v, and is
independent of n. The remaining integral cohomology (in the image of reduction
from ku) is of order 2n−1, reflecting divisibility by v. Similarly, ku∗BQ2n has no (2)
or (v)-torsion at all, whereas HZ∗BQ2n has torsion of orders 2 and 2n, reflecting
v-divisibility of corresponding classes in ku∗BQ2n .

Finally, as in ordinary cohomology, ku∗(BA4) is not generated by Chern classes.
In addition, the Euler class of the simple representation of dimension 3 is non-
trivial in ku∗(BA4) but vanishes in periodic K-theory. An alternative approach
to ku∗(BA4) is to note that the 2-local part of the ku∗(BA4) is exactly the C3

invariants in ku∗BV4, where V4 is the Klein 4-group.
One interesting general pattern that emerges may be summarized by consider-

ing the short exact sequence

0 −→ T −→ ku∗(BG) −→ Q −→ 0

of ku∗(BG)-modules where T is the v-power torsion. Thus Q is the image of
ku∗(BG) in K∗(BG), and in all our examples except A4 it is the K0(BG) sub-
algebra of K∗(BG) generated by 1, v and the Chern classes of representations.
Although T is defined as the v-power torsion, in our examples it turns out to be
the (p, v)-power torsion when G is a p-group. In many cases it is annihilated by
the exponent of group without the need for higher powers.

0.4. Highlights of Chapter 3.

Next we consider homology ku∗(BG), and especially how the cohomology ring
ku∗(BG) affects it. It is generally considered that the homology of a group is more
complicated than its cohomology since it involves various forms of higher torsion.
However one of the lessons of our approach is that the right commutative algebra
shows that the two contain the same information up to duality.

Earlier results give just additive information, and our emphasis is on struc-
tural properties by use of the local cohomology spectral sequence, which allows
us to deduce ku∗(BG) as a module over ku∗(BG) from a knowledge of the ring
ku∗(BG) and the Euler classes. We emphasize that although this has purely prac-
tical advantages in the ease of calculating certain additive extensions, the main
attraction is the structural and geometric information not accessible through the
Adams spectral sequence. To explain, we let I = ker(ku∗(BG) −→ ku∗) denote the
augmentation ideal. Local cohomology H∗I (M) is a functor on ku∗(BG) modules
M , and calculates right derived functors of the I-power torsion functor

ΓI(M) = {m ∈M | Ism = 0 for s >> 0}

in the sense that

H∗I (M) = R∗ΓI(M).
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The local cohomology modules Hi
I(M) vanish for i > dim(ku∗(BG)), and so the

local cohomology spectral sequence

H∗I (ku∗(BG))⇒ ku∗(BG)

is a finite spectral sequence. The E2-term is calculable and the whole spectral
sequence is natural in G: we use both these facts to great effect.

In fact the local cohomology spectral sequence is a manifestation of a remark-
able duality property of the ring ku∗(BG). For ordinary mod p cohomology the
corresponding duality implies, for example, that a Cohen-Macaulay cohomology
ring is automatically Gorenstein. Since ku∗ is more complicated than HF∗p, the
statement is more complicated for connective K theory, but the phenomenon is
nonetheless very striking. This is reflected again in Tate cohomology. As with ordi-
nary cohomology, the advantages of Tate cohomology are most striking in the rank
1 case. More precisely, one may combine the universal coefficient spectral sequence

Ext∗,∗ku∗
(ku∗(BG), ku∗)⇒ ku∗(BG),

with the local cohomology theorem to make a statement of the form

(RD) ◦ (RΓI)(ku
∗(BG)) ‘=’ ku∗(BG).

Here D(·) = Homku∗
(·, ku∗) denotes duality, R denotes the right derived func-

tor in some derived category, and the precise statement takes place in a category
of strict modules over the S0-algebra F (BG+, ku), or its equivariant counterpart
F (EG+, ku). This states that the commutative equivariant S0-algebra F (EG+, ku)
is ‘homotopy Gorenstein’ in the sense of [15], and this has structural implications
for its coefficient ring ku∗(BG). We give this heuristic discussion some substance
by showing what it means in practice for our particular examples from the previ-
ous chapter. It turns out that under the local cohomology theorem, the Universal

coefficient short exact sequence calculating k̃u
∗
(BG) from k̃u∗(BG) corresponds

exactly to the short exact sequence 0 −→ T −→ ku∗(BG) −→ Q −→ 0 mentioned
in the summary of Chapter 3.

0.5. Highlights of Chapter 4.

Finally we discuss a considerably more complicated case. Although there is
very little to the group theory of elementary abelian groups, it interacts in a quite
intricate way with the coefficient ring and provides a test for the effectiveness of
our methods. The connective case is more complicated because of the failure of
the exact Künneth theorem. Geometrically speaking, this means that the basic
building block is no longer affine space. It is intriguing to see the commutative
algebra that this gives rise to, and it is chastening to see the complexity that so
small a perturbation causes.

Again we consider the extension

0 −→ T −→ ku∗(BV ) −→ Q −→ 0

of ku∗(BV )-modules, where T is the v-power torsion, which in this case is the
same as the ideal of elements annihilated by (p, v). Then Q has no p or v-torsion.
Indeed, Q is the image of ku∗(BV ) in periodic K-theory: it is the Rees ring, which
is to say that it is the K0(BG) subalgebra of K∗(BG) generated by 1, v and the
Euler classes y1, y2, . . . , yr of any r generating one dimensional representations.
Additively, Q is the sum of the coefficient ring Z[v] and a module which is free of
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rank |V | − 1 over Z∧p in each even degree. Finally, if p = 2, the module T is the
ideal of F2[x1, x2, . . . , xr] generated by the elements qS = Q1Q0(

∏
s∈S xs) with S

a subset of {1, 2, . . . , r}, and the action of the Euler classes on T is determined by
the fact yi acts as x2

i . This determines the ring structure of ku∗(BV ). However,
the commutative algebra of ku∗(BV ) is rather complicated. It turns out that there
is a direct sum decomposition T = T2⊕ T3⊕ · · · ⊕Tr, and Ti is of dimension r and
depth i. (Notice that this decomposition and the following discussion is intrinsic
and natural in V ). Remarkably, the local cohomology of Ti is concentrated in
degrees i and r. More startling still is the duality: the subquotients of H1

I (Q)
under the 2-adic filtration are the modules Hi

I(Ti), and the differentials in the local
cohomology spectral sequence give the isomorphism (4.11.5). Furthermore the top
local cohomology groups pair up Hr

I (Ti)
∨

= Σ−r+4Tr−i+2 for i = 2, 3, . . . , r − 1
(the exceptional behaviour of Tr is exactly what is required to lead to a clean final
duality statement): there is a natural exact sequence

0 −→ Σ−4T∨ −→ ku∗(BV ) −→ Z[v]⊕ Σ−1(2r−1H1
I (Q)) −→ 0.

Finding duality in a rank 1 group might seem like little more than a coincidence,
but in these rank r groups the exceptional behaviour necessary is quite breathtaking.

0.6. Reading guide.

Although the chapters are largely independent, certain sections are applied in
later chapters. Thus all readers will need to read Section 1.1 for its basic facts and
Section 1.3 for its discussion of Euler and Chern classes. Readers interested in the
homology of explicit examples in Chapter 3 will need to read the corresponding
sections in Chapter 2. Readers of Chapters 4 will want to read Section 2.1 to
explain how we calculate cohomology and hence introduce Section 4.2, and those
interested in homology and duality will also need to read most of Chapter 3.

We direct readers to Appendix A where we summarize various conventions. In
Appendix B there are various indices that should assist selective readers.
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CHAPTER 1

General properties of the ku-cohomology of finite

groups.

This chapter discusses generalities, but many of them will be used in our spe-
cific calculations in later chapters. The main theme is to investigate what Quillen’s
method proves about the variety of ku∗(BG). Since ku is complex oriented, the
structure of the argument is exactly Quillen’s, and this is outlined in Section 1.1.
The implications for minimal primes of ku∗(BG) are described in Section 1.2, and
compared with analogous results for periodic K theory and ordinary cohomology.
Euler classes provide a basic ingredient and point of comparison between theo-
ries, and we devote Section 1.3 to them. The principal difficulty in implementing
Quillen’s argument is that the Künneth theorem does not hold exactly, so that the
cohomology of abelian groups is not the tensor product of the cohomology of cyclic
groups. Using an analysis of the Bockstein spectral sequence in Section 1.4 we are
able in Section 1.5 to show that the Künneth theorem does hold up to nilpotents
in relevant cases.

1.1. Varieties for connective K-theory.

We shall be concerned with ku∗BG for finite groups G. Here, ku∗(·) is the
unreduced connective complex K-theory with coefficient ring ku∗ = Z[v] where
v ∈ ku−2 = ku2. Because we need to discuss both homology and cohomology, it is
essential for clarity that we consistently refer to cohomological degrees (i.e., ‘upper
degrees’ in the sense of Cartan-Eilenberg) as codegrees. Degrees can be expressed
as codegrees in the usual way, by Mk = M−k: for example, v has degree 2 and
codegree −2.

Before going further we should record the relationship between ku and the
more familiar theories, ordinary integral cohomology HZ, and periodic K-theory
K. Indeed, there is a cofibre sequence

Σ2ku
v−→ ku −→ HZ,

and there is an equivalence

K ' ku[1/v].
The full relationship is described by a Bockstein spectral sequence which we shall
have occasion to consider below, but for the present we shall be satisfied with two
remarks. First, note that the cofibre sequence gives a short exact sequence

0 −→ ku∗(X)/(v) −→ HZ∗(X) −→ ann(v, ku∗(Σ−3X)) −→ 0.

Lemma 1.1.1. For any space X we have (ku∗X)[1/v]
∼=−→ K∗(X).

7



8 1. GENERAL PROPERTIES OF THE ku-COHOMOLOGY OF FINITE GROUPS.

Proof: We prove the result for any bounded below spectrumX . Indeed, the natural
map ku −→ ku[1/v] ' K gives a natural transformation

ku∗(X)[1/v] −→ K∗(X),

since v is invertible in the codomain. This is tautologically an isomorphism when
X is a sphere. Both domain and codomain are exact functors of X , and K∗(X)
satisfies the wedge axiom. It therefore suffices to show that ku∗(X)[1/v] satisfies the
wedge axiom for bounded below wedges in the sense that when Xi is n-connected
for all i, the natural map

ku∗(
∨

i

Xi)[1/v]
∼=−→

∏

i

(ku∗(Xi)[1/v])

is an isomorphism.
This holds since the relevant limits are achieved in each degree. More precisely,

inverting v in kusY involves passing to limits over the sequence

kus(Y ) −→ kus−2(Y ) −→ kus−4(Y ) −→ kus−6(Y ) −→ · · · .
If Y is n-connected, the maps are all isomorphic once s− 2k ≤ n. �

We now briefly summarize Quillen’s methods [50, 51], explaining how they ap-
ply to ku. First note that ku is complex orientable. Next, the usual argument with
the fibration U(n)/G −→ BG −→ BU(n) associated to a faithful representation of
G in U(n) shows that ku∗(BG) is Noetherian, and similarly one sees that if Z is
any finite G-complex, the cohomology ku∗(EG×GZ) is a finitely generated module
over it. Accordingly, we may apply Quillen’s descent argument to deduce that the
restriction map

ku∗BG −→ lim
←−
A

ku∗BA =: Ĉh(G)

is a V-isomorphism (in the sense that it induces an isomorphism of varieties), and
that the variety of the inverse limit is the direct limit of the varieties of the terms
ku∗(BA).

More precisely, we have to bear in mind that ku∗(BG) is endowed with the
skeletal topology, so it is appropriate to consider formal schemes. For any ring
R with linear topology, we have an associated formal scheme spf(R), defined as a
functor from topological rings k to sets by

spf(R)(k) = Homcts(R, k).

The example to hand is

X(G) = spf(ku∗(BG)),

which is a formal scheme over X = spec(ku∗). The underlying variety is obtained
by restricting the functor to indiscrete algebraically closed fields, and since all our
results are at the level of varieties the reader may forget the topology on ku∗BG
for our purposes. There is always a map lim

−→i
spf(Ri) −→ spf(lim

←−i
Ri), and Quillen

has shown that if we restrict to a finite diagram of algebras Ri, finite over the
inverse limit, it is an isomorphism of varieties. Thus Quillen’s theorem states that
the natural map

lim
−→
A

X(A)
V∼=−→ X(G)
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of schemes over ku∗ is an isomorphism at the level of varieties. To analyze X(G) as
a variety it is enough to understand X(A) for abelian groups A in a functorial way.

Consider the special case R = ku∗BS1 ∼= ku∗[[x]], which is free as a topological
ring on a single topologically nilpotent generator x. Thus

spf(ku∗[[x]])(k) = nil(k),

where nil(k) is the set of topologically nilpotent elements of k. The map BS1 ×
BS1 −→ BS1 classifying tensor product of line bundles makes ku∗[[x]] into a Hopf
algebra with coproduct

x 7−→ 1⊗ x+ x⊗ 1− vx⊗ x,

and thus nil(k) is naturally a group under x� y = x+ y− vxy. We write [n](x) for
the n-fold � sum of x with itself, so that

[n](x) = (1− (1− vx)n)/v.

Let kA∗

denote the ring of functions from A∗ to k under pointwise multipli-
cation. We may give it the structure of a Hopf algebra with coproduct from the
product in A∗:

ψ(f)(β ⊗ γ) = f(βγ).

Theorem 1.1.2. For abelian groups A there is a map

spf(ku∗BA)(k)
V∼=−→ Hopfcts(ku

∗[[x]], kA∗

)

which is natural for ku∗ algebra maps of k and group homomorphisms of A, which
is an isomorphism at the level of varieties.

Proof: First we need a natural map. Choose an orientation of ku. We define

θ : spf(ku∗BA)(k) −→ Hopfcts(ku
∗[[x]], kA∗

)

by taking ([θ(f)](x)) (α) to be the image of the orientation under the composite

ku∗BS1 Bα∗

−→ ku∗BA
f−→ k.

Now we observe that both sides behave well under taking products of abelian
groups, so that it suffices to treat the case of cyclic groups. For the codomain
we have

k(C×D)∗ = kC∗ ⊗ kD∗

,

and this is a product of Hopf algebras, so the codomain on a product of abelian
groups is the product of schemes. For the domain, we have a Künneth map

ku∗(B(C ×D))←− ku∗(BC)⊗̂ku∗ku∗(BD),

from the coproduct of topological ku∗-algebras. The main technical ingredient in
the present proof is Theorem 1.5.1, which states that the Künneth map induces
an isomorphism of varieties. The proof of this will occupy Sections 1.3, 1.4 and
1.5, but for the present we assume the result, so it remains to observe that the
map θ factors through the Künneth map of schemes. For this we use the following
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diagram, in which we write Ĝm(R) = Hopfcts(ku
∗[[x]] for brevity.

spf(ku∗BA)(k)
θ−→ Ĝm(kA∗

)
↓ ↓

spf(ku∗BC⊗̂ku∗ku∗BD)(k) Ĝm(kC∗ ⊗ kD∗

)
=↓ ↓=

{spf(ku∗BC) ×X spf(ku∗BD)} (k)
θ×θ−→ Ĝm(kC∗

)×X Ĝm(kD∗

)

It thus remains to verify the theorem for cyclic groups. In section 2.2 we use
the Gysin sequence to show that if C is cyclic of order n then

ku∗(BC) = ku∗[[x]]/([n](x)).

Thus

X(C)(k) = Ringscts(ku
∗BC, k)

= {y ∈ nil(k) | [n](y) = 0}
= Grp(C∗,Ringscts(ku

∗[[x]], k))
= Hopfcts(ku

∗[[x]], Sets(C∗, k)).

All these isomorphisms except the last are obvious. The final one is a restriction of
the usual one for functions. Indeed if we let

f : C∗ −→ Ringscts(ku
∗[[x]], k)

and

g : ku∗[[x]] −→ Sets(C∗, k) = kC∗

denote typical functions, the condition that they correspond is that

g(p)(α) = f(α)(p).

Using the identification Ringscts(ku
∗[[x]], k)) = nil(k), the condition that f is a

group homomorphism is that

f(αβ) = f(α)� f(β) = f(α) + f(β)− vf(α)f(β).

The condition that g is continuous is that g(x) ∈ nil(Sets(C∗, k)) = Sets(C∗, nil(k)).
The condition that it is a Hopf map is that

g(x)(α) + g(x)(β) = g(x)(αβ) + vg(x)(α)g(x)(β).

�

It is easy to see that the ku∗-algebra

ku∗[[e(α) | α ∈ A∗]]/ (e(α) + e(β) = e(αβ) + ve(α)e(β) |α, β ∈ A∗) ,

represents the functor Hopfcts(ku
∗[[x]], kA∗

), so the theorem implies most of fol-
lowing.

Corollary 1.1.3. For an abelian group A the ku∗-algebra ku∗(BA) has a
subalgebra

ku∗[[e(α) | α ∈ A∗]]/ (e(α) + e(β) = e(αβ) + ve(α)e(β) |α, β ∈ A∗) ,

and any element of ku∗(BA) has a power which lies in the subalgebra. If A is of
rank ≤ 2 the subalgebra is equal to ku∗(BA).
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Proof: Suppose A = C(1) × C(2) × · · · × C(r) with each C(i) cyclic. The theorem
shows that ku∗(BA) has the same variety as the tensor product

ku∗(BC(1))⊗̂ku∗ku∗(BC(2))⊗̂ku∗ · · · ⊗̂ku∗ku∗(BC(r))

which in turn represents the functor Hopfcts(ku
∗[[x]], kA∗

). The Künneth theorem
together with the fact that ku∗(BC(i)) is of flat dimension 1 shows that the tensor
product is actually a subalgebra of ku∗(BA). The statement about rank 2 groups
follows from the explicit flat resolution of ku∗(BC(1)) given by the Gysin sequence
(see Section 2.2), together with the fact that ku∗(BC(2)) has no Z or v torsion. �

To see how this Corollary works, note that if C is cyclic, we know ku∗(BC) =
Z[v][[y]]/([n](y)), and y = e(α) where α generates C∗. The relation

e(αi) + e(αj) = e(αi+j) + ve(αi)e(αj)

implies, by induction, that e(αi) = (1 − (1 − ve(α))i)/v from which we conclude
that e(α) generates. It also gives e(ε) + e(ε) = e(ε) + ve(ε)2 or e(ε)(1− ve(ε)) = 0;
since 1− ve(ε) is a unit in the completed ring we see e(ε) = 0. Hence,

[n](e(α)) = (1− (1− ve(α))n)/v = e(αn) = e(ε) = 0,

as we know to be correct.

Convention 1.1.4. In the sequel we generally use the letter y for an Euler
class, because of its association with the coordinate of a formal group law.

1.2. Implications for minimal primes.

Quillen’s argument shows that we can deduce the minimal primes of ku∗(BG)
from the abelian case provided we know the answer for ku∗(BA) when A is abelian
in a sufficiently functorial way. Our proof that ku∗(BA) is a tensor product up to
varieties lets us identify its minimal primes.

We begin by considering abelian groups A.

Proposition 1.2.1. The minimal primes of ku∗(BA) are in bijective corre-
spondence with the set

{C | C ⊆ A cyclic of prime power order}∪
{E(p,A) | E(p,A) is a maximal elementary abelian p subgroup}

of subgroups of A.

Proof: We consider primes according to whether or not they contain v.
Primes not containing v correspond to primes of K∗(BA). Indeed, the primes

not containing v are the primes of the localization ku∗(BA)[v−1]. Now by 1.1.1,

ku∗(BA)[v−1] = K∗(BA) = R(A)∧J [v, v−1],

and we know by Segal’s work [53] that the minimal primes ℘C of R(A) correspond
to cyclic subgroups C. More precisely, R(C) = Z[η]/(ηn − 1), and ku∗(BC) =
ku∗[[y]]/[n](y), and we have

℘C = (resA
C)∗(φC(η))

where φC is the cyclotomic polynomial, and vy = 1− η. Of these primes, only the
ones meeting the component of the trivial group survive the process of completion.
These are exactly the primes corresponding to subgroups of prime power order.
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(2) (p)

p odd or 0

v = 0

(2) (p)

p odd or 0

(2) (p)

p odd or 0

Figure 1.1. The varieties of HZ∗(BC2), ku
∗(BC2) and R(C2),

and the natural inclusions.

Primes which do contain v correspond to primes of ku∗(BA)/(v), or equiva-
lently, to the corresponding quotient of the subalgebra in 1.1.3, namely

ku∗[[e(α) | α ∈ A∗]]/ (e(α) + e(β) = e(αβ) + ve(α)e(β) |α, β ∈ A∗) /(v) = Z[[A]].

To see this equality, note that the relations become e(α) + e(β) = e(αβ), so that
the result is the completed Z symmetric algebra Z[[A]] on A∗. The minimal primes
of Z[[A]] are the primes (p), defining affine space over Fp of dimension rankp(A)
and the ideal (e(α) | α ∈ A∗), defining spec(Z).

This identifies all the primes of ku∗(BA), and those minimal within each of the
two classes. It remains to identify possible containments between the classes.

None of the second class of primes lie in any of the first class, since they contain
v. In the second class (v, e(α) | α ∈ A∗), contains ℘1 = (e(α) | α ∈ A∗), so is not
minimal. Now suppose p divides the group order and consider (v, p). If A(p) is
cyclic then ℘Cp

lies in (v, p) since it is generated by

φp(η) = [p](y)/y =

(
p

1

)
−

(
p

2

)
vy + · · ·+

(
p

p

)
(vy)p−1.

Similarly, ℘C
pk

lies in (v, p) since it is generated by φpk(η) = [pk](y)/[pk−1](y),

which is easily seen to be in the ideal (p, v). On the other hand, if A(p) is not
cyclic, then (v, p) defines a scheme of dimension rankp(A) > 1, so it definitely does
not contain a prime defining a scheme of dimension 1.
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Finally, if p does not divide the group order then (v, p) is certainly not minimal
since ku∗(BA)/(p) = Z/p[v], so that (p) is itself prime. For an algebraic proof note
that [n](y)/y has constant term n, and thus if p does not divide n, all irreducible
factors are invertible power series mod p, so that the relation [n](y) = 0 is equiva-
lent mod p to y = 0. �

This analysis also gives an analysis of the primes minimal over each integer
prime p.

Proposition 1.2.2. (i) If p does not divide the group order, (p) is itself prime.
(ii) If p does divide the group order, there are two primes minimal over (p).

Proof: We have already discussed the case that p does not divide the group order.
Segal shows that the primes ℘C and ℘D become equal mod p if the p′ parts of

C and D are equal. The primes of R(A)/(p) thus correspond to cyclic subgroups
of p′ order. Completing at J picks out the unique prime ℘1.

It remains only to observe that if p divides the group order the prime (v, p) is
always minimal. This is clear if the Sylow p-subgroup is not cyclic, just as before.
If it is cyclic of order n, y ∈ ℘1 and we need only check that y 6∈ (v, p). However
[n](y) = 0 mod (p, v), so that the defining relation is trivial. �

Here is the answer for a general group:

Corollary 1.2.3. A: Components of ku∗(BG) for a finite group G correspond
to

{C | C cyclic of prime power order }/G
∪ {A | A maximal amongst elementary abelian subgroups }/G,

where G acts on these sets by conjugation.

B: Mod p there is one minimal prime if p does not divide the group order. If p
does divide the group order there is one minimal prime for each conjugacy class of
maximal elementary abelian p-subgroups, and one extra. �

Remark 1.2.4. (i) Of course ku∗(BG)/(v) is closely related to the integral
cohomology, HZ∗(BG) = (ku/v)∗(BG), and it was shown in [33, Appendix E]
that their varieties agree. Accordingly the essence of the results is that the variety
of ku∗BG contains an amalgamation of the varieties of K∗BG and HZ∗BG:

ku = K +HZ.

The interaction takes place at the primes for which the group has rank 1.
(ii) The discussion suggests things about the character of equivariant connective
K-theory. We mean an equivariant theory kuG with the properties (a) if v is
inverted, kuG becomes Atiyah-Segal periodic equivariant K-theory KG, (b) if we
reduce mod v, kuG has the character of ordinary Borel cohomology and (c) kuG

is complex orientable. Because of complex orientability, the theory formed from
KG by brutally truncating its homotopy does not qualify, but a suitable theory is
constructed in [25] if G is of prime order and in [28] for an arbitrary compact Lie
group G.
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In spec(ku∗G) we expect to find extra components corresponding to cyclic groups
with order divisible by more than one prime. In view of Properties (a) and (b), we
also expect the corresponding slogan to be

kuG = KG +HZG,

although the term HZG needs elucidation. Since kuG is not bounded below, the
slogan is of less certain value.

Now let us consider a non-abelian example in some detail.

Example 1.2.5. The quaternion group Q8 of order 8.
(i) the components correspond to the 5 conjugacy classes of abelian subgroups and
(ii) mod 2 there are two components.

Proof: The group has three cyclic subgroups 〈i〉, 〈j〉 and 〈k〉 of order 4, intersecting
in the central subgroup of order 2. We have seen that

ku∗(BC2) = Z[v][[x]]/(x(vx − 2))

and

ku∗(BC4) = Z[v][[y]]/(y(vy − 2)(v2y2 − 2vy + 2))

and y restricts to x. Finally, the automorphism groupW of order 2 takes η to η−1 =
η3, and so y = (1− η)/v to (1− η−1)/v = (1− (1− vy)3)/v = v2y3− 3vy2 + 3y. To
calculateW -invariants we may make use of the fact that for cyclic groups connective
K-theory is a subring of periodic K-theory. Now, we begin with R(C4)

W , which is
the subring of R(C4) = Z[α]/α4 = 1 generated by α2 and α + α−1]; this gives the
equivariant K-theory by adding the Bott element and (K∗BC4)

W by completion.
We then have

ku∗(BC4)
W = ku∗(BC4) ∩K∗(BC4)

W ,

and it is easy to check this is additively Z ⊕ Z∧2 ⊕ Z∧2 in each positive even degree
and Z∧2 ⊕Z∧2 in each negative even degree. The inverse limit lim

←−A
ku∗(BA) can be

identified with triples (xi, xj , xk) which restrict to the same element of ku∗(B〈−1〉)
where xi ∈ ku∗(B〈i〉)W and similarly for xj and xk. We may thus consider the
Quillen restriction map

ku∗(BQ8) −→ lim
←−
A

ku∗(BA).

We calculate ku∗(BQ8) exactly in Section 2.4, and it may be checked that the
restriction map is injective. However the rank of the codomain is greater than that
of ku∗(BQ8) in each even degree.

�

Example 1.2.6. The alternating group A4 on 4 letters.
(i) the components correspond to the 4 conjugacy classes of abelian subgroups and
(ii) mod 2 there are 2 components.
(iii) mod 3 there are 2 components.

1.3. Euler classes and Chern classes.

For any complex stable equivariant cohomology theory we may define Euler
classes. We only require the construction for Borel theories defined by E∗G(X) =
E∗(EG×G X), but the discussion applies quite generally.
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A complex stable structure is given by natural isomorphisms

Ẽ∗G(SV ∧X) ∼= Ẽ∗G(S|V | ∧X)

for simple complex representations V . Here SV is the one point compactification
of V and |V | denotes V with the trivial action. In other words, E∗G has Thom
isomorphisms for topologically trivial bundles. Now for any complex representation
V we may consider the inclusion iV : S0 −→ SV , and we may define the Euler class

e(V ) ∈ E
|V |
G by e(V ) = (iV )∗(ι), where ι ∈ Ẽ

|V |
G (SV ) ∼= Ẽ0

G(S0) corresponds to
the unit. It is immediate that e(V ) = 0 if V contains a trivial summand and that
e(V ⊕W ) = e(V )e(W ).

We shall be particularly concerned with the following four equivariant coho-
mology theories of a G-space X

(1) connective K-theory of the Borel construction ku∗(EG×G X)
(2) integral cohomology of the Borel construction H∗(EG ×G X ; Z)
(3) periodic K-theory of the Borel construction K∗(EG×G X) and
(4) periodic equivariant K-theory K∗G(X)

There are natural transformations

K∗G(X)
↓

K∗(EG×G X)
ρK←− ku∗(EG×G X)

ρH−→ H∗(EG×G X ; Z)

between them.

Lemma 1.3.1. There are complex stable structures on the above four theories
compatible with the displayed natural transformations between them.

Proof: The three Borel theories are easily seen to be complex stable using the
Serre spectral sequence of the fibre sequence EG × SV −→ EG ×G SV −→ BG.
The complex stable structure on equivariant K-theory comes from equivariant Bott
periodicity. The Serre spectral sequence shows that any complex stable structure
on ku gives complex stable structures for the other Borel theories. It remains to

remark that the image of the Thom class in K̃
|V |
G (SV ) in K̃ |V |(EG×G SV ) lifts to

k̃u
|V |

(EG ×G SV ). However this is immediate since both Serre spectral sequences
collapse. �

Convention 1.3.2. We shall fix a compatible choice of complex stable struc-
tures for the rest of the paper. This gives Euler classes eku(V ), eH(V ), eK(V ) and
eKG

(V ) in the four theories: these classes are central to our calculations and one of
the most effective techniques is comparison between the Euler classes of different
theories.

The Euler classes in periodic equivariant K-theory are well known, and deter-
mined by representation theory.

Lemma 1.3.3. For an n-dimensional complex representation V we have

vneKG
(V ) = λ(V ),

where λ(V ) = 1− V + λ2V − · · ·+ (−1)nλnV . �



16 1. GENERAL PROPERTIES OF THE ku-COHOMOLOGY OF FINITE GROUPS.

It is also useful to know how Euler classes behave under tensor products of
representations. In general this is rather complicated, but if G is abelian it is given
by an equivariant formal group law in the sense of [11]. For equivariant K-theory
this is unnecessary because of the direct connection with representation theory, and
for Borel theories it is enough to talk about non-equivariant formal group laws. In
our case HZ gives the additive formal group law and ku the multiplicative one.

Lemma 1.3.4. If α, β are one dimensional then
(i) eH(αβ) = eH(α) + eH(β)
(ii) For equivariant K-theory and for connective or periodic K-theory of the Borel
construction

e(αβ) = e(α) + e(β)− ve(α)e(β)

and

e(αβ) = e(α) + αe(β). �

The Euler class is the top Chern class, and the other Chern classes also play a
role. Suppose then that W is an n-dimensional complex representation. For Borel
theories of complex oriented theories we may define Chern classes cE1 (W ), cE2 (W ),
. . . , cEn (W ) by pullback from the universal classes. Indeed the representation defines
a map W : BG −→ BU(n) and hence

E∗[[cE1 , c
E
2 , . . . , c

E
n ]] = E∗(BU(n))

W∗

−→ E∗(BG).

We define cEi (W ) = W ∗cEi . For the representation ring we make a similar construc-
tion below, and this gives a construction for equivariant K-theory. For the theories
that concern us, we choose a complex orientation of ku compatible with the chosen
complex stable structure and with the standard orientation on K-theory.

Restriction to the maximal torus identifies E∗(BU(n)) as the invariants in
E∗(BT n) under the action of the Weyl group. The universal Chern class cEj ∈
E2j(BU(n)) restricts to the j-th symmetric polynomial σj(e1, . . . , en) ∈ E2j(BT n).
To define analogous classes in representation theory we must translate to degree 0,
where they should agree with vjcKj ∈ K0(BU(n)) = R(U(n))∧J . They are naturally

defined in terms of the exterior power operations λi.

Definition 1.3.5. For an n-dimensional complex representation W of G, let

cRj (W ) =

j∑

i=0

(−1)i

(
n− i
n− j

)
λi(W )

Lemma 1.3.6. Let W be an n-dimensional representation of G and let E be R
or a complex oriented cohomology theory.
(i) The natural map R(G) −→ K0(BG) sends cRj (W ) to vjcKj (W ).

(ii) The Euler class is the top Chern class: eE(W ) = cEn (W ).
(iii) If cE• (W ) = 1 + cE1 (W ) + · · ·+ cEn (W ) then cE• (V ⊕W ) = cE• (V )cE• (W ).
(iv)

λj(W ) =

j∑

i=0

(−1)i

(
n− i
n− j

)
cRi (W )

Remark 1.3.7. (i) A special case of (iii) is cR• (W ⊕ ε) = cR• (W ).
(ii) Intuitively, the role of cRj (W ) is to give the natural expression in W which

becomes divisible by exactly vj in connective k-theory. This observation seems to
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be new, though, as noted after the proof of the lemma, they have been known since
the 1960’s.

Proof: Consider the restriction map

R(U(n))∧J = Z[λ1V, . . . , λnV, (λnV )−1]∧J = Z[[cR1 , . . . , c
R
n ]]

↓
R(T n)∧J = Z[α±1

1 , . . . , α±1
n ]∧J = Z[[yR

1 , . . . , y
R
n ]].

where V is the defining representation of U(n), αi is the one-dimensional represen-
tation given by projection onto the ith factor, and yR

i = 1−αi is the representation
theoretic Euler class. Recall that restriction to the maximal torus induces the map

λiV 7→ λi(α1 + · · ·+ αn) = σi(α1, . . . , αn).

To be compatible with K-theory, we must therefore have

cRj 7→ σj(y
R
1 , . . . , y

R
n )

= σj(1− α1, . . . , 1− αn)

= pj(λ
1, . . . , λn)

where λi = λi(α1 + · · · + αn) and where pj is the polynomial which expresses the
elementary symmetric functions of the 1− αi in terms of those of the αi:

σj(1− α1, . . . , 1− αn) = pj(s1, . . . , sn)

where si = σi(α1, . . . , αn). The explicit formula by which we defined cRj follows

by expanding
∏n

i=1(x + 1 − αi) in the two obvious ways. Statement (i) follows
immediately. Comparison with 1.3.3 proves (ii). Part (iii) follows by well known
properties of the symmetric polynomials. Formula (iv) follows from the fact that
t 7→ 1− t is an involution. �

In these terms, the augmentation ideal J ⊂ R(U(n)) is J = (cR1 , . . . , c
R
n ) and

λn ≡ 1 mod J , relating the two descriptions of K0(BU(n)) as the power series ring
on the cRi and as the completion R(U(n))∧J .

The Chern classes cRi have a long history. See [19] for a comprehensive dis-
cussion and bibliography. They are usually defined in terms of the Grothendieck
γ-operations. Recall that these are defined by setting

γt(V ) = λt/(1−t)(V )

and letting γi(V ) be the coefficient of ti:

γt(V ) = Σγi(V )ti.

In these terms our Chern classes would be cRi (V ) = γi(|V |−V ), which accords well
with our other sign conventions. In particular, c|V |(V ) = e(V ), the Euler class of

V . The other convention which is commonly used, ci(V ) = γi(V − |V |), differs by
(−1)i, so satisfies c|V |(V ) = (−1)|V |e(V ).

It is perhaps worth finishing by commenting on the ring which models the Euler
and Chern classes.

Remark 1.3.8. A zeroth approximation to the ku-theory Chern subring is
given by considering the subring of KG

∗ = R(G)[v, v−1] generated by v and the first

Chern classes cKG

1 (V ) = v−1(|V | −V ). This is called the Rees ring Rees(R(G), J),
and is a familiar example in algebraic geometry of a blowup algebra. We may
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consider the ideal I generated by the Chern classes c1(V ) (i.e. the augmentation
ideal J in degree −2). The completion of the ring Rees(R(A), J) at I is equal to
ku∗(BA) if A is abelian and of rank 1.

For non-abelian groups, it is more natural to consider the subring of KG
∗ =

R(G)[v, v−1] generated by v and all the Chern classes cKG

i (V ). We call this the
modified Rees ring MRees(G). This is equal to the Rees ring if G is abelian.
We let I be the ideal generated by the Chern classes, and then the completion
of the ring MRees(G) at I is equal to ku∗(BG) if G is of rank 1. However nei-
ther Rees(R(G), J) nor MRees(G) has any Z or v torsion, so neither are good
approximations to ku∗(BG) if G is of rank ≥ 2, even if it is abelian.

More generally, MRees(G) is not even a model for the subring of Chern classes.
For example we shall see in Chapter 2 that the Euler class eku(τ) of the three
dimensional simple representation of A4 is non-zero (since eH(τ) 6= 0), but maps
to zero in periodic K-theory.

Corollary 1.1.3 gives a first approximation if A is abelian: ku∗(BA) has a
subring isomorphic to the completion of

ku∗[e(α) | α ∈ A∗]/ (e(α) + e(β) = e(αβ) + ve(α)e(β) |α, β ∈ A∗) ,

and every element of ku∗(BA) has a power in this subring. It is proved in [27]
that this subring is the universal ring Lm

A for multiplicative A-equivariant formal
group laws in the sense of [11]. The comparison with the zeroth approximation
corresponds to the map from ku∗(BA) to its image in K∗(BA). It is given by the
natural map

Lm
A −→ Rees(R(A), J) = MRees(A)

which is an isomorphism if A is topologically cyclic and not otherwise. Now
(Lm

A )∧I = ku∗(BA) if A is of rank ≤ 2 and we have equality in even degrees if
A is of rank ≤ 3. However the example of elementary abelian groups in Chapter 4
shows that the completion of Lm

A is not a good approximation to ku∗(BA) if A has
rank ≥ 4.

Next, we note that ku∗(BG) is often non-zero in odd degrees, even for abelian
groups, so none of these models is correct. It is natural to seek a model for the odd
dimensional groups by interpreting Lm

A as the ring of functions on Hom(A∗,Gm)
where Gm is some form of the multiplicative group.

In view of the complexity of the Chern subring of H∗(BG; Z), it seems hopeless
to attempt to give a purely algebraic model. A crude approximation is the limit
of the Chern rings of abelian subgroups (see Green-Leary [21] for more substantial
results in this direction).

1.4. Bockstein spectral sequences.

Bockstein spectral sequences have a special property, the ‘Tower Lemma’, which
we shall exploit in our proof that connective K-theory satisfies the Künneth theorem
up to varieties. A first step in the proof is the corresponding fact for integral
cohomology, which we prove at the end of this section using the Tower Lemma.

Let R be a ring spectrum, and let a ∈ R−d. We then have a cofibre sequence
of R-modules

ΣdR
a−→ R

ρ−→ R/a
δ−→ Σd+1R.
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We organize these into an inverse system

R
a←− ΣdR

a←− Σ2dR
a←− · · ·

↓ ↓ ↓
R/a ΣdR/a Σ2dR/a

which we think of as an R/a-Adams resolution of R.

Definition 1.4.1. The a-Bockstein spectral sequence, BSS(a), for R is the
spectral sequence of the exact couple obtained by applying [X,−]∗ to this diagram.

Proposition 1.4.2. BSS(a) is a spectral sequence of R∗-modules with

Es,t
1 = (R/a)t+sd(X),

dr : Es,t
r −→ Es+r,t+1

r ,

and E∗,t∞ an associated graded group of Rt(X)/(a-divisible elements).

Proof: The key fact is that there is a map R ∧R/a µa−→ R/a making the diagram

R ∧ ΣdR
1∧a−→ R ∧R −→ R ∧R/a −→ R ∧ Σd+1R

↓ ↓ ↓ µa ↓
ΣdR

a−→ R −→ R/a −→ Σd+1R

commute. Indeed, the commutativity of the left square implies the existence of µa.
This means that the maps in the lower cofibre sequence induce R∗-module maps
in homotopy. Since the differentials are composites of these maps, the spectral se-
quence is one of R∗-modules. The description of the E∞ term is evident from the
exact couple. �

Note that we are not asking that R/a be an R-algebra, or that the differentials
be derivations. For these properties stronger assumptions on R are required, but
we do not need these properties here.

We may succinctly describe the E1 term as

E1 = (R/a)∗(X)⊗ Z[a]

where (R/a)∗(X) is in filtration 0 (i.e., E0,t
1 = (R/a)t(X)) and a is in bidegree

(1,−d). Here the R∗ action is such that if x ∈ R∗X is detected by x̄⊗ ai then ax
is detected by x̄ ⊗ ai+1. This follows from the simple fact that if x : X −→ R lifts
to x̄ : X −→ ΣidR, then Σdx̄ : ΣdX −→ Σ(i+1)dR is a lift of ax.

Example 1.4.3. The Bockstein spectral sequence BSS(p) for HZ is obtained
from the cofibre sequence

HZ
p−→ HZ −→ HFp.

It has

E1 = HF∗p(X)⊗ Z[h0] =⇒ HZ∗(X)/(p-divisible elements)

Here, we violate our abuse of notation since the name h0 is so well established as
the associated graded representative of 2 in an Adams spectral sequence. This is
just the ordinary mod p Adams spectral sequence

E2 = ExtA(HF∗pHZ, HF∗p(X)) = ExtE[Q0](Fp, HF∗p(X)) =⇒ HZ∗(X∧p )

which is a much more structured form of the ordinary mod p Bockstein spectral
sequence, as its E∞ term is an associated graded of the object being calculated,
unlike the traditional Bockstein spectral sequence which requires that you interpret
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E∞ and the boundaries in each Er in a special way in order to determine the
module being calculated. The multiplicative structure is thereby also made more
transparent. Further, it can be compared to other Adams spectral sequences by
forgetful functors, e.g., from E[Q0, Q1]-modules to E[Q0]-modules.

Example 1.4.4. The Bockstein spectral sequence BSS(v) for ku is obtained
from

Σ2ku
v−→ ku

ρH−→ HZ

Here

E1 = HZ∗(X)⊗ Z[v] =⇒ ku∗(X)/(v-divisible elements)

This is a mildly disguised form of the Atiyah-Hirzebruch spectral sequence

H∗(X,π∗ku) =⇒ ku∗(X)

since the inverse system is the dual Postnikov tower for ku.

Example 1.4.5. The Bockstein spectral sequence BSS(η) for ko is obtained
from the cofibre sequence

Σko
η−→ ko

c−→ ku
r−→ Σ2ko

in which c is complexification and vr is realification. The reader who has not
computed the spectral sequence

ku∗ ⊗ Z[η] = Z[v, η] =⇒ ko∗ = Z[η, α, β]/(2η, η3, ηα, α2 − 4β)

is encouraged to complete this entertaining exercise.

Example 1.4.6. The Bockstein spectral sequence obtained from the cofibre
sequence

S0 2−→ S0 −→ S0/2 −→ S1

is a good example of the sufficiency of our minimal hypotheses. Since (S0/2)0 = Z/2
and (S0/2)2 = Z/4 it is clear that S0/2 is not a ring spectrum. It is also initially
surprising that E∞ is the graded group associated to 2-divisibility, since E1 is not
a Z/2-vector space. However the differentials rid the spectral sequence of these
anomalies.

Lemma 1.4.7. (The Tower Lemma) If x ∈ R∗(X) is detected by x̄ ∈ Es,t
∞ of

BSS(a), then there exists y ∈ R∗X such that x = asy and 0 6= ρ(y) ∈ (R/a)∗X.

Proof: By the long exact coefficient sequence, either ρ(x) 6= 0 and we are done,
since s must then be zero, or x = ay and we may iterate this argument. �

Since the element y of the lemma will be detected in filtration 0, we have the
slogan “All a-towers originate on the 0-line in the Bockstein spectral sequence”.
We emphasize that filtration in BSS(a) exactly reflects divisibility by a.

The tower lemma together with a vanishing line for BSS(p) now allow us to
prove that the Künneth homomorphism is a V-isomorphism for abelian groups.

Lemma 1.4.8. H̃Z
∗
(BG) is annihilated by |G|. �

Corollary 1.4.9. If N = νp(|G|), the exponent of p in the order of G, then

in BSS(p) for H̃Z
∗
(BG), E∗∗N = E∗∗∞ and Es,∗

∞ = 0 for s ≥ N.
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Proof: Since pNx = 0 for any p-torsion element x ∈ HZ∗(BG), the spectral se-
quence must collapse at EN . The Tower Lemma 1.4.7 implies that filtrations s ≥ N
are 0. �

Now, let A ∼= C(1) × · · · × C(r) be a product of cyclic groups.

Theorem 1.4.10. The Künneth homomorphism

κH : HZ∗(BC(1))⊗ · · · ⊗HZ∗(BC(r)) −→ HZ∗(BA)

is injective, and every element of HZ∗(BA) has a power in the image.

Proof: Since HZ∗ = Z is of homological dimension 1, κH is injective.
Now, suppose that x ∈ HZ∗(BA). We first show that if pix = 0, then xn ∈

im(κH) for some n, using the mod p Bockstein spectral sequence. We may assume
for this that A is a p-group. We then have

HF∗p(BA) = E[x1, . . . , xr]⊗ P [y1, . . . , yr]

(unless p = 2 and C(i) has order 2, in which case xi is a polynomial generator and
we retain the notation yi for x2

i ). If x ∈ HZ∗(BA) has positive filtration in BSS(p)
then xN = 0 by Corollary 1.4.9, and this is in im(κH).

Since HZ∗BC = Z[y]/(ny), where n = |C|, the image of κH is the subalgebra
generated by classes which reduce mod p to the yi’s. Thus, if x ∈ HZ∗(BA) has
filtration 0 in BSS(p) then 0 6= ρp(x) ∈ HF∗p(BA), and ρp(x

p) lies in the polynomial
subalgebra. Hence there exists z ∈ im(κH) with xp − z of positive filtration in
BSS(p). Taking m to be a power of p greater than or equal to N , the equation
0 = (xp − z)m = xpm − zm then shows that xpm ∈ im(κH).

Finally, for general A, any element x ∈ H̃Z
∗
(BA) is the sum of elements of

prime power order. Now, if pixi = 0 with (pi, pj) = 1 for i 6= j, then xixj = 0 for
i 6= j. Hence, (x1 + · · ·+ xk)N = xN

1 + · · ·+ xN
k , and the result follows. �

1.5. The Künneth theorem.

We saw in 1.4.10 that if A = C(1) × C(2) × · · · × C(r) then HZ∗(BA) is well
approximated as a ring by the tensor product of the factors. The purpose of this
section is to prove the analogous result for ku∗(BA).

For any ring spectrum E there is a Künneth map

κE : E∗(X)⊗E∗ E∗(Y ) −→ E∗(X × Y ).

If X and Y are infinite complexes it is appropriate to take into account the skeletal
topology. If the target is complete, the map factors through the completed tensor
product giving a map

κ̂E : E∗(X)⊗̂E∗E∗(Y ) −→ E∗(X × Y ).

This completion has no effect for ordinary cohomology.

Theorem 1.5.1. The map

κ̂ku : ku∗(BC(1))⊗̂ku∗ · · · ⊗̂ku∗ku∗(BC(r)) −→ ku∗(BA)

is injective, and every element of ku∗(BA) has a power in the image. Accordingly
κ̂ku induces an isomorphism of varieties.
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First we remark that this is not a formality. For well behaved theories such
as ordinary cohomology and connective K-theory [52] the map κE is the edge
homomorphism of a Künneth spectral sequence

TorE∗

∗,∗(E
∗(X), E∗(Y ))⇒ E∗(X × Y ).

Although the filtration of the spectral sequence is multiplicative, it provides no
useful progress towards our result, since the image of κE is the bottom filtration
rather than the top subquotient.

For integral cohomology the Künneth spectral sequence is a familiar short exact
sequence since HZ∗ = Z is of flat dimension 1. On the other hand ku∗ = Z[v] is of
flat dimension 2, so we generally expect a non-trivial differential.

Lemma 1.5.2. If C is a cyclic group then ku∗(BC) is of flat dimension 1 as a
complete ku∗-module.

Proof: The ku∗-module ku∗BS1 = ku∗[[z]] is the completion of a free module and
hence flat. The Gysin sequence

ku∗(BS1)
[n](z)−→ ku∗(BS1) −→ ku∗(BC)

gives a flat resolution of length 1. �

Corollary 1.5.3. There is a short exact sequence

0→ ku∗(BC)⊗̂ku∗ku∗(X) −→ ku∗(BC ×X) −→ T̂orku∗(ku∗(BC), ku∗ΣX)→ 0.

�

Next we deal with the easy case of negative codegrees. The good behaviour
comes from that of periodic K-theory.

Lemma 1.5.4. With A as above, we have the decomposition

R(A) ∼= R(C(1))⊗ · · · ⊗R(C(r)),

and the augmentation ideal J(A) is equal to the sum of the ideals J(C(1)), . . .,
J(C(r)).

�

After completion this gives a more directly relevant result.

Corollary 1.5.5. There is an isomorphism

R(A)∧J(A)
∼= R(C(1))∧J(C(1))⊗̂ · · · ⊗̂R(C(r))∧J(C(r)),

and therefore

K0(BA) ∼= K0(BC(1))⊗̂ · · · ⊗̂K0(BC(r))

and κK gives an isomorphism

K∗(BA) ∼= K∗(BC(1))⊗̂ku∗ · · · ⊗̂ku∗K∗(BC(r)). �

Using the fact that ku is the connective cover of K we immediately obtain a
comparison.
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Lemma 1.5.6. If m ≥ 0 and X is a space then

ku−2m(X) = K−2m(X).

If X is a connected space (such as BG) then in addition ku2(X) ∼= K̃2(X). �

This is enough to show that the Künneth map is an isomorphism in positive
degrees.

Corollary 1.5.7. If m ≥ 0 then

κ̂ku : (ku∗(BC(1))⊗̂ku∗ · · · ⊗̂ku∗ku∗(BC(r)))−2m ∼=−→ ku−2m(BA).

Furthermore, if m = 0 the tensor product may be taken over ku0 = Z:

κ̂ku : ku0(BC(1))⊗̂ · · · ⊗̂ku0(BC(r))
∼=−→ ku0(BA).

Proof: We argue by induction on r. Indeed we have a diagram

ku−2m(BC(1))⊗̂ku0(X)
∼=−→ K−2m(BC(1))⊗̂K0(X)

↓ ↓∼=
(ku∗(BC(1))⊗̂ku∗ku∗(X))−2m −→ (K∗(BC(1))⊗̂ku∗K∗(X))−2m

κ̂ku ↓ ↓ κ̂K

ku−2m(BC(1) ×X)
∼=−→ K−2m(BC(1) ×X).

It suffices for the first statement to show that κ̂ku is an epimorphism since we
know by 1.5.3 that it is a monomorphism. If we assume that κ̂K is an isomorphism,
this follows from the upper route round the diagram, where the upper right vertical
isomorphism follows from Bott periodicity. �

We are now ready to turn to the main proof. First, we have an immediate
consequence of the fact that ku∗(BA) is Noetherian.

Lemma 1.5.8. There is a bound on the v-power torsion in ku∗(BA). More
explicitly, there is a number Nv so that for any x ∈ ku∗(BA) if vNv+rx = 0 then
vNvx = 0. Accordingly the ideal (vNv ) has no v torsion. �

The main technical ingredient is as follows.

Proposition 1.5.9. The ideal (vNv) in ku∗(BA) lies in the image of κ̂ku:

(vNv ) ⊆ im(κ̂ku).

Proof: Note that this is a trivial consequence of 1.5.7 in negative codegrees, so it
suffices to consider what happens in codegree 2m with m ≥ 0.

We begin with some results comparing filtrations.

Lemma 1.5.10. In ku0BG we have the equality

(v)0 = Ĵ(G).

Proof: Consider the diagram

ku2(BG)
v−→ ku0(BG) −→ H0(BG; Z)

↓ ↓∼=
ku0(∗) ∼=−→ H0(∗; Z)
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By definition Ĵ(G) is the kernel of the left hand vertical, so the result follows from
the two isomorphisms and the commutativity of the square. �

There are three filtrations we need to consider on ku0(BG)

(i) the Ĵ(G)-adic filtration, with nth term Ĵ(G)n

(ii) the skeletal filtration, with nth term

Sk2n−1 = ker(ku0(BG) −→ ku0(BG2n−1))

(iii) the v-filtration

(v)0 ⊇ (v2)0 ⊇ (v3)0 ⊇ (v4)0 ⊇ · · · .
We summarize some well known relations between the filtrations.

Lemma 1.5.11. (i) The J(G)-adic and skeletal filtrations on ku0BG define the
same topology, and the module is complete and Hausdorff for it. Furthermore, the
v-topology is finer than the skeletal topology in the sense that (vn)0 ⊆ Sk2n−1.
(ii) If G = A is abelian the J(A)-adic and skeletal filtrations are equal. In particu-

lar, for any n we have (vn)0 ⊆ Ĵ(A)n.

Proof: The Atiyah-Segal completion theorem shows that the J(G)-adic and skeletal
filtrations on K0(BG) = ku0(BG) define the same topology, which is complete and
Hausdorff. Now consider

ku2N(BG)
vN

−→ ku0(BG)
↓ ↓

ku2N (BG(2n−1))
vN

−→ ku0(BG(2n−1)).

Since (vN )0 is the image of the top horizontal in the diagram, and since the group
ku2N(BG(2n−1)) = 0 for 2N > 2n− 1, it follows that (vn)0 ⊆ Sk2n−1.

If A is abelian, Atiyah [2] shows that the skeletal and J(A)-adic filtrations on
K0(BA) = ku0(BA) agree; this is easily seen for cyclic groups from the Gysin
sequence, and it follows in general by the Künneth isomorphism for K0. �

For cyclic groups we can easily obtain an explicit containment between the
topologies in the other direction. Notice that (vi)0 is not the ith power of an ideal,
so the result is not a direct consequence of 1.5.11.

Lemma 1.5.12. If C is a cyclic group then Ĵ(C)i ⊆ (vi)0.

Proof: The ideal J(C) is the principal ideal generated by the degree 0 Euler class
vy. �

Now, to continue the proof of 1.5.9, consider the diagram

(
⊗r

1 ku
∗(BC(i)))0

∼=−→ ku0(BA)
vm ↑ ↑ vm

(
⊗r

1 ku
∗(BC(i)))2m −→ ku2m(BA) ⊇ (vNv )2m

vNv ↑ ↑ vNv

(
⊗r

1 ku
∗(BC(i)))2(Nv+m) −→ ku2(Nv+m)(BA)

By 1.5.11 (vNv+m)0 ⊆ JNv+m for all m. We show that any s ∈ (vNv )2m lies in the
image of the Künneth map. Because of the isomorphism 1.5.7 at the top, vms =
κ̂ku(Σαt1α⊗· · ·⊗trα). Since vms ∈ (vNv+m)0 ⊆ J(A)Nv+m, and since J(A)Nv+m =
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Σa1+···+ar=Nv+mJ
a1
1 Ja2

2 · · ·Jar
r , by 1.5.7 we may suppose tiα ∈ J(C(i))ai . Since

J(C(i))ai ⊆ (vai)0 by 1.5.12, we may choose uiα ∈ ku∗(BC(i)) so that

t1α ⊗ · · · ⊗ trα = vNv+mu1α ⊗ · · · ⊗ urα.

Taking

u = Σαu1α ⊗ · · · ⊗ urα ∈ (

r⊗

1

ku∗(BC(i)))2(Nv+m)

we find

s′ = κ̂ku(vNvu) = vNv κ̂ku(u) ∈ (vNv )2m

with vm(s − s′) = 0. Since v is injective on (vNv ) by choice of Nv we have s = s′

as required. This completes the proof of 1.5.9. �

The corresponding result for an ideal generated by a power of p is rather simpler
because all comparisons can be done in a single degree.

Lemma 1.5.13. For an abelian p-group A, let E(A) = (eku(α) | α ∈ A∗). There
is a number Np so that pNpE(A)Nv ⊆ (vNv). Accordingly the ideal pNpE(A)Nv has
no v torsion.

Proof: If α is of order pi then pie(α) is divisible by v from the relation 0 = e(αpi

) =

(1− (1− ve(α))pi

)/v. �

Proof of 1.5.1: Now we can complete the proof of the main theorem of the section.
Suppose x ∈ kun(BA): we must find a power of x in the image of κ̂ku. We may
suppose n ≥ 2 by 1.5.7.

If A is not a p-group, the map
∨

p | |A|

B(A(p))+
'−→ BA+

of spaces is a based stable equivalence. It follows that the Künneth map for the
decomposition ΠpA(p) is an isomorphism. We may choose the decomposition of A
as a product of cyclic factors so as to respect this, and it follows that it suffices to
deal with the case that A is a p-group.

If x ∈ (v) then xNv ∈ (vNv ) and we are done by 1.5.9. Otherwise x is
not a multiple of v so that ρH(x) 6= 0. Hence ρ(xq) ∈ im(κ̂H) for some q by
1.4.10, and indeed, we may suppose ρH(xq) = p(eH(α1), eH(α2), . . . , eH(αr)) for
some polynomial p with degree ≥ Nv. Hence xq − y is divisible by v, where
y = p(eku(α1), eku(α2), . . . , eku(αr)), and we have xq = y + vx′. We now show

that (xq)pM

lies in the image of κ̂ku for M sufficiently large. Indeed, if pM ≥ Nv,
we have

(xq)pM

= ypM

+

(
pM

1

)
ypM−1vx′ +

(
pM

2

)
ypM−2(vx′)2 + · · ·

+

(
pM

Nv − 1

)
ypM−Nv+1(vx′)Nv−1 + vNvz.

By definition ypM

lies in the image of κ̂ku, and vNvz lies in the image of κ̂ku by
1.5.9, so it remains to deal with the other terms. By 1.5.13, it suffices to choose M
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so that (
pM

i

)
≡ 0 mod pNp for 0 < i < Nv.

This is easily done by taking M ≥ Np +νp(Nv!), since the binomial coefficient
(
pM

i

)

is a multiple of pM divided by i!. �



CHAPTER 2

Examples of ku-cohomology of finite groups.

In this chapter we give exact calculations of cohomology rings of some small
groups. In Section 2.1 we describe the general procedure for calculation, but roughly
speaking it involves using the ordinary cohomology to give the E2-term of an Adams
spectral sequence, an analysis of which gives a generating set. For the multiplicative
structure the comparison with periodic K-theory is essential; the Euler and Chern
classes play a role in both parts of the process.

The groups we consider are the cyclic groups (Section 2.2), the non-abelian
groups of order pq (Section 2.3), the quaternion 2-groups (Section 2.4), the dihedral
2-groups (Section 2.5), and the alternating group A4 (Section 2.6). All of these are
of rank 1 or 2, and it is striking that the answer is so complicated even in such
simple cases. The comparison with periodic K theory is much less powerful in
higher ranks, and we only treat elementary abelian groups. Even for these, we have
to work harder for our results, and accordingly we devote Chapter 4 to this case.

Results for many other groups can be deduced by reducing to the Sylow sub-
groups or their normalizers. For example, we can compute ku∗BSL2(3) since
we know ku∗BQ8 and ku∗BC3. We get ku∗BSL2(q) (2q)-locally and ku∗BΣq

(q(q − 1))-locally when q is prime.
From our calculations it will be apparent that ku∗BG is something like a Rees

ring with respect to the augmentation ideal. For the cyclic group, it is exactly the
Rees ring. However, there are two reasons it is not the Rees ring in general: firstly
because non-abelian groups have simple representations of dimension more than 1,
and secondly because of torsion.

For example, the representation rings of Q8 and D8 are isomorphic as aug-
mented rings, yet their connective K-theories differ, even though they are both
generated by Euler classes. One reason is that the exterior powers of their two di-
mensional simple representations behave differently. This means that their Chern
classes also behave differently. To see the relevance of this one may consider the
universal case, U(n). In R(U(n)), the augmentation ideal is J = (c1, . . . , cn), where
the ci are the Chern classes. The class ci is divisible by exactly vi in connective
K-theory. This suggests a natural modification of the Rees ring construction which
we intend to pursue further elsewhere. The second reason is due to the difference
in ranks, leading to v-torsion in ku∗(BD8). Similarly, the rings ku∗BV , ku∗BD2n ,
and ku∗BA4 all contain v-torsion.

Even this is not the whole story. For example, the rings ku∗BV , with V
elementary abelian, and ku∗BA4 contain elements not in the Chern subring. One
might hope to explain all this by a topological modified Rees ring construction,
whose homotopy is the target of a spectral sequence involving derived functors of
the modified Rees ring.

27
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The general pattern that emerges may be summarized by considering the short
exact sequence

0 −→ T −→ ku∗(BG) −→ Q −→ 0

of ku∗(BG)-modules where T is the v-power torsion. Thus Q is the image of
ku∗(BG) in K∗(BG), and in many cases (A4 is the only exception amongst the
groups we consider) it is the modified Rees ring of K∗(BG) generated by 1, v and
the Chern classes of representations with ci placed in degree −2i. Although T is
defined as the v-power torsion, when G is a p-group it turns out to be the (p, v)-
power torsion. If G is of rank 1, T = 0, and if G is of higher rank, its growth rate
is polynomial of degree r − 1.

2.1. The technique.

Our calculations of ku∗(BG) start from the (ordinary complex) representation
ring of G and the mod-p cohomology of BG for each p dividing the order of G. The
representation ring R(G) gives the periodic K-theory K∗(BG) = R(G)∧J [v, v−1] by
the Atiyah-Segal Theorem. The mod-p cohomology ring gives the E2 term of the
Adams spectral sequence

Ext∗,∗
A

(H∗(ku), H∗(BG)) =⇒ ku∗(BG)∧p .

Calculation of the E2 term is generally simple, and the differentials are accessible by
various means, primarily the Bockstein spectral sequence BSS(p), stable splittings
of the spectra involved, periodicities coming from Thom isomorphisms, and our
knowledge of K∗(BG) = ku∗(BG)[1/v]. The E∞ term of the Adams spectral
sequence gives an additive generating set for ku∗(BG) and determines much of the
ku∗-module structure and some of the multiplicative structure. The relation to
periodic K-theory and to cohomology then allows us to complete our calculation
of the ring ku∗(BG). The additive generating set given by the Adams spectral
sequence gives us control over the order of the torsion and divisibility. The fact
that the ku-theory Euler classes and Chern classes specialize to those in cohomology
and periodic K-theory is important here.

Since the same methods apply to all the calculations, we discuss the preceding
outline of the Adams spectral sequence calculation in more detail before proceeding
to the special cases. For the rest of this section all spectra are completed at p. To
compute the Adams spectral sequence

Ext∗,∗
A

(H∗(ku), H∗(BG)) =⇒ ku∗(BG)∧p

we need the p-local Adams splitting

(1) ku ' l ∨ Σ2l ∨ · · · ∨ Σ2(p−2)l

and the fact that H∗(l) = A ⊗
E(1)

Fp, where E(1) = E[Q0, Q1], the exterior algebra

on the Milnor generators Q0 and Q1. A standard change of rings argument then
gives

Ext∗,∗
A

(H∗(l), H∗(BG)) = Ext∗,∗E(1)(Fp, H
∗(BG)).

This is easily calculated since bounded below E(1)-modules of finite type are sums
of free modules and ‘lightning flashes’, or ‘string modules’ [1]. The latter modules
are at most one dimensional over Fp in each degree, and are determined by a finite
or infinite ‘string’

· · ·Q1Q
−1
0 Q1Q

−1
0 Q1 · · ·
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...  ...

Figure 2.1. The bi-infinite string module · · ·Q1Q
−1
0 Q1Q

−1
0 Q1 · · ·

(where Q0 is denoted by straight, and Q1 by curved arrows).

q

4q-10-1

q-1

2q-1 2q

3q-1 3q

4q
 ...

Figure 2.2. The module L (q = 2(p− 1)).

which connects all the elements in the module (see Figure 2.1). Those which are
bounded below either start with Q−1

0 or Q1, and those which are bounded above
either end with Q−1

0 or Q1, giving four families of finite strings distinguished by
length, two bounded below semi-infinite strings, two bounded above semi-infinite
strings, and a single string module infinite in both directions. We will let L denote
the bounded below module corresponding to the string Q−1

0 Q1Q
−1
0 Q1 · · · , with

initial class in degree 0 (see Figure 2.2). This is Σ−2H̃∗(BC2) at the prime 2, and

is a desuspension of H̃∗(B) at odd primes, where B is an indecomposable summand
of BCp.

The ground field Fp is the string module corresponding to the empty string.
This gives the Adams spectral sequence converging to the coefficients,

Ext∗,∗E(1)(Fp,Fp) = Fp[a0, u] =⇒ l∗ = Z∧p [u]

(see Figure 2.3) with a0 ∈ Ext1,1 detecting the map of degree p, (we write h0 rather
than a0, and v rather than u when p = 2), and u ∈ Ext1,2p−1 detecting vp−1.
The Adams spectral sequence must collapse because it is concentrated in degrees
divisible by q. When p = 2, this gives

Ext∗,∗
A

(H∗(ku),F2) = F2[h0, v] =⇒ ku∗ = Z∧2 [v]

(see Figure 2.3 with u = v and q = 2). If p > 2, then in terms of the splitting (1),
the map v : Σ2ku −→ ku is




0 0 · · · 0 u
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · ·
· · · · · · ·
· · · · · · ·
0 0 · · · 1 0




.

It follows that multiplication by v in the Adams spectral sequence

Exts,t
A

(H∗(ku), H∗(•)) =⇒ ku−(t−s)(•)
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Figure 2.3. The Adams spectral sequence for l∗.
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Figure 2.4. The Adams spectral sequence for ku∗.

maps each of the first p − 2 summands isomorphically to the next, preserving
filtration, and maps the last summand to the first by multiplication by vp−1 = u,
raising filtrations by 1. For the coefficients ku∗, the result is

Ext∗,∗
A

(H∗(ku),Fp) = Fp[a0, v, u]/(v
p−1) =⇒ ku∗ = Z∧p [v]

(see Figure 2.4).
The cohomology Ext∗,∗E(1)(Fp,M) of each of the string modules M is readily

calculated as a module over Ext∗,∗E(1)(Fp,Fp). Thus, decomposing H∗(BG) as a sum
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of indecomposable E(1)-modules gives us the E2 term of the Adams spectral se-
quence for ku∗(BG). To determine the differentials, the first observation is that
stable splittings of BG restrict the possibilities. Stable splittings of ku∧BG restrict
them even further in some cases (e.g., G = A4 or elementary abelian). The next
observation is that the higher Bocksteins in ordinary cohomology imply certain dif-
ferentials in a manner described below. Having applied these differentials, we can
then show, in the cases we study, that the relation to periodic K-theory implies no
further differentials can occur. This is in contrast to the case of real connective
K-theory ko∗, where a second set of differentials intervenes to impose the relations
involving η [6].

There are no convergence problems, despite the fact that ku∗(BG) is un-

bounded both above and below, since k̃u
i
(BG(n)) is finite if n > i, where BG(n)

is the n-skeleton of BG. Thus, the inverse system {ku∗(BG(n))} is Mittag-Leffler,
and we may compute

ku∗(BG) = lim
←−
n

ku∗(BG(n)).

Convergence also makes it easy to use duality between the ku-cohomology and
ku-homology of BG. In particular, information about differentials in the Adams
spectral sequence converging to ku∗(BG) can be dualized to yield information about
the differentials in the Adams spectral sequence converging to ku∗(BG). This is
how splittings of ku ∧BG are relevant to ku∗(BG) = π∗(F (BG, ku)).

A situation which will occur repeatedly is the following. Write the cohomology
of X as the sum of a module M with no E(1)-free summands and a free module
over E(1),

H∗(X) = M ⊕
⊕

α

ΣnαE(1).

Then Margolis’ theorem about Eilenberg-MacLane wedge summands [43] implies
that there is a corresponding decomposition,

ku ∧X ' X̄ ∨
∨

α

ΣnαHFp.

Each E(1) in the decomposition of H∗(X) gives rise to p − 1 copies of Fp in fil-
tration 0 of the Adams spectral sequences converging to ku∗(X) and ku∗(X). The
decomposition of ku∧X shows that these classes do not support any differentials in
the spectral sequence for ku∗(X). By S-duality, the classes do not support any dif-
ferentials in the spectral sequences for ku∗(DX) or ku∗(X) either. Similarly, there
are no hidden extensions involving these classes. They detect classes in ku∗(X) and
ku∗(X) which are annihilated by p and v.

This duality is involved in the relation between the Bockstein and Adams
differentials as well. May and Milgram [46] have shown that above a vanishing
line determined by the connectivity of the spectrum, there is a one-to-one corre-
spondence between the h0-towers in the Er-term of the Adams spectral sequence
Ext∗,∗A (H∗(X),Fp) =⇒ π∗(X) and the r-th term of the Bockstein spectral sequence
BSS(p), and that under this correspondence the Adams and Bockstein differentials
agree. An h0-tower is a set {hi

0x|i ≥ 0} in which all hi
0x 6= 0, under the obvious

equivalence relation of cofinality. We are applying this to the spectral sequence for
l∗(X) = π∗(l ∧X) and using the change of rings isomorphism

Ext∗,∗
A

(A⊗E(1) H
∗(X),Fp) ∼= Ext∗,∗E(1)(H

∗(X),Fp)
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to compute E2. This introduces a twist to the Bockstein lemma of May and Mil-
gram. The Künneth theorem gives

H∗(l ∧X) ∼= H∗(l)⊗H∗(X) ∼= (A⊗E(1) Fp)⊗H∗(X).

In order to convert this to the form needed by the change of rings theorem, we must
use the isomorphism

θ : (A⊗E(1) Fp)⊗H∗(X)
∼=−→ A⊗E(1) H

∗(X)

given by θ(a⊗ x) = Σa′ ⊗ a′′x, with inverse θ−1(a⊗ x) = Σa′ ⊗ χ(a′′)x, where the
coproduct on a is Σa′ ⊗ a′′. Therefore, when we compute E2 as ExtE(1), the Bock-
stein which determines the Adams differentials is the usual Bockstein conjugated

by θ, namely β̂r = θ−1βrθ.
The Bockstein spectral sequence for ku is well known [1] to collapse at E2, with

E2 = E∞ spanned by the equivalence classes of Sq2nι, where ι ∈ H0(ku) is the
unit. Clearly Sq2nι must therefore detect vn in the Adams spectral sequence for
π∗(ku), and by the fact that the Adams spectral sequence is multiplicative, we see
that a tower corresponding to a class Sq2nι⊗x is vn times the tower corresponding
to x.

Once we have E∞ of the Adams spectral sequence, we know classes which
generate ku∗BG, and the next task is to determine the multiplicative structure.
In addition to ad hoc methods, two general techniques are used. First, whenever
vn : ku2nBG −→ ku0BG is a monomorphism, we may simply compute in ku0BG =
K0BG = R(G)∧J . Second, we have a useful consequence of a version of Frobenius
reciprocity.

Lemma 2.1.1. If V is a representation of G whose restriction to a subgroup H
contains a trivial summand, and β ∈ R(G) is induced up from H, then βeku(V ) = 0.

Proof: The untwisting isomorphism allows us to calculate

βe = (β′ ↑GH) e

= (β′e↓GH)↑GH
= 0

where e = eku(V ). �

2.2. Cyclic groups.

The Gysin sequence of the sphere bundle

S(αn) = BCn −→ BS1 B(n)−→ BS1.

associated to the nth tensor power of a faithful simple representation α, splits into
short exact sequences because the [n]-series is not a zero divisor. This provides
presentations of K∗(BCn) and ku∗(BCn):

K∗(BCn) = Z[v, v−1][[e]]/([n](e)) = Z[v, v−1][[e]]/((1− (1− e)n))

and, sitting inside it,

ku∗(BCn) = Z[v][[y]]/([n](y)) = Z[v][[y]]/((1− (1 − vy)n)/v)

where y = eku(α) ∈ ku2(BCn), and e = veK(α) = (1− α) ∈ K0(BCn).
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Figure 2.5. The Adams spectral sequence for ku∗(BC2).

This calculation could equally well have been done using Lemma 2.1.1. Take
V = α and ρ the regular representation. Then y = eku(α) satisfies α = 1− vy, and
hence

0 = yρ = y

n−1∑

0

αi =
1− (1 − vy)

v

n−1∑

0

(1− vy)i =
1− (1 − vy)n

v
.

We shall also compute the Adams spectral sequences for the cyclic groups, even
though we already have complete information, because we shall need to know how
the Adams spectral sequence computation goes for cyclic groups in order to use
naturality later.

For the Adams spectral sequence calculation, we may as well restrict atten-
tion to the primary case. Let us write H∗(BCpk) = E[x] ⊗ Fp[y] if pk 6= 2 and

H∗(BC2) = F2[x], where x ∈ H1 and y ∈ H2. In the latter case, let y = x2. Recall
that we have chosen compatible orientations for ku and HZ, so that y ∈ ku2(BCn)
maps to y ∈ H2(BCn), making this ambiguity in notation tolerable.

If we start the Adams spectral sequence at E2 then BCp and BCpk , for k > 1,
appear different. However, if we start the Adams spectral sequence at E1 using the
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Figure 2.6. The Adams spectral sequence for ku∗(BC4).

Adams resolution obtained by smashing BCpk with the canonical Adams resolution
of a sphere, then we can state the result in a uniform manner.

Theorem 2.2.1. In the Adams spectral sequence

Ext∗,∗
A

(H∗(ku), H∗(BCpk )) =⇒ ku∗(BCpk)∧p = Z∧p [v][[y]]/([pk]y)

E1 = Ek, Ek+1 = E∞, dk(xyn−1) = hk
0y

n − hk−1
0 vyn+1 if p = 2, and dk(xyn−1) =

ak
0y

n − ak−1
0 vp−1yn+p−1 if p > 2. Multiplication by v is a monomorphism on

E∞. The edge homomorphism ku∗(BCpk ) −→ H∗(BCpk ) maps y ∈ ku2(BCpk ) to

y ∈ H2(BCpk ) and has image Fp[y]. As a ku∗-module, ku∗(BCpk) is generated by

{yi | i ≥ 0}.
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Proof: It is simplest to describe the calculation completely for the prime 2, fol-
lowed by the changes needed for odd primes.

With the Adams resolution we have chosen, we have E1 = H∗(BC2k )⊗Z[h0, v].

We want to show that dk(xyn−1) = hk
0y

n − hk−1
0 vyn+1. The first term follows

directly from the cell structure of BC2k : each even cell of BC2k is attached to the
cell directly below it by a map of degree 2k. The other term follows by examining
the filtrations of the terms in the [2k]-series

2ky −
(

2k

2

)
vy2 +

(
2k

3

)
v2y3 − · · · − v2k−1y2k

.

The filtration of (
2k

i

)
vi−1yi

is ν2
(
2k

i

)
+ i − 1, where ν2(n) is the exponent of 2 in the prime decomposition of

the integer n. It is easy to check that this filtration is k for i = 1 or 2, and is
greater than k when i > 2. The differential dk(x) = hk

0y − hk−1
0 vy2 follows, and

the other dk’s follow from the ring structure. The resulting Ek+1 is concentrated in
even degrees, so the spectral sequence collapses at this point. Further, it is evident
that v acts monomorphically. For later reference, let us note that when k = 1 this
amounts to the calculation

Ext∗,∗E(1)(F2, H
∗(BC2)) = F2[h0, v, y]/(vy

2 − h0y)

which could also be deduced simply from the operations Q0(x) = y = x2 and
Q1(x) = y2 = x4. The 2-primary result is illustrated in Figures 2.5 and 2.6.

When p > 2, we have the splitting (1) of ku and a splitting of BCpk :

(2) BCpk = B1 ∨ · · · ∨ Bp−1,

where Bi has cells in dimensions congruent to 2i − 1 and 2i modulo 2(p − 1). As
an E(1)-module, each H∗(Bi) is the odd primary analog of H∗(BC2k). The odd
primary calculation of l∗(Bi) is then exactly analogous to the 2-primary calculation
of ku∗(BC2k), and the ring structure allows us to assemble these into a calculation
of ku∗(BCpk). The details are as follows.

Lemma 2.2.2. (Ossa [48]) There is a homotopy equivalence ku ∧ Bi ' ku ∧
Σ2Bi−1 for i = 2, . . . , p−1. When k = 1, H∗(Bi) = Σ2iL as an E(1)-module, where
L is the semi-infinite string module starting in degree −1 as in Section 2.1.

Proof: The cohomology isomorphism is clear. The Thom complex of the line
bundle over B = BCpk obtained from the representation α is B/B1, the quotient
of B by its 1-skeleton. The ku Thom isomorphism implies that

ku ∧Σ2B+ ' ku ∧Bα ' ku ∧B/B1.

Comparing summands in the splitting (2), the result is immediate. �

Now, the calculation of the Adams spectral sequence

Ext∗,∗E(1)(Fp, H
∗(B1)) =⇒ l∗(B1)

works exactly as in the 2-primary case. The [pk]-series decomposes exactly as BCpk

does (2), the terms relevant to B1 being

pky −
(
pk

p

)
vp−1yp + · · · ±

(
pk

i(p− 1) + 1

)
vi(p−1)y1+i(p−1) · · ·+ vpk−1ypk
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Figure 2.7. The Adams spectral sequence for ku∗(BC5).

and it is a simple matter to check that the lowest filtration terms here are those
which correspond to the differential dk(x) = ak

0y − ak−1
0 vp−1yp. As for p = 2,

multiplying this relation by powers of y implies the remaining differentials. The
rest of the theorem follows exactly as when p = 2, though the splitting (1) means
that more information is filtered away in the E2 term. Explicitly,

Exts,t
A

(H∗(ku), H∗(BCp)) = Fp[a0, v, u, y]/(v
p−1, uyp − a0y)

which is the associated graded group of the quotient of ku∗[[y]] by the p-series

vp−1yp −
(

p

p− 1

)
vp−2yp−1 + · · ·+ py,

illustrated in Figure 2.7 when p = 5. �

2.3. Nonabelian groups of order pq.

Let q be an odd prime, and let p | q − 1. We do not assume that p is prime.
Let Gp,q be the semidirect product of Cq and Cp in which Cp acts upon Cq by an
automorphism of order p. For a fixed q, these are exactly the subgroups of the
symmetric group Σq which sit between Cq = G1,q and its normalizer NΣq

(Cq) =
Gq−1,q. The Atiyah-Hirzebruch-Serre spectral sequence of the extension

Cq
/−→ Gp,q −→ Cp
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Figure 2.8. The E2 = E∞ term of the Adams spectral sequence
for ku∗Bip.

shows that BGp,q is equivalent to BCp away from q, and that

H∗(BGp,q ; Fq) = H∗(BCq; Fq)
Cp , and

ku∗(BGp,q)(q) = ku∗(BCq)
Cp .

The first equality leads to a very nice description of the q-local type of BGp,q in
terms of the stable splitting

BCq = B1 ∨ · · · ∨ Bq−1.

Proposition 2.3.1. At the prime q,

BGp,q = Bp ∨ B2p ∨ · · · ∨ Bq−1

Proof: The action of Cp on Cq is the k-th power map, where k is a primitive p-th
root of 1 mod q. The induced action on H∗(BCq; Fq) is multiplication by ki in
degrees 2i − 1 and 2i, so the Cp invariants are exactly the elements in degrees 0
and −1 mod 2p. The inclusion of the wedge of the Bip into BCq composed with
the natural mapping to BGp,q is therefore an equivalence. �

This gives the additive structure of ku∗BGp,q, and the representation ring will
give us the multiplicative relations. The group Gp,q has p one-dimensional repre-
sentations 1, αp, . . . , α

p−1
p pulled back from Cp, and has d p-dimensional irreducible

representations β1, . . . , βd induced up from Cq, where d = (q − 1)/p. Let β be one
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of the βi, and let

y = eku(αp) ∈ ku2(BGp,q), and
z = eku(β) ∈ ku2p(BGp,q).

Let ρ = 1+β1 + . . .+βd and observe that if we choose a splitting Cp −→ Gp,q then
ρ ∼= 1Cp

↑Gp,q , the trivial one-dimensional representation of Cp induced up to Gp,q.

Theorem 2.3.2.

ku∗(BGp,q) = ku∗[[y, z]]/(yz, [p](y), zρ).

The relation zρ = 0 has the form

vq−1zd+1 + adv
(d−1)pzd + · · ·+ a0z = 0,

where the coefficient a0 = µq for a q-adic unit µ.

Proof: First, observe that under the monomorphism

ku∗BGp,q −→ (ku∗BGp,q)(p) ⊕ (ku∗BGp,q)(q) −→ ku∗BCp ⊕ ku∗BCq

the element y goes to (y′, 0) and z to (0, z′) for some y′ and z′, so that yz = 0.
Second, the relation [p](y) = 0 follows from (BGp,q)(p) ' BCp.
Third, we must show that (ku∗BGp,q)(q) = ku∗[[z]]/(zρ). Lemma 2.1.1 implies

that zρ = 0, since ρ is induced up from Cp and β contains a trivial represen-
tation when restricted to Cp. The splitting 2.3.1 shows that powers of z span
ku∗(BGp,q)(q) as a ku∗-module because z is detected by a nonzero multiple of yp

q in
ku∗BCq, and powers of yp

q span the mod q cohomology of BGp,q. We have already
calculated the Adams spectral sequences for the spectraBip. (See Figure 2.8.) From
these, we see that the first d powers of z are linearly independent, but the (d+1)-st
must be expressible in terms of the lower ones. Precisely, {z, vpz2, . . . , v(d−1)pzd}
span ku2p(BGp,q)(q), and therefore vq−1zd+1 must be expressible as a linear com-
bination of them with q-adic coefficients. To see that zρ is such a relation, note

that on Cq the βi restrict to the sums αi1
q + · · ·+α

ip
q , where {i1, . . . , ip} is an orbit

of Cp acting upon Cq, and αq is a faithful one-dimensional representation of Cq.
Thus, ρ restricts to the regular representation of Cq. Since αi

q = 1− v[i](yq), which

has degree i in yq, we see that ρ has leading coefficient (vpz)d as required.
To show that a0 is as claimed, project onto the summand Bp, and consider the

Adams spectral sequence of Bp computed in Section 2.2. (See Figure 2.8). �

When d = 1, 2, or q − 1, we can be perfectly explicit. Continue to let αq be a
nontrivial irreducible representation of Cq. We have already computed ku∗BG1,q =
ku∗BCq in the preceding section, but we can give another presentation which is
interesting. Let ei = eR(αi

q) = 1− αi
q. Then {e1, . . . , eq−1} span the augmentation

ideal of R(Cq) and satisfy the relations

eiej = ei + ej − ei+j .

The analogous presentation of ku∗(BCq) is

(3) ku∗(BCq) = ku∗[[y1, . . . , yq−1]]/(vyiyj − yi − yj + yi+j).

where yj = eku(αj
q) (compare with 1.1.3).

At the other extreme is Gq−1,q = NΣq
(Cq), which is q-locally equivalent to Σq.
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Theorem 2.3.3.

ku∗BNΣq
(Cq) = ku∗[[y, z]]/(yz, [q− 1](y), vq−1z2 − qz)

and

ku∗(BΣq)(q) = ku∗[[z]]/(vq−1z2 = qz)

Proof: We need to show that zρ = 0 says vq−1z2 = qz. Now, z = eku(β) and β
restricts to the reduced regular representation of Cq. Therefore, vq−1z restricts to
e1e2 · · · eq−1 = e1 +e2 + · · ·+eq−1 = q−ρq where ρq is the regular representation of
Cq. Since ρ2

q = qρq, we also have (q − ρq)
2 = q(q − ρq), and the result follows. �

The case d = 2 takes a bit more work. When q ≡ 3 (mod 4) the relation zρ = 0
is simple, but when q ≡ 1 (mod 4) it is somewhat trickier. In that case, we express
the relation zρ = 0 in terms of the coefficient b in

εh = a+ b
√
q ∈ Q(

√
q),

where h is the class number of Q(
√
q) and ε is the fundamental unit (the smallest

positive unit greater than 1 in the ring of integers in Q(
√
q)). Unfortunately, no

explicit formula for ε in terms of q has been found, though there are simple algo-
rithms ([39, Prop 2.4.11]). For example, when q > 5, ε = (a1 + b1

√
q)/2, where

(a1, b1) is the positive solution to a2
1− qb21 = −4 for which b1 is minimal ([39, Rmk

2.4.12 and Lemma 2.4.16]). Note that the coefficients a, b ∈ 1
2Z, so the coefficient

2bq in 2 below may well be odd. We exclude q = 3 from the following theorem. If
q = 3 then p = 1 and Gp,q = C3.

Theorem 2.3.4. When p = (q − 1)/2, if y = eku(α) ∈ ku2(BGp,q) and z ∈
ku2p(BGp,q) are Euler classes as above, and b is the coefficient of

√
q in εh as

above, then

(1) when q ≡ 3 (mod 4), q > 3,

ku∗BGp,q = ku∗[[y, z]]/(yz, [p](y), v2pz3 + qz)

(2) when q ≡ 1 (mod 4),

ku∗BGp,q = ku∗[[y, z]]/(yz, [p](y), v2pz3 − 2bqvpz2 + qz)

Proof: We need to show that the relation zρ is as stated. It will suffice to determine
the relation satisfied by

vpz =
∏

i∈(F×

q )2

(1− αi)

in R(Cq), where we will now write α for αq. This is because the representations βi

restrict to orbit sums under the Cp action, and the action of Cp on Cq\{0} = F×q
has two orbits, the squares and the non-squares. We may work entirely in R(Cq) ⊂
ku0(BCq) since both v2p : ku2p(BGp,q)(q) −→ ku0(BGp,q)(q) and the natural map

ku0(BGp,q)(q) −→ ku0(BCq) are monomorphisms by the splitting in Proposition
2.3.1 and our calculation of the Adams spectral sequence for the cyclic groups in
the preceding section.

The notation will be much cleaner if we abuse it by writing z for vpz. The
relations we must prove then become

z3 + qz = 0 q ≡ 3 (mod 4), q > 3, and,

z3 − 2bqz2 + qz = 0 q ≡ 1 (mod 4).
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Let N = 1 + α+ α2 + · · ·αq−1. There are quotient homomorphisms

ε : R(Cq) −→ R(Cq)/(1− α) = Z, and

π : R(Cq) −→ R(Cq)/(N) = Z(ζ) ⊂ Q(ζ), ζ = e2πi/q,

whose product R(Cq) −→ Z ×Q(ζ) is a monomorphism.
Let s and n be the sums of the square powers and non-square powers, respec-

tively:

s =
∑

i∈(F×

q )2

αi and n =
∑

i∈F
×

q \(F
×

q )2

αi.

Any element of R(Cq) invariant under Cp can be written as a + bs + cn for some
integers a, b, and c. In particular, the image of R(Gp,q) in R(Cq) is the subring
generated by s and n. We shall not use this fact, but it is interesting to note that
if we let q∗ = (−1)(q−1)/2q, then the homomorphism π maps R(Gp,q) to Z(

√
q∗),

the Cp-invariants in Z(ζ):

R(Gp,q) −→ R(Cq)
↓ ↓

Z(
√
q∗) ⊂ Z(ζ)

If k is a non-square modulo q, then τ(α) = αk defines an automorphism of
R(Cq) which exchanges s and n. (Upon applying π this agrees with the Galois
automorphism

√
q∗ 7→ −√q∗.) Let

w = τ(z) =
∏

i∈F
×

q \(F
×

q )2

(1− αi).

The product zw = q −N since ε(zw) = 0 = ε(q −N) and π(q −N) = q, while

π(zw) =

q−1∏

i=1

(1− ζi),

which equals q by evaluating

1 + x+ · · ·+ xq−1 =

q−1∏

i=1

(x− ζi)

at x = 1. The proof now divides into two cases depending upon q (mod 4).
First, suppose that q ≡ 3 (mod 4). For any x, xN = ε(x)N , so s(1 + s+ n) =

p(1 + s+ n). Hence
s2 + sn = p+ (p− 1)s+ pn.

Now sn = d+ e(s+n) for some integers d and e, since τ fixes sn. Applying ε gives
p2 = d+2pe. Since q ≡ 3 (mod 4), −1 is not a square modulo q, and we may write

n =
∑

i∈(F×

q )2

α−i.

It follows that d = p and hence

sn = p+
p− 1

2
(s+ n)

s2 =
p− 1

2
s+

p+ 1

2
n

n2 =
p+ 1

2
s+

p− 1

2
n.
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Now, if we write z = a+ bs+ cn, then applying ε gives a = −p(b+ c). Comparing
constant terms in

zw = (a+ bs+ cn)(a+ cs+ bn)

= q −N
= 2p− (s+ n)

yields

p(b+ c)2 + b2 + c2 = 2.

Since q ≥ 7, we have p > 2, so b+ c = 0 and b2 + c2 = 2. Hence z = ±(s− n) and
it follows easily from the relations satisfied by s and n that z3 = −qz and that z
satisfies no lower degree relation.

Now suppose that q ≡ 1 (mod 4). From Theorem 2.3.2 we know that z3 +
a1z

2 + a2qz for some a1 and a2 which we will determine by applying π. Let

R =
∏

i∈(F×

q )2

(1− ζi) and N =
∏

i∈F
×

q \(F
×

q )2

(1− ζi).

and recall that RN = π(zw) = q. The class number formula for Q(
√
q) implies that

if h is the class number and ε is the fundamental unit of Q(
√
q), then

ε2h =
N

R
=

q

R2

([40, Thm. 218, p. 227]). Thus R = ±√q/εh. To determine the sign of R, we

rewrite it as a product of evidently positive terms. Let r range over (F×q )2 in the
products which follow.

R =
∏

r

(1 − ζr)

=
∏

r

(−ζr/2)(ζr/2 − ζ−r/2)

= ζS/2
∏

r

2i sin(πr/q)

= 2pipζS/2
∏

r

sin(πr/q)

= 2p
∏

r

sin(πr/q)

> 0,

where S =
∑

r r. (We use the fact that q is prime to get ζS/2 = (−1)(q−1)/4 = ip.)

Hence, R =
√
q/εh. If we write εh = a + b

√
q with a, b ∈ 1

2Z then a2 − qb2 = −1
since the norm of ε is −1 and h is odd ([10, Thm. XI.3, p. 185 and Thm. XI.6, p.
187]). It follows that R = bq− a√q and this satisfies R2− 2bqR+ q = 0. Therefore,

z3 − 2bqz2 + qz = 0 as was to be shown.
Alternatively, if we do not wish to assume that ε has norm −1 and h is odd, we

may prove these facts as follows. Let e = N(ε) be the norm of ε. Then the norm
of εh, N(εh) = eh = (a+ b

√
q)(a− b√q) = a2 − qb2. It follows that

R =

√
q

εh
=

√
q

a+ b
√
q

= eh√q(a− b√q) = eh(−qb+ a
√
q)
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q 2b q 2b q 2b q 2b
17 2 109 25 229 226 317 5
37 2 113 146 233 3034 337 110671282
41 10 137 298 241 9148450 349 986
61 5 149 5 257 2050 353 7586
73 250 157 17 269 10 373 530
89 106 181 97 277 157 389 130
97 1138 193 253970 281 126890 397 173

101 2 197 2 313 14341370 401 5129602

Figure 2.9. Primes q ≡ 1 (mod 4) for which the coefficient 2b in
Theorem 2.3.4 is not 1, and the corresponding value of 2b.

and its conjugate N = eh(−qb− a√q). Then

RN = eh(−qb+ a
√
q)eh(−qb− a√q)

= q2b2 − qa2

= −q(a2 − qb2)
= −qeh

But we know that RN = q, and it follows that eh = −1. �

Remark 2.3.5. The proof when q ≡ 3 (mod 4) is elementary because the
coefficients b and c lie on an ellipse with with only two integer points. The same
approach for q ≡ 1 (mod 4) leads to a hyperbola with an infinite number of integer
points. This is a reflection of the finitude and infinitude, respectively, of the unit
group in the integers of Q(

√
q∗).

Remark 2.3.6. As an indication of the likely difficulty of determining the
coefficient −2bq as an explicit function of q, Table 2.9 lists those primes q ≡ 1
(mod 4) up to 401 for which 2b 6= 1, together with the value of 2b for each. These
were calculated by using MAGMA ([42]) to calculate the minimal polynomial of R.

Remark 2.3.7. By analogy with the symmetrical presentation (3) of ku∗BCq,
one might expect to obtain a better presentation of ku∗BGp,q if it were written
symmetrically, using the Euler classes of all the βi. Theorem 2.3.4 shows this is
false. The Euler classes z = eku(β1) and w = eku(β2) of the two p-dimensional
representations each satisfy the relations of Theorem 2.3.4. When q ≡ 3 (mod 4),
z = −w, so adjoining w to the presentation does nothing to simplify the relations.
When q ≡ 1 (mod 4),

w = (4b2q − 1)z − 2bvpz2 and

z = (4b2q − 1)w − 2bvpw2,

and we would like ku2pBGp,q to be spanned by z and w. Since z and vpz2 span,
we need 2b to be a unit. This may be true in the completed ring, ku∗BGp,q, but,
if 2b 6= 1, it will not be true before completion, e.g., in a Gp,q-equivariant ku∗. If
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we wish to express everything in terms of z and w, note the relations

2bvpz2 = (4b2q − 1)z − w,
2bvpw2 = (4b2q − 1)w − z, and

2bvpzw = z + w

Remark 2.3.8. It should be clear from the preceding theorem that class field
theory is the key to the connective K-theory of the non-abelian groups of order
pq. The key relation zρ = 0 can be written as a polynomial in z, a fact which
is evident from the Adams spectral sequence, as shown in Theorem 2.3.2. When
we do so, we obtain z times a polynomial which defines the Cp fixed subfield of
the cyclotomic field Q(ζq). This is evident from two facts. On the one hand,
R = π(z) =

∏
(1−ζi), where the product ranges over all i in some Cp-orbit, so that

the image of z lies in the Cp-fixed subfield of Q(ζq). On the other hand, the Adams
spectral sequence calculation just cited shows that the minimal polynomial for z
has degree d = (q − 1)/p, so that R must generate this subfield. (Here we are also
using the fact that vp is a monomorphism on ku2pBGp,q, that vpz lies in R(Gp,q)
and that its powers map to linearly independent elements of R(Cq) and Q(ζq).)

The extreme cases, p = 1 and p = q−1 correspond to Q(ζq) and Q respectively,
but are too simple to show this relation clearly. The case just done, p = (q − 1)/2,
corresponds to the quadratic subfield Q(

√
q∗), and accordingly, the relation zρ = 0

is z times a quadratic whose coefficients depend in a surprisingly subtle way on
q, as shown by the relation π(z) =

√
q/εh, for example. The complementary case,

p = 2, corresponds to the maximal real subfield of Q(ζq). The corresponding groups
Gp,q are (non-2-primary) dihedral groups, and we end this section with the explicit
description of the first few of these.

By Theorem 2.3.2 we have

ku∗(BG2,q) = ku∗[[y, z]]/(yz, [2](y), ρ2,q(z)).

with |z| = 4. The relation ρ2,q(z) is obtained by inserting powers of v to make the
following polynomials homogeneous.

q = 3 : z2 = 3z
q = 5 : z3 = −5z(1− z)
q = 7 : z4 = 7z(1− z)2
q = 11 : z6 = 11z(1− z){(1− z)3 − z}
q = 13 : z7 = −13z(1− z)2{(1− z)3 − 2z}
q = 17 : z9 = −17z(1− z){(1− z)6 − 5z(1− z)3 + z2}
q = 19 : z10 = 19z(1− z)2{(1− z)6 − 7z(1− z)3 + 3z2}
q = 23 : z12 = 23z(1− z){(1− z)9 − 12z(1− z)6 + 14z2(1− z)3 − z3}

There is an obvious guess as to the form of these relations for all q, but the
coefficients of the terms inside braces are not entirely obvious from this small sam-
ple. All of these relations were found simply by computing the minimal polynomial
satisfied by (1− α)(1 − α−1) in R(Cq) using CoCoA [9].

2.4. Quaternion groups.

The simplest p-groups after the cyclic groups are the quaternion groups, as they
are the other p-groups with periodic cohomology. As with the cyclic groups, the
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Adams spectral sequence shows that v : ku∗(BQ2n) −→ ku∗(BQ2n) is a monomor-
phism, so that ku∗(BQ2n) is a subalgebra of K∗(BQ2n).

Remark 2.4.1. If G has p-rank 1 for every prime p, it follows that ku∗(BG)
has no v-torsion. In all examples we know, if G has p-rank ≥ 2 for some prime p,
there is v-torsion in ku∗(BG).

To fix notations, let

Q2n+2 =<ρ, j | j2 = ρ2n

, j4 = 1, jρ = ρ−1j> .

We will write Q for Q2n+2 where it will not be confusing. The mod 2 cohomology
rings are

H∗(BQ8; F2) = F2[x1, x2, p1]/(x
2
1 + x1x2 + x2

2, x1x2(x1 + x2))

and, if n > 1,

H∗(BQ2n+2 ; F2) = F2[x1, x2, p1]/(x1x2 + x2
2, x

3
1))

with an (n + 2)-nd Bockstein from H3 to H4 [18, Prop. VI.5.2, p. 330]. Here
p1 ∈ H4BQ is the first Pontrjagin class of the symplectic representation Q −→
S3 ∼= Sp(1) obtained by viewing Q as unit quaternions with ρ = exp(πi/(2n)) ∈ C.

The representation ring

R(Q2n+2) =
Z[χ, ψ0, ψ1, . . . , ψ2n ]

(χ2 = 1, χψi = ψ2n−i,
ψiψj = ψi+j + ψi−j)

where we let ψ−i = ψi and ψ2n+i = ψ2n−i in order to describe the product this
succinctly. These are defined by

ψi(ρ) =

(
ζi 0
0 ζ−i

)
ψi(j) =

(
0 1

(−1)i 0

)

χ(ρ) = −1 χ(j) = 1

where ζ is a 2n+1-st root of unity. Of these, all are irreducible except ψ0 = 1+(ψ0−
1) and ψ2n = χ + (ψ2n − χ), which are sums of one-dimensional representations
pulled back from the abelianization Q2n+2 −→ C2 × C2 =<ρ, j | j2 = ρ2 = (ρj)2 =
1> :

ψ0 − 1 ←−| ρ̂,

χ ←−| ĵ, and

ψ2n − χ ←−| ρ̂j.

Here x̂ denotes the one-dimensional representation with kernel <x> . The maximal
subgroups are the kernels of these three nontrivial one-dimensional representations,

Q2n+2

↗ ↑ ↖

Q2n+1 C2n+1 Q2n+1

|| || ||

<ρ2, j> <ρ> <ρ2, ρj>
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where we let Q4 = C4 in order to avoid special mention of Q8.
The following Euler classes will generate ku∗BQ:

a = eku(ψ0 − 1) ∈ ku2BQ
b = eku(χ) ∈ ku2BQ
qi = eku(ψi) ∈ ku4BQ.

It will also be convenient to define

q = q1 ∈ ku4BQ

since the following result shows that we do not need the other qi to generate ku∗BQ.

Lemma 2.4.2. For k = 1, . . . , 2n,

qk = dka
2 +

k∑

i=1

cikv
2i−2qi

where ckk = (−1)k, c1k = k2, and

dk =

{
−1 if k ≡ 2 (mod 4)
0 otherwise.

Lemma 2.4.3. The regular representation of Q2n+2 ,

ρn+2 = ψ0 + 2(ψ1 + · · ·+ ψ2n−1) + ψ2n

= v2n+1

q2
n

+ (

2n−1∑

i=1

fiv
2iqi) + 2n+2

for integers fi.

Remark 2.4.4. It is somewhat surprising that the regular representation can
be written as a polynomial in the single Euler class q = ekuψ1.

It is more surprising that the the qk are closely related to the Chebyshev poly-
nomials. The analogous Euler classes dk for the the dihedral groups are exactly the
Chebyshev polynomials and therefore have many interesting properties, the most
remarkable being the composition property dk(dj) = dkj (see 2.5.3).

The regular representation ρj+2, for j < n, can be computed by

ρj+2 =
q2j+1 − q2j−1

q
.

In general, the differences (q2j+i − q2j−i)/q are interesting multiples of ρj+2.

Theorem 2.4.5. ku∗(BQ2n+2) = (ku∗[a, b, q]/I)∧J where |a| = |b| = 2 and
|q| = 4, and where I is the ideal

I = (qρ, va2 − 2a, vb2 − 2b,
a2 − vaq, b2 − (vbq + q2n−1 − q),
ab− (b2 − q2n))

The natural map ku∗BQ −→ H∗BQ sends a to x2
1, b to x2

2, and q to p1.

Since Q8 is both smaller and more symmetric than the other quaternion groups,
its connective K-theory has an especially simple form.
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Theorem 2.4.6. ku∗(BQ8) = (ku∗[a, b, q]/I)∧J where |a| = |b| = 2 and |q| = 4,
and where I is the ideal

I = (v4q3 − 6v2q2 + 8q,
va2 − 2a, vb2 − 2b,
a2 − vaq, b2 − vbq,
ab− (vaq + vbq + v2q2 − 4q))

The natural map ku∗BQ8 −→ H∗BQ8 sends a to x2
1, b to x2

2, and q to p1.

To follow the proofs, it will help to have some relations in front of us. Com-
puting Euler classes in representation theory, we find that

va = 2− ψ0

vb = 1− χ
v2q = 2− ψ1

v2qi =

{
2− ψi i odd
ψ0 − ψi i even

and therefore

ψ0 = 2− va
χ = 1− vb

ψi =

{
2− v2qi i odd
2− v2qi − va i even

ψ2n = (2− va)(1 − vb)
(The final relation follows from ψ2n = χψ0. )

We now proceed to prove Theorems 2.4.5 and 2.4.6. We first use the Adams
spectral sequence to show that there is no v-torsion in ku∗BQ. This will allow us to
prove Lemmas 2.4.2 and 2.4.3, and show that the relations in Theorem 2.4.5 hold,
by calculating in the representation ring. We can then combine these lemmas with
the Adams spectral sequence to produce an additive basis (Lemma 2.4.10), from
which we can finish the proof of the theorems by showing that the generators and
relations we specify there are complete.

Lemma 2.4.7. ku∗BQ is concentrated in even degrees and has no v-torsion.

Proof: There is a stable splitting due to Mitchell and Priddy ([47])

BQ2n+2 ' (BSL2(`))(2) ∨ X ∨ X

where X = Σ−1BS3/BN and N is the normalizer of a maximal torus in S3. Here
` is any prime such that the power of 2 dividing `(`2 − 1) = |SL2(`)| is exactly
2n+2. The cohomology of X is F2 in each codegree congruent to 1 or 2 (mod 4),
connected by Sq1, while that of (BSL2(`))(2) is F2 in each codegree congruent to
3 or 4 (mod 4), connected by the Bockstein βn+2.

Since k̃u
0
(BQ8) = K̃0(BQ8) = (Z∧2 )4, we must have

k̃u
0
X = Z∧2 and k̃u

0
(BSL2(3)(2)) = (Z∧2 )2.

The cohomology ofX is free as an F2[p1]-module, and as an E[Q0]-module. We may
choose the splitting so that the E2 term of the Adams spectral sequence for the two
summands X are free F2[v, p1]-modules on x2

1 and x2
2, respectively. By sparseness,

no differentials are possible. It follows that there is no v-torsion in ku∗X . Further,
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8 6 4 2 0 -2

xxq

Figure 2.10. E2 = E∞ in the Adams spectral sequence for ku∗X .
(Here x stands for either a or b.)

since k̃u
0
X = Z∧2 , twice any element must be detected by v2 times the element

in the same filtration two codegrees higher. See Figure 2.10, in which we continue
the practice of showing multiplication by v only for the bottom class of a tower, in
order to avoid clutter.

The mod 2 cohomology of the other summand, BSL2(`)(2), is trivial as a
module over E(1), so the Adams spectral sequence has

E2 = H∗(BSL2(`)(2))⊗ F2[h0, v]

= F2[h0, v, p1]⊗ E[z]

where z generates H3BSL2(`). By the correspondence between Adams and Bock-
stein differentials, the Bockstein βn+2(z) = p1 implies an Adams differential

dn+2(z) = hn+2
0 p1 + vx

for some x. This is not 0, so is not a zero-divisor, so

En+3 = F2[h0, v, p1]/(h
n+2
0 p1 + vx)

Since this is concentrated in even degrees, En+3 = E∞. Since v does not divide
hn+2

0 p1, v is not a zero-divisor on E∞, and hence also not on ku∗(BSL2(`))(2). �
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Now we can show that a relation holds in ku∗BQ by showing that it holds after
multiplication by a suitable power of v. We use this to get two relations we need
now.

Lemma 2.4.8. The relations va2 = 2a and a2 = vaq hold in ku∗BQ.

Proof: From ψ2
0 = 2ψ0 we get that v2a2 = 2va, and from ψ0ψ1 = 2ψ1, we find that

v3aq = 2va = v2a2. �

Proof of Lemma 2.4.2: If k = 1 the statement is trivially true. Assume for
induction that it holds for k. If k is even, the relation ψ1ψk = ψk−1 + ψk+1 says
that

(2− v2q)(2 − va− v2qk) = 2− v2qk−1 + 2− v2qk+1.

Cancelling the constant term, replacing 2va by v2a2, dividing by v2 and isolating
the term qk+1, we find that

qk+1 = 2qk + 2q − v2qqk − qk−1

= (−v2)kqk+1 + dka
2(2− v2q) + P

for some polynomial P of degree k in q. Since a(2 − v2q) = 0, this has the form
required. Similarly, if k is odd, using q0 = 0 when k = 1, we find

qk+1 = 2qk + 2q − v2qqk − a2 − qk−1

= (−v2)kqk+1 + (−1− dk−1)a
2 + P

for some polynomial P of degree k in q, from which the claimed relation is imme-
diate. These inductive relations easily imply that c1,k = k2. �

Proof of Lemma 2.4.3: This is now a simple calculation using the expression of
the ψk in terms of a and qk and Lemma 2.4.2. �

Lemma 2.4.9. The relations qρ = 0, vb2 = 2b, ab = b2 − q2n and b2 = vbq +
q2n−1 − q, hold in ku∗BQ.

Proof: Since ρ is induced up from the trivial subgroup, it will be annihilated by
any Euler class such as q. Since χ2 = 1, we see that vb2 = 2b. The Euler classes of
the one-dimensional representations are a, b and

eku(ψ2n − χ) = eku(χ(ψ0 − 1))

= eku(χ) + χeku(ψ0 − 1)

= b+ (1− vb)a
= a+ b− vab,

so that ψ2n = χ+ (ψn
2 − χ) gives

q2n = eku(ψ2n) = eku(χ)eku(ψ2n − χ)

= b(a+ b− vab) = ab+ b2 − vab2 = b2 − ab
and hence ab = b2 − q2n . Finally, from ψ2n−1 = χψ1, we find (2 − v2q2n−1) =
(1− vb)(2− v2q), or b2 = vbq + q2n−1 − q. �

Lemma 2.4.10. As a module,
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(1) ku2BQ is the free Z∧2 -module on {a, b, vq, . . . , v2n+1−1q2
n}.

(2) ku4BQ is the free Z∧2 -module on {vaq, vbq, q, . . . , v2n+1−2q2
n}.

(3) If i > 4 then multiplication by q is an isomorphism from kui−4BQ to
kuiBQ.

(4) If i < 2 then multiplication by v is an isomorphism from k̃u
i+2

BQ to

k̃u
i
BQ.

Proof: First, observe that multiplication by v is an isomorphism in the Adams spec-
tral sequence in the range indicated, and similarly for multiplication by q. Hence,
the same is true in ku∗BQ. Our Adams spectral sequence calculation (Lemma
2.4.7) shows that ku∗BSL2(`)(2) is a quotient of Z∧2 [v, q] and Lemma 2.4.3 shows

that the relation qρ = 0 leaves k̃u
2i
BSL2(`)(2) of rank 2n−1, the same as the rank

of K̃2iBSL2(`)(2), so there can be no other relation among the powers of q. Now,
each X summand contributes a Z∧2 in each even degree, generated by a and b in
degree 2, and by vaq and vbq in degree 4. �

Proof of Theorem 2.4.5: To finish, we need only verify that the relations we
have found are a complete set of relations. For this, it is enough to show that the
products of v, a, b, and q with elements of the basis found in Lemma 2.4.10 can
again be expressed in terms of that basis by means of these relations. Lemma 2.4.10
also shows that we need only consider v times ku4 and ku6, and a, b, and q times
ku2 and ku4. These verifications are then routine once one notices the following
consequences of the relations:

v2bq = v(b2 − q2n−1 + q) = 2b− vq2n−1 + vq,

v2iaqi+1 = 2v2i−2aqi,

v2ibqi+1 = 2v2i−2bqi + v2i−1qi+1 − v2i−1qq2n−1,

and v2n+1

q2
n+1 is a polynomial in v and q of degree 2n in q. �

Proof of Theorem 2.4.6: We need only show that q2 = 4q− v2q2 − a2, and this
follows from ψ2

1 = ψ0 + ψ2 as in Lemma 2.4.2. �

We obtain as a corollary, 2-primary information about SL2(`) and complete
information about SL2(3).

Corollary 2.4.11. ku∗(BSL2(`)(2)) = (ku∗[q]/(qρ))∧J where |q| = 4, and ρ is
the polynomial in q given in Lemma 2.4.3.

Theorem 2.4.12. ku∗(BSL2(3)) = (ku∗[y, q]/(yq, [3](y), v4q3 − 6v2q2 + 8q))∧J
where |y| = 2 and |q| = 4.

Proof: The Atiyah-Hirzebruch spectral sequence of Q8 −→ SL2(3) −→ C3 shows
that ku∗BSL2(3)(3) = ku∗BC3. We have just computed ku∗BSL2(3)(2). Since y
and q each map trivially to opposite localizations, yq = 0. �
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Figure 2.11. E4 = E∞ in the Adams spectral sequence for
ku∗(BSL2(3)(2)).
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Figure 2.12. The Adams spectral sequence for ku∗(BQ8). (The
action of v is omitted for clarity)
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2.5. Dihedral groups.

The dihedral groups have the same representation rings as the quaternion
groups of the same order, but have considerably more complicated H and ku-

cohomologies, since they have rank 2. We let D2n+2 = 〈s, t|s2 = t2 = (st)2
n+1

= 1〉.
The mod 2 cohomology ring is

H∗(BD2n+2 ; F2) = F2[x1, x2, w]/(x2(x1 + x2))

with an (n+ 1)-st Bockstein βn+1(x2w) = w2 ([47] and [18]). The generators are
the Stiefel-Whitney classes of representions defined below:

x1 = w1(ŝt)

x2 = w1(ŝ)

w = w2(σ1).

By the Wu formula, Sq1(w) = x1w since det(σ1) = ŝt.
The representation ring is isomorphic to that of the quaternion group:

R(D2n+2) =
Z[ŝ, σ0, σ1, . . . , σ2n ]

(ŝ2 = 1, ŝσi = σ2n−i,
σiσj = σi+j + σi−j)

where we again let σ−i = σi and σ2n+i = σ2n−i. These are defined by

σi(s) =

(
0 1
1 0

)
σi(t) =

(
0 ζ−i

ζi 0

)

ŝ(s) = 1 ŝ(t) = −1

where ζ is a 2n+1-st root of unity. Of these, all are irreducible except σ0 = 1 + ŝt
and σ2n = ŝ + t̂, which are sums of one-dimensional representations pulled back
from the abelianization D2n+2 −→ C2 ×C2 =<s, t | s2 = t2 = (st)2 = 1> . Again x̂
denotes the one-dimensional representation with kernel <x> .

The maximal subgroups are the kernels of these three nontrivial one-dimen-
sional representations.

D2n+2

↗ ↑ ↖

D2n+1 C2n+1 D2n+1

|| || ||

<s, (st)2> <st> <t, (st)2>

The difference from the quaternion groups shows up in the Euler classes. In
particular, the determinant of σi is always ŝt, independent of i, resulting in slightly
different Euler classes in representation theory. The following ku-theory Euler
classes do still generate ku∗BD2n+2 :

a = eku(ŝt) ∈ ku2BD2n+2

b = eku(ŝ) ∈ ku2BD2n+2

di = eku(σi) ∈ ku4BD2n+2 .
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As with the quaternion group, it will also be convenient to define

d = d1 ∈ ku4BD2n+2

since we again do not need the other di to generate ku∗BD2n+2 .

Lemma 2.5.1. For k = 1, . . . , 2n,

dk =

k∑

i=1

aikv
2i−2di

where akk = (−1)k and a1k = k2.

Lemma 2.5.2. The regular representation of D2n+2 ,

ρ = σ0 + 2(σ1 + · · ·+ σ2n−1) + σ2n

= v2n+1

d2n

+ (

2n−1∑

i=1

miv
2idi) + 2n+2 − 2n+1va

for integers mi.

Remark 2.5.3. The polynomials dk are the Chebyshev polynomials conjugated
by F (d) = 1 − d/2 ([34, Thm 4.4, p. 195]). This accounts for the remarkable
composition property, dk(dj) = dkj , and follows from the recursion formula

dk+1 = (2− d)dk − dk−1 + 2d

with initial conditions d0 = 0 and d1 = d. ([34, (1.101), p.40]).
This is slightly simpler than for the quaternion groups, for which the corre-

sponding Euler class qk also involves a if k = 2 (mod 4). Correspondingly, the
expression for the regular representation is slightly more complicated than for the
quaternions.

Theorem 2.5.4. ku∗(BD2n+2) = (ku∗[a, b, d]/I)∧J where |a| = |b| = 2 and
|d| = 4, and where I is the ideal

I = (dρ, va2 − 2a, vb2 − 2b,
vad, 2ad, ab− b2 + d2n ,
vbd− d+ d2n−1 − d2n ,
2bd− vdd2n)

The natural map ku∗BD2n+2 −→ H∗BD2n+2 sends a to x2
1, b to x2

2, d2k to 0, and
d2k+1 to w2.

For D8, some of these relations simplify.

Theorem 2.5.5. ku∗(BD8) = (ku∗[a, b, d]/I)∧J where |a| = |b| = 2 and |d| = 4,
and where I is the ideal

I = (v4d3 − 6v2d2 + 8d,
va2 − 2a, vb2 − 2b,
vad, 2ad, ab− b2 + vbd,
vbd− 4d+ v2d2,
2bd− v2bd2)

Our proof of Theorems 2.5.4 and 2.5.5 will follow the same general outline as
for the quaternion group. We first prove Lemma 2.5.2 and show that Lemma 2.5.1
holds after multiplication by v2. We are then able to compute enough of the Adams
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spectral sequence to see that the ku∗BD2n+2 will be detected in mod 2 cohomology
together with periodic K-theory. This allows us to then prove the theorems.

It will help to have the following relations between the ku-theory Euler classes
and the representations in evidence:

va = 2− σ0

vb = 1− ŝ
v2d = σ0 − σ1

v2di = σ0 − σi

and therefore

ŝt = 1− va
ŝ = 1− vb
t̂ = (1 − va)(1− vb)

σ0 = 2− va
σi = 2− va− v2di

σ2n = (2 − va)(1− vb)
Proof of Lemma 2.5.2: First, if we multiply the relation in Lemma 2.5.1 by v2,
we have a relation in the representation ring which follows inductively from the
relation σ1σk = σk−1 + σk+1 just as for the quaternion group (Lemma 2.4.3), but
more easily, since the parity of k no longer has an effect. Then the expression for
ρ in terms of the Euler classes is immediate. �

For brevity, let us write D for D2n+2 where there is no chance of confusion, and
write H for HF2.

Lemma 2.5.6. In the Adams spectral sequence Ext∗,∗E(1)(F2, H
∗BD) =⇒ ku∗BD

(1) there is one nonzero differential dn+1,
(2) En+2 = E∞ is generated over F2[h0, v] by the filtration 0 classes x2

1, x
2
2,

and w2, detecting a, b, and d, respectively, and
(3) multiplication by v is a monomorphism in positive Adams filtrations, and

in codegrees less than or equal to 4.

The natural map ku∗BD −→ H∗BD ⊕K∗BD is a monomorphism.

Proof: Clearly, the final statement follows from (3). That a, b and d are detected
by x2

1, x
2
2 and w2 is an immediate consequence of the naturality of Euler classes,

since x1 = w1(ŝt), x2 = w1(ŝ) and w = w2(σ).
To compute the Adams spectral sequence we first decompose H∗(BD) as an

E(1)-module. Since the E(1)-module structure of H∗(BD2n+2) does not depend
upon n (so long as n is greater than 0), we may use Bayen’s ([5]) A(1) decomposition
of H∗BD8. From that, it is a simple matter to see that as an E(1)-module, H∗BD
is the direct sum of

(1) two copies of H∗(BC2), <x1> and <x2>,
(2) the trivial module {w2k+2}, for each k ≥ 0,
(3) free modules generated by
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Figure 2.13. The beginning of summands (2) and (4) and their
Ext modules for D = D8

(a) x2m
1 w2k+1 for each m ≥ 0, k ≥ 0, and

(b) x2m
2 w2k+1, for each m > 0, k ≥ 0, and

(4) the augmentation ideal, IE(1) ∼= {x2w
2k+1, x2w

2k+1(x2
2 + w), x2

2w
2k+2}

for each k ≥ 0.

This allows us to write E2 additively as the sum of

(1) F2[h0, v][a]/(va
2 − h0a)⊕ F2[h0, v][b]/(vb

2 − h0b),
(2) F2[h0, v][d],
(3) an F2-vector space spanned by {aidj |i ≥ 1, j ≥ 1} ∪ {bidj |i > 1, j ≥ 1}
(4) the direct sum of the F2-vector space spanned by {bdj |j ≥ 1} and a free

F2[h0, v]-module on classes w2j“x2w” ∈ Ext1,4j−2. (We take the liberty of
writing “x2w” for the nonzero element in Ext1,−2 since x2w is the element
of mod 2 cohomology which corresponds to the tower generated by “x2w”
in the theorem of May and Milgram. We will show that this class will
support a differential and will therefore not occur in E∞. Hence this
sloppiness of notation should not cause any confusion. Strictly speaking,
such a name would be justified only for an element of Ext0, which is why
we use quotation marks to warn that something is slightly amiss.)

Since a, b and d are Euler classes, they must survive to E∞. This means that
the only possible differentials originate from the F2[h0, v]-free part of summand (4),
and that the ring structure will determine all the differentials once we determine
the first one.



2.5. DIHEDRAL GROUPS. 55

,

(0
)

(h
  ,

 v
)

0

A
nn

ih
ila

to
r 

id
ea

l i
n

F 
 [

h 
 , 

v]
2

0
:

N
ot

e:
  

de
no

te
s 

a 
cl

as
s

su
pp

or
te

d 
on

 I
E

(1
),

 
on

 E
(1

).

10
2

4
8

a

vd

v 
 d3

2

v 
 d

v 
 d

3
57

4

a

v 
 d

v 
 d

v 
 d

b
b

d
ad

bd
a

b
b

a
b

a
bd

ad
,

a 
d,

d
a 

d,
5

5
4

3
2

2
3

2
2

3
4

2
2

b 
d,

b 
d,

3
2

6

vd
vd

v 
 d

v 
 d

v 
 d

v 
 d

v 
 d

v 
 d

v 
 d

v 
 d

v 
 d

2

2

34
5

24
3

6
4

7
5

5

6
5

4
4

2
3

7
6

3
4

3

5

3

Figure 2.14. The E∞ term of the Adams spectral sequence
ExtE(1)(F2, H

∗(BD8)) =⇒ ku∗(BD8).

In Figure 2.13 we show the beginning of summands (2) and (4) and their Ext
modules for D = D8. In the general case, replace β2 by βn+1 and d2 by dn+1, and
increase the number of towers in the even stems appropriately.
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The Bockstein βn+1(x2w) = w2 implies that there will be an Adams dn+1 which
connects towers in these codegrees. It must take the form

dn+1(“x2w”) = a0h
n+2
0 w2 + vx

for some a0 ∈ F2 and some x. Restricting to the 4-skeleton shows that a0 = 1.
Since hn+2

0 w2 + vx is not a zero-divisor in positive filtration, En+2 is concentrated
in even codegrees, and is therefore equal to E∞. Further, since v does not divide
h0w

2, v acts monomorphically on positive filtrations. Inspection of the E2 term
shows this also holds for filtration 0 in codegrees 4 and below. �

We can now finish the calculation. First, we show that the stated relations
hold, and then that no others are needed.
Proof of Lemma 2.5.1: In the proof of Lemma 2.5.2 we showed that the for-
mula for dk holds after multiplication by v2, and we have just shown that this is a
monomorphism. �

Lemma 2.5.7. The relations in Theorem 2.5.4 hold in ku∗BD2n+2 .

Proof: These are straightforward. Since ρ is induced up from the trivial subgroup,
dρ = 0. Since ŝ2 = 1, vb2 = 2b. Similarly, σ2

0 = 2σ0 implies that va2 = 2a.
Now, σ0σi = 2σi implies that v3adi = 0 and Lemma 2.5.6.3 implies that vadi is

therefore 0. Hence, 2adi = va2di = 0 as well. In particular, vad = 0 and 2ad = 0.
To see that ab = b2 − d2n we use Lemma 2.5.6 and test the relation in both

cohomology and representation theory. In cohomology it follows from x1x2 = x2
2

and in representation theory it follows from ŝσ0 = σ2n

The relation vbd = d− d2n−1 + d2n follows from v3bd = (1− ŝ)(σ0 − σ1) in the
representation ring, since it is in positive Adams filtration.

Finally, 2bd = vdd2n also need only be checked in the representation ring.
There, it says 2(1− ŝ)(σ0 − σ1) = (σ0 − σ2n)(σ0 − σ1), which is easily verified. �

Now, the Adams spectral sequence (Lemma 2.5.6) tells us that in positive
codegrees the elements

{aidk, bidk|i ≥ 0, k ≥ 0} ∪ {vidk|i > 0, k ≥ 0}

generate ku∗BD as a Z∧2 -module. It remains to determine the relations among
these, and show they all follow from the relations already found. We shall do this
using the monomorphism from ku∗BD into H∗BD⊕K∗BD. Let us give names to
the images of a, b, d, and dk in the representation ring R(D):

A = 1− ŝt
B = 1− ŝ
D = σ0 − σ1

Dk = σ0 − σk

and note that A2 = 2A, B2 = 2B, and 2BD = DD2n . The situation in codegrees
4k and 4k + 2 is slightly different, so we consider them separately. In codegree
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4k + 4 our generators and their images in H∗BD and K∗BD are:

a2k+2 x4k+4
1 22k+1A

b2k+2 x4k+4
2 22k+1B

dkdi iw2(k+i) DkDi i = 1, . . . , 2n

a2i+2dk−i x4i+4
1 w2(k−i) 0 i = 0, . . . , k − 1

b2i+2dk−i x4i+4
2 w2(k−i) 22i+1BDk−i i = 0, . . . , k − 1.

In codegree 4k + 2 we have:

a2k+1 x4k+2
1 22kA

b2k+1 x4k+2
2 22kB

vdkdi 0 DkDi i = 1, . . . , 2n

a2i+1dk−i x4i+2
1 w2(k−i) 0 i = 0, . . . , k − 1

b2i+1dk−i x4i+2
2 w2(k−i) 22iBDk−i i = 0, . . . , k − 1.

The generators ai, bi, and vεdkdi span a copy of (Z∧2 )2
n+2 since their images in

K∗BD do. The generators aidj generate an F2 = ku∗/(2, v) vector space since their
image in K∗BD is zero. The only complications come from the relations between
bidj and the other generators. Since 2bd = vdd2n , we see that the generator vdd2n

is redundant, and should be replaced by bd. In general, the image of b2i+1dk−i

in K∗BD is linearly dependent upon the images of the vdkdi, and similarly in
codegrees 4k + 4. To make this explicit, when 0 < i < k we find that

B2i+1Dk−i = 22iBDk−i

= 22i−1(2BD)Dk−i−1

= 22i−1(DD2n)Dk−i−1

= 22i−1Dk−iD2n

= Dkai · (D1, . . . , D2n)

if ai · (D1, . . . , D2n) solves Diai · (D1, . . . , D2n) = 22i−1D2n . If we then let αi =
ai · (d1, . . . , d2n), we find that b2i+1dk−i and vdkαi have the same image in K∗BD
but not in H∗BD, so their difference is annihilated by 2 and v. In codegrees 4k+4,
the situation is nearly the same: b2i+2dk−i and 2dkαi have the same image in
K∗BD but not in H∗BD, so their difference is annihilated by 2 and v. In both
codegrees, the case i = 0 is slightly different: since 2bdk = vdk−1d2n no torsion
class is generated. Similarly, b2dk maps to DkD2n in K∗BD, so dkd2n replaces the
nonexistent 2dkα0.

We will thus have a complete understanding of the additive structure once we
show that the equations Diai · (D1, . . . , D2n) = 22i−1D2n can be solved. To this
end, consider the summand 〈D1, . . . , D2n〉 in R(D).

Lemma 2.5.8. In the representation ring R(D),
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(1) multiplication by D = D1 sends 〈D1, . . . , D2n〉 to itself by the matrix

∆ =




4 1 2 2 · · · 2 2
−1 2 −1 0 0 0

−1 2 −1
...

...
−1 2 0 0

−1
. . . −1 0

2 −2

−1 2




(2) For each i > 0, there exists an integer vector ai such that
∑
aijDj =

ai · (D1, . . . , D2n) satisfies ∆iai · (D1, . . . , D2n) = 22i−1D2n .

Proof: Part (1) follows from the recursion relation

Di+1 = (2−D)Di −Di−1 + 2D

which says

DDi = 2D −Di−1 + 2Di −Di+1

for i < 2n. When i = 2n this becomes

DD2n = 2D −D2n−1 + 2D2n −D2n+1

= 2D − 2D2n−1 + 2D2n

using D2n+1 = D2n−1, and this follows from dρ = 0, in the form

0 = 2n+2d− 2d(d1 + · · ·+ d2n−1)− dd2n

by the preceding relations. This determines the matrix ∆.
For part (2) the vector a′ with i-th coordinate i−2n−1 for 1 ≤ i < 2n and with

2n-th coordinate 2n−2 satisfies ∆a′ = e2n = (0, 0, . . . , 0, 1). Thus, a1 = 2a′ is the
solution when i = 1. If we suppose inductively that ai solves ∆ai = 22i−1e2n and
has aij + ai,2n−j = 0, it is simple to check that we can find an integer vector ai+1

satisfying ∆ai+1 = 4ai and that it has the same symmetry property. �

If we now write

αi = ai · (d1, . . . , d2n) ∈ ku4BD

for each i ≥ 1, we can neatly express the ku∗-module structure of ku∗BD.

Lemma 2.5.9. (1) If k ≤ 0 then ku2k(BD) = Z⊕ (Z∧2 )2
n+2, generated by

vk{1, va, vb, v2d, v2d2, . . . , v
2d2n}.

(2) ku2(BD) = (Z∧2 )2
n+2 generated by {a, b, vd, vd2, . . . , vd2n}.

(3) ku4(BD) = (Z∧2 )2
n+2 generated by {a2, b2, d, d2, . . . , d2n}.

(4) If k > 0 then ku4k+2(BD) = (Z∧2 )2
n+2 ⊕ F2k−1

2 with (Z∧2 )2
n+2 generated

by

{a2k+1, b2k+1, vdkd1, . . . , vd
kd2n−1, bd

k},
an Fk

2 generated by

{adk, a3dk−1, . . . , a2k−1d},
and an Fk−1

2 generated by

{b3dk−1 − vdkα1, . . . , b
2k−1d− vdkαk−1}.
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(5) If k > 0 then ku4k+4(BD) = (Z∧2 )2
n+2 ⊕ F2k

2 with (Z∧2 )2
n+2 generated by

{a2k+2, b2k+2, dkd1, d
kd2, . . . , d

kd2n},
an Fk

2 generated by

{a2dk, a4dk−1, . . . , a2kd},
and an Fk

2 generated by

{abdk = (b2 − d2n)dk, b4dk−1 − 2dkα1, . . . , b
2kd− 2dkαk−1}.

(6) The 2-torsion is annihilated by v.

Proof: The Adams spectral sequence determines the structure of kuiBD for i ≤ 4,
as there is no torsion in these degrees, and the map into K∗BD is a monomorphism.
This establishes (1)-(3). To show (6) simply observe that if vx is nonzero then x
maps nontrivially to K∗BD, so cannot have finite additive order.

Before the lemma, we showed that parts (4) and (5) would follow from the
lemma. �

Proof of Theorem 2.5.4: It is now a simple matter to verify that the stated
relations are complete, by checking that multiplying any of the additive generators
of the preceding lemma by a, b, d, or v produces an element which can be written
in terms of that additive basis using the relations. �

Remark 2.5.10. Some interesting facts emerge from these relations.

(1) There is a large filtration shift in the relation 2bd = vdd2n . The class bd
is in Adams filtration 0, while 2 times it is in Adams filtration 2n+ 1.

(2) The relations qρ = 0 and dρ = 0 for the quaternion and dihedral groups
are exactly the same polynomial in q and d respectively. This implies that
2n+2 will annihilate their images in cohomology. For Q2n+2 this is exactly
the order of q, but for D2n+2, the additional relation vbd = d+d2n−d2n−1

makes 2n+1d divisible by v, so that the image of d in cohomology therefore
has order 2n+1. This is an example of the relation between the v-filtration
of the representation ring and cohomology.

2.6. The alternating group of degree 4.

The ku-cohomology of the group A4 has two interesting features. First, the
Euler class of the 3-dimensional irreducible representation is nonzero in connective
K-theory, but is 0 in periodic K-theory. Second, ku∗(BA4) is not generated by
Chern classes. (Neither is H∗(BA4).)

The representation ring is

R(A4) = Z[α, τ ]/(α3 − 1, τ(α − 1), τ(τ − 2)− 1− α− α2)

where α factors through the quotient A4 −→ C3, and τ is the reduced permutation
representation. We define

A = eK(α) = (1− α)/v
Γ = (1 + α+ α2 − τ)/v3

and note that the augmentation ideal J = (vA, v3Γ). This gives us the periodic
K-theory.
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Proposition 2.6.1. K∗(BA4) = (K∗[A,Γ]/I)∧J where I is the ideal

I = ((1− vA)3 − 1, AΓ, Γ(v3Γ− 4)).

Additively, we have K0(BA4) = Z ⊕ (Z∧3 )2 ⊕ Z∧2 , generated by 1, vA, v2A2,
and v3Γ, respectively. To compute the connective K-theory, consider the extension

V4
/−→ A4 −→ C3.

Note that we are using the traditional notation V4 for the Klein 4-group here.
That is, V4 has order 4, and not rank 4. The Atiyah-Hirzebruch spectral sequences
collapse, giving

H∗(BA4)(3) = H∗(BC3)(3), ku∗(BA4)(3) = ku∗(BC3)(3)

H∗(BA4)(2) = H∗(BV4)
C3

(2), ku∗(BA4)(2) = ku∗(BV4)
C3

(2)

First, consider the 2-localization of ku∗(BA4) Let H = HF2. Then H∗(BV4) =
F2[xi, xj ], with xk = xi + xj and C3-action xi 7→ xj 7→ xk. The resulting ring of
invariants is

H∗(BA4; F2) = F2[a, b, c]/(a
3 + b2 + bc+ c2)

with |a| = 2, and |b| = |c| = 3. The inclusion into H∗(BV4) sends

a 7→ x2
i + xixj + x2

j ,
b 7→ xixj(xi + xj),
c 7→ x3

i + x2
i xj + x3

j .

We will see in section 4.2 that ku∗(BV4) = (ku∗[yi, yj]/(vy
2
i −2yi, vy

2
j −2yj))

∧
J . The

C3-action is yi 7→ yj 7→ yk = yi +yj−vyiyj . The resulting ring of invariants is what
we must compute. The Chern classes of τ will give two of the three generators.
They are

ν = eku(τ) = c3(τ) ∈ ku6(BA4)
µ = c2(τ) ∈ ku4(BA4)
vµ = c1(τ) ∈ ku2(BA4)

The remaining generator will be defined by its image in ku∗(BV4).

Theorem 2.6.2. ku∗(BA4)(2) = (ku∗[µ, ν, π]/I)∧J where |µ| = 4, |ν| = |π| = 6,
and where I is the ideal

I = (2ν, vν, vπ − 2µ, vµ2 − 2π, µ3 − π2 − πν − ν2)

The natural map ku∗(BA4) −→ K∗(BA4) sends ν to 0, µ to vΓ, and π to 2Γ. The
natural map ku∗(BA4) −→ HF∗2(BA4) sends µ to a2, ν to b2, and π to c2. The
restriction to ku∗(BV4) sends

µ 7→ y2
i − yiyj + y2

j ,
ν 7→ yiyj(yi − yj),
π 7→ y3

i − y2
i yj + y3

j .

Proof: Since ku∗(BA4)(2) consists of the C3-invariants in ku∗(BV4), we could use
the images of µ, ν and π to define them. It is then a simple calculation with Chern
classes in ku∗(BV4) to verify that this agrees with the definitions of µ and ν already
given. To see that these generate the invariants and that we have all the relations,
we shall use the Adams spectral sequence.

Recall that there is a stable 2-local splitting

ku ∧BA4 = (ku ∧ Σ2BC2) ∨ GEM,
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Figure 2.15. The E2 = E∞ term of the Adams spectral sequence
for ku∗(BA4).

where the GEM is a wedge of HF2’s. This follows from the splitting

BC2 ∧BC2 = BA4 ∨
∨

α

ΣnαL(2)

and the equivalence

ku ∧BC2 ∧BC2 = ku ∧ Σ2BC2 ∨ Σ2HF2[u, v]

with |u| = |v| = 2. This implies that the Adams spectral sequence for ku∗(BA4)(2)
collapses at E2, since this is true for both ku∧Σ2BC2 and HF2. (See Figure 2.15.)
It also implies that additive generators for ku∗(BA4)(2) are all detected in mod

2 cohomology. Now, the elements µ, ν, and π are detected by a2, b2, and c2 in
HF∗2(BA4), and a check of Poincaré series shows that the algebra generated by
these three elements accounts for Ext0, which consists of the (Q0, Q1)-annihilated
elements of HF∗2(BA4). Thus, these three elements will generate ku∗(BA4)(2).
The relations follow immediately from the relations in ku∗(BV4), and the images
in K∗(BA4) follow by restriction to V4 as well. �
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Now we can assemble the 2-local and 3-local information.

Theorem 2.6.3. ku∗(BA4) = (ku∗[y, µ, ν, π]/I)∧J where |y| = 2, |µ| = 4, |ν| =
|π| = 6, and where I is the ideal

I = ([3](y), yµ, yν, yπ,
2ν, vν, vπ − 2µ, vµ2 − 2π, µ3 − π2 − πν − ν2).

Proof: The integral result injects into the sum of the localizations, so the only
question is the relations between y and µ, ν and π. But 3y ∈ (v)y, where (v) is
the ideal generated by v, while 4µ ∈ (v)µ, 2ν = 0, and 4π ∈ (v)π. Since the v-adic
filtration is complete, the products yµ, yν, and yπ must all be 0. �



CHAPTER 3

The ku-homology of finite groups.

The purpose of this chapter is to explain and illustrate how to use the coho-
mology calculations to deduce their homology and Tate cohomology, and to discuss
the associated duality. For some time it has been routine to obtain additive in-
formation using the Adams spectral sequence methods, at least up to extension
[5, 6]. Indeed, our calculations of the cohomology used some of this information.
However we are using the local cohomology spectral sequence to deduce ku∗(BG)
as a module over ku∗(BG) from a knowledge of the ring ku∗(BG) and the Euler
classes. This has purely practical advantages in the ease of calculating certain ad-
ditive extensions, but the main motivation is to obtain structural and geometric
information not accessible through the Adams spectral sequence. In particular we
expose the remarkable duality properties of ku∗(BG) which follow from the local
cohomology theorem.

We begin by giving a more detailed discussion of generalities on the use of
the local cohomology theorem in Section 3.1, the duality in Section 3.3 and Tate
cohomology in Section 3.6. In each section, we end with specific examples.

3.1. General behaviour of ku∗(BG).

One reason for understanding ku∗(BG) as a ring is the local cohomology the-
orem which states that there is a spectral sequence

H∗,∗I (ku∗(BG))⇒ ku∗(BG)

where I = ker(ku∗(BG) −→ ku∗) is the augmentation ideal and H∗I (·) denotes
the local cohomology functor. Local cohomology can be calculated using a stable
Koszul complex, and it calculates the right derived functors of the I-power torsion
functor

ΓI(M) = {m ∈M | Ism = 0 for s >> 0}
on ku∗-modules M . This is proved as in [22, Appendix] and spelled out in [31].

What is required is an equivariant S-algebra k̂u with Noetherian coefficient ring

ku∗(BG). A suitable S-algebra is k̂u = F (EG+, infG
1 ku), where infG

1 is the highly
structured inflation of Elmendorf-May [17]. If G is a p-group, the augmenta-
tion ideal I may be replaced by the ideal E(G) generated by Euler classes, or
even E′(G) = (eku(V1), eku(V2), . . . , eku(Vr)) provided G acts freely on the product
S(V1)× S(V2)× · · · × S(Vr) of unit spheres [23]. The method of proof is described
in [22, Section 3].

The analogue for periodic K-theory [22] is particularly illuminating because
the representation ring is 1-dimensional, so the spectral sequence collapses to show
K0(BG) = H0

J (R(G)) = Z and K1(BG) = H1
J(R(G)). The analogue for ordinary

cohomology has been illuminating for different reasons. Many cohomology rings
of finite groups are Cohen-Macaulay or have depth one less than their dimension.

63
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In these cases the spectral sequence collapses, and this shows that the cohomology
ring is actually Gorenstein or almost Gorenstein [29].

The connective K-theory ring ku∗(BG) is more complicated. It is of I-depth 0
if G is non-trivial, and it is of dimension equal to the rank of G. Accordingly the
spectral sequence does not often collapse. Nonetheless we have found this method
of calculating ku∗(BG) useful, and we illustrate the calculations in a number of
cases including cyclic groups, generalized quaternion groups, the dihedral group
of order 8, and most substantially, in Chapter 4, elementary abelian 2-groups of
arbitrary rank. For the remainder of this section we describe the approximate form
of our calculations.

For brevity we let R = ku∗(BG), and note that R[1/v] = K∗(BG) by Lemma
1.1.1. For the remainder of the discussion, suppose that G is a p-group. It is often
useful to calculate local cohomology using the diagram

R −→ R[1/p] −→ R/p∞

↓ ↓ ↓
R[1/v] −→ R[1/v][1/p] −→ R[1/v]/p∞.

The principal tool is the first row, but note that the second row is the chromatic
complex for periodic K-theory and therefore completely understood. Indeed it gives
the exact sequence

0 −→ H0
I (K∗(BG)) −→ K∗(BG)[1/p]·ρ −→ K∗(BG)/p∞ −→ H1

I (K∗(BG)) −→ 0,

so that

H0
I (K∗(BG)) = Z[v, v−1] · ρ

and

H1
I (K∗(BG)) = {(R(G)/(ρ))/p∞}[v, v−1].

The comparison between the rows gives essential information. The first row is not
so effective as in the periodic case, since there is often p-torsion in R. There are
cases of interest when R has no p-torsion, but in general we obtain the two short
exact sequences

ΓpR −→ R −→ R and R −→ R[1/p] −→ R/p∞.

The p-power torsion ΓpR is often essentially on the 0-line of the Adams spectral
sequence and therefore a submodule of the mod p cohomology of BG. Let d denote
the depth of H∗(BG; Fp): typically this is fairly large, and in any case Duflot’s
theorem [13] states the depth is bounded below by the p-rank of the centre. We
will speak as if this is also the depth of ΓpR, although this is typically only true in
an attenuated sense (see Chapter 4 for further discussion). Furthermore the local
cohomology of ΓpR should be very well behaved in the top degrees (Gorenstein or
almost Gorenstein). This says the local cohomology in most degrees (in degrees ≤
d−2) is the same as that of R. Now H∗I (R[1/p]) is concentrated in local cohomology

degree 0 (see 3.1.4 below) and therefore the local cohomology of R is that of R/p∞

in one degree lower. In low rank examples this reduces the calculation of H∗I (R) to
calculations of H0

I , which can be regarded as routine. In general we have Hs
I (R) =

Hs−1
I (R/p∞) for 2 ≤ s ≤ d − 2, and there is also a tractable exact sequence for

H0
I (R) and H1

I (R) in terms of I-power torsion.
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In the two most difficult cases we have calculated (the elementary abelian and
dihedral cases), these generalities have been usefully packaged as follows. We con-
sider the short exact sequence

0 −→ T −→ R −→ Q −→ 0

of R-modules where T is the v-power torsion. Thus Q is the image of ku∗(BG)
in K∗(BG), and in all cases except A4 it is the modified Rees ring: the K0(BG)
subalgebra of K∗(BG) generated by 1, v and the K theory Chern classes of repre-
sentations. Although T is defined as the v-power torsion, in our examples when G is
a p-group it turns out to be the (p, v)-power torsion. In many cases it is annihilated
by the exponent of the group without the need for higher powers.

In the examples, I-local cohomology of Q can be calculated as (y∗)-local co-
homology for a suitable element y∗ ∈ I. In the abelian case the reason is that,
viewed in R(G), the ideal (y∗) is a reduction of the augmentation ideal J , and the
modification in general takes account of other Chern classes. This means that the
local cohomology of Q is zero except in degrees 0 and 1. Since Q ⊆ K∗(BG), it is
easy to see that H0

I (Q) = ku∗ · ρ. It can be seen that H1
I (Q) is Z-torsion, and the

order of the torsion increases with degree.

Summary 3.1.1. Provided T is of I-depth ≥ 2,

H0
I (R) = ku∗ · ρ,

there is an exact sequence

0 −→ H1
I (R) −→ H1

I (Q) −→ H2
I (T ) −→ H2

I (R) −→ 0

and isomorphisms

Hi
I(R) ∼= Hi

I(T )

for i ≥ 3.

We believe the hypothesis in the summary is always satisfied.

Conjecture 3.1.2. The I-depth of the v-power torsion submodule T is always
≥ 2.

Before turning to examples we prove some general facts.

Lemma 3.1.3. (i) The Z-torsion submodule is v-power torsion.
(ii) The v-power torsion submodule T is Z-torsion.

Proof. Part (i) is obvious since K∗(BG) is Z-torsion free.
For Part (ii) we need only note that [X,K/ku]⊗ Q = [X,K/ku ⊗ Q] for any

bounded below spectrum X , because the limits in the Milnor exact sequence are
eventually constant, and that X = BG is rationally trivial. �

Lemma 3.1.4. The module R[1/p] has local cohomological dimension 0 in the
sense that Hs

I (R[1/p]) = 0 for s > 0.

Proof: Method 1: Local cohomological dimension is detected on varieties, so by
Quillen’s descent argument (see Section 1.1) it is sufficient to check for abelian
groups A. By the Künneth theorem up to varieties (1.5.1) it is enough to check on
cyclic groups. This is true.

Method 2: Once the regular representation is factored out we have a vector
space over Qp. The action by the Euler class e of a one dimensional representation
has only the regular representation in the kernel. Thus e is an injective map of
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finite dimensional vector spaces (on R[1/p]/ΓIR[1/p]) over Qp and hence an iso-
morphism. �

Since ku∗(BG) is I-power torsion by the local cohomology theorem, the image
of the norm map lies in H0

I (ku∗(BG)). These two submodules are often equal.

Lemma 3.1.5. For a finite group G, we have H0
I (ku∗(BG)) = ku∗ · ρ provided

either

(1) v is a regular element in ku∗(BG), or
(2) the v-torsion of the p-Sylow subgroups of G is detected on the 0-line for

all p.

Proof: By 3.6.1 ku∗ ·ρ lies in the 0-th local cohomology. This gives a lower bound.
We also know by character theory that H0

I (K∗(BG)) = K∗ · ρ. Therefore
elements of ku∗(BG) detected in K∗(BG) are only I-power torsion if they are
in ku∗ · ρ. If v acts monomorphically on ku∗(BG), all elements of ku∗(BG) are
detected in K∗(BG) and we are done.

In the other case, the fact that ku∗(BG) = K∗(BG) in positive degrees shows
that the answer is correct in positive degrees. The v-torsion is Z-torsion, so it
suffices to check for each p that there is no more p-local I-torsion. By a transfer
argument, ku∗(BG)(p) is a retract of ku∗(BP )(p) for a P -Sylow subgroup P . We
may therefore assume G is a p-group.

Thus it is enough to consider what happens in negative degrees on v-power
torsion. By assumption, all v-power torsion is on the 0-line of the Adams spectral
sequence. It suffices to find an element of the augmentation ideal which acts regu-
larly on the 0-line. Now [14] shows there is an element of mod p cohomology with
this property, and we show that it lifts to ku∗(BG). Indeed, if pn is the order of the
largest abelian subgroup of G, for each abelian subgroup A, we may consider the
total Chern class cku

· ((pn/|A|)ρA). Since resA
BρA = (|A|/|B|)ρB , these elements are

compatible under restriction. The same is true of the degree pn pieces, and so by
Quillen’s V -isomorphism theorem for complex oriented theories, some power lifts
to γku ∈ ku∗(BG). Since ku-theory Chern classes reduce to mod p cohomology
Chern classes, Duflot’s result about associated primes shows that γku is regular on
mod p cohomology. �

Remark 3.1.6. (i) We certainly expect this result holds more generally, and
note that any extra elements of H0

I (ku∗(BG)) are I-power torsion but also (v, |G|)-
torsion.
(ii) We warn that an example of Pakianathan’s [49] shows that there need not be
a regular element of integral cohomology.

3.2. The universal coefficient theorem.

To understand the duality implied by the local cohomology theorem we begin
by discussing the ku universal coefficient theorem as it applies to the space BG.

Proposition 3.2.1. The universal coefficient theorem for BG takes the form
of a short exact sequence

0 −→ Ext2ku∗
(Σ2S, ku∗) −→ k̃u

∗
(BG) −→ Ext1ku∗

(ΣP̃ , ku∗) −→ 0,
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where S is the (|G|, v)-power torsion in k̃u∗(BG) and P̃ = k̃u∗(BG)/S.

Proof: Let M = ku∗(BG). We may consider the filtration

Γ(|G|,v)M ⊆ Γ(|G|)M ⊆M.

We shall show that each of the three subquotients M(2) = Γ(|G|,v)M = S, M(1) =
Γ(|G|)M/Γ(|G|,v)M and M(0) = M/Γ(|G|)M only gives Ext∗ku∗

(·, ku∗) in a single
degree:

Ext∗ku∗
(M(i), ku∗) = Extiku∗

(M(i), ku∗).

This is clear for i = 0, since k̃u∗(BG) = ku∗⊕ k̃u∗(BG), so that M(0) = ku∗, which

is free. It also follows that Γ(|G|)M = k̃u∗(BG), so that M(1) = P̃ . Accordingly,
once we know that M(1) and M(2) only contribute Ext in degrees 1 and 2, we will
have a short exact sequence

0 −→ Ext2ku∗
(Σ2M(2), ku∗) −→ k̃u

∗
(BG) −→ Ext1ku∗

(ΣM(1), ku∗) −→ 0

as required.

Since k̃u∗(BG) is |G|-power torsion it suffices to deal with one prime at a time
and we localize at a prime p dividing |G| for the rest of the proof. It is natural to
use the injective resolution

0 −→ ku∗ −→ ku∗[1/p, 1/v] −→ ku∗[1/p]/v∞⊕ku∗[1/v]/p∞ −→ ku∗/p∞, v∞ −→ 0

of ku∗. The statement about M(2) then follows directly since it is p and v torsion,
and

Ext2ku∗
(Σ2M(2), ku∗) = Homku∗

(Σ2M(2), ku∗/|G|∞, v∞).

Now consider M(1). Since it is p-power torsion, its Ext groups are the coho-
mology of the sequence

0
d0

−→ Homku∗
(M(1), ku∗[1/v]/p∞)

d1

−→ Homku∗
(M(1), ku∗/p∞, v∞).

For the term in cohomological degree 1, we note first thatM(1)[1/v] = K̃∗(BG).
This is H1

J (R(G)) in each odd degree, and zero in each even degree. Hence we
calculate

Homku∗
(M(1), ku∗[1/v]/p∞) = Homku∗

(M(1)[1/v], ku∗[1/v]/p∞)

= HomZ(M [1/v]1,Z/p
∞)[v, v−1].

This is (R(V )/(ρ))∧J in each odd degree, and zero in each even degree.
For the term in cohomological degree 2, note first that M(1) is in odd degrees,

since it has no v-torsion and M(1)[1/v] is in odd degrees. Evidently M(1) is also
bounded below, whilst ku∗/p∞, v∞ is bounded above and hence any map

M(1) −→ ku∗/p∞, v∞

involves only finitely many terms

M(1)2k+1 −→ Z/p∞.

Finally, since M(1) has no v-torsion the restriction map

Hom2k+1
ku∗

(M(1), ku∗/p∞, v∞) −→ HomZ(M(1)2k+1, (ku
∗/p∞, v∞)0)

= HomZ(M(1)2k+1,Z/p
∞)
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is an isomorphism. Since M(1)2k+1 maps monomorphically to M(1)[1/v]2k+1 it
follows that the differential d1 is surjective. Thus Ext2ku∗

(M(1), ku∗) = 0. and

Ext1,2k+1
ku∗

(M(1), ku∗) = HomZ([(R(G)/ρ)/p∞]/M(1)2k+1,Z/p
∞).

�

3.3. Local cohomology and duality.

We now want to combine the Universal coefficient theorem of Section 3.2 with
the local cohomology theorem of Section 3.1 to obtain a duality statement. This
special case illustrates the general phenomena discussed in [26] and [15]. For this
we use the technology of highly structured rings. Thus we write ku for a non-
equivariant commutative S0-algebra representing ku-cohomology. For an equivari-
ant version we use the Elmendorf-May highly structured inflation infG

1 of [17] to

construct the equivariant S0-algebra k̂u = F (EG+, infG
1 ku).

We may summarize the discussion in Section 3.2 in the heuristic statement

ku∗(BG) = RDku∗
(ku∗(BG))

where Dku∗
(·) = Homku∗

(·, ku∗) and R denotes the total right derived functor
in some derived category. The precise version of this is the S0-algebra universal
coefficient theorem

F (BG+, ku) = Fku(ku ∧BG+, ku),

which is obtained from the equivariant statement

F (EG+, ku) = Fku(k̂u ∧ EG+, ku),

by taking G-fixed points, where ku is still the non-equivariant S0-algebra. The

expression makes sense since k̂u is a ku-module.
On the other hand, by the local cohomology theorem, ku∗(BG) can be calcu-

lated using a spectral sequence from H∗I (ku∗(BG)), giving the heuristic statement

ku∗(BG) = RΓI(ku
∗(BG)).

Indeed, in the context of S0-algebras we may form the homotopy I-power torsion

functor ΓI on the category of strict k̂u-modules. If I = (x1, x2, . . . , xr) we define

Γ(x)k̂u = fibre(k̂u −→ k̂u[1/x]) and

ΓIM = Γx1 k̂u ∧cku
Γx2 k̂u ∧cku

. . . ∧cku
Γxr

k̂u ∧cku
M.

The precise version of the heuristic statment is then the equivalence

k̂u ∧ EG+ ' ΓIF (EG+, k̂u)

of G-spectra [22, Appendix] and [23].
We now combine the two results relating homology and cohomology of BG.

We obtain the heuristic statement

ku∗(BG) = RDku∗
(RΓI(ku

∗(BG))).

The precise statement is the equivalence

F (EG+, k̂u) ' Fku(ΓIF (EG+, k̂u), ku).

An algebraic statement is obtained by taking equivariant homotopy, and makes
the heuristic statement precise by using appropriate spectral sequences to calculate
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the left hand side. This states that the S0-algebra F (EG+, ku) is “homotopically
Gorenstein”. The terminology arises since if a local ring (R, I) of dimension n is
Cohen-Macaulay then H∗I (R) = Hn

I (R), and R is then Gorenstein if and only if
DHn

I (R) is a suspension of R. However, since ku∗(BG) has depth 0, the actual ring
theoretic implications are more complicated. They are nonetheless extremely strik-
ing in examples, as is described in Sections 3.1, 3.4, 3.5, and, especially remarkable,
that of elementary abelian groups given in Section 4.12.

3.4. The ku-homology of cyclic and quaternion groups.

If G is a cyclic group or a generalized quaternion 2-group, the calculation is
particularly easy.

Lemma 3.4.1. If G is cyclic or generalized quaternion then there is an element
y in ku2(BG) or ku4(BG) respectively, such that

H0
I (R) = Z[v]

H1
I (R) = R/(y∞) := cok(R −→ R[1/y])

If s > 1 then Hs
I (R) = 0.

Proof: For H0
I (R) we use 3.1.5. For the rest we observe G acts freely on the unit

sphere of a suitable representation V and take y = eku(V ). �

Remark 3.4.2. When G is cyclic, we may view it as embedded in complex
numbers and take V to be the natural representation of G on C, so y has its usual
meaning. When G is a quaternion group, we may view it as embedded in the
quaternions and take V to be the natural representation of G on H, giving y = q
in the notation of Section 2.4. Here we may see explicitly that I = (q, a, b) is the
radical of (q) since a2 = vaq and b2 = vbq + q2n−1 − q in the case of Q2n+2.

Proposition 3.4.3. If G is cyclic or generalized quaternion then

ku∗(BG) = Z[v]⊕ Σ−1R/(y∞).

Explicitly,

(1) If R̃ = R(Cn)/(ρ) = Z[α]/(1 + α+ · · ·+ αn−1) then

ku2i−1BCn = R̃/(1− α)i

(2) k̃uiBQ2n+2 = Ai ⊕Bi, where Ai = Bi = 0 if i is even, A4k−3 = A4k−1 =
Z/2k ⊕Z/2k, and B4k−1 = B4k+1 = Cok(P k), where P is the companion
matrix of the polynomial

−2n+2 − f1v2q − · · · − f2n−1(v
2q)2

n−1

derived from the regular representation as in Lemma 2.4.3.

The duality is especially simple for these groups because of the absence of
v-torsion.

Corollary 3.4.4. If G is cyclic or generalized quaternion, and R̃ = k̃u
∗
(BG)

then

Exti
ku∗

(Σ−1R/(y∞), ku∗) =

{
R̃ if i = 1
0 otherwise
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Proof of Proposition 3.4.3: The first sentence is obvious from the Gysin se-
quence, since both groups act freely on the unit sphere S(V ) for some representation
V and therefore EG = S(∞V ). Only the explicit statement needs proof.

First assume that G = Cn. Then R = ku∗(BG) = ku∗[[y]]/([n](y)) and the
n-series [n](y) = yρ so the image of R in R[1/y] is R/(ρ). In degree 0 this is the

ring R̃. In positive degree 2i (negative codegree −2i) the image is vkR̃. In contrast,

R[1/y] in positive degree 2i is (1/yi)R̃. Since vi = (1− α)i/yi, we see that

ku2i−1 = H1,−2i
I (R) = R̃/(1− α)i.

When G = Q2n+2, recall from Lemma 2.4.10 that R/(ρ) in degree 2k has
an additive basis which is vk times {va, vb, 1, v2q, (v2q)2, . . ., (v2q)2

n−1}. The
same lemma shows that R[1/q]4k = R4/qk+1 has basis (1/qk+1) times {vaq, vbq,
q, v2q2, . . ., q(v2q)2

n−1} and R[1/q]4k+2 = R2/qk+1 has basis (1/qk+1) times
{a, b, vq, v3q2, . . . , vq(v2q)2

n−1}. If we filter R/(ρ) by putting the summands involv-
ing a and b into filtration 0 and the rest into filtration 1, then both multiplication
by v and q are filtration preserving, and we can compute H1

I (R) as the direct sum
of two cokernels: one involving a and b, and the other involving only powers of q.
For the first part note that v2a = 2a/q and v2b = 2b/q modulo terms involving
only powers of q. Hence in degree 4k − 2 the map R/(ρ) −→ R[1/q] is

<v2ka, v2kb> = <2ka/qk, 2kb/qk> −→ <a/qk, b/qk>

with cokernel Z/2k ⊕ Z/2k. In degree 4k we have v times this with the same
cokernel. This accounts for the summands Ai.

For the remainder, recall from Lemma 2.4.3 that the regular representation is
a polynomial of degree 2n in the Euler class v2q of a faithful representation:

ρ = 2n+2 + f1(v
2q) + · · ·+ f2n−1(v

2q)2
n−1 + (v2q)2

n

.

Since ρ is zero in R[1/q], there we have

(v2q)2
n

= −2n+2 − f1(v2q)− · · · − f2n−1(v
2q)2

n−1.

In degree 4k the inclusion of R/(ρ) into R[1/q] is the inclusion of

v2k <1, v2q, . . . , (v2q)2
n−1> −→ (1/qk) <1, v2q, . . . , (v2q)2

n−1>

and in degree 4k+ 2 we have v times this. It is not hard to see that this is exactly
the group presented by the k-th power of the companion matrix of the polynomial
expressing the highest power of v2q in terms of lower ones as above. �

Remark 3.4.5. For Q8 the relation obtained by setting the regular represen-
tation to zero and inverting q is v4q2 = −8 + 6v2q, so that we have

B4k−1 = B4k+1 = Z22k+1 ⊕ Z2k−1 ,

the group presented by the k-th power of the companion matrix
(

0 −8
1 6

)
.

Remark 3.4.6. For a cyclic group of prime order p, the result is especially

simple. In this case the ring R̃ = Z[α]/(1+α+ · · ·+αp−1) is the ring generated by
a primitive pth root of unity in the complex numbers. Here we can calculate that
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(1 − α)p−1 is p times a unit. This, together with the calculation of R̃/(1− α)i for
i = 1, . . . , p− 2, gives

k̃unBCp =





(Z/pj+1)s ⊕ (Z/pj)p−1−s if n = 2j(p− 1) + 2s− 1
with 0 < s ≤ p− 1

0 otherwise

For a general cyclic group, there will be sets of summands with different rates
of growth corresponding to the factorization of 1 + α+ · · ·+ αn−1 into cyclotomic
polynomials. For example,

k̃unBCp2 = An ⊕Bn

where

An =





(Z/pj+2)s ⊕ (Z/pj+1)p−1−s if n = 2j(p− 1) + 2s− 1
with 0 < s ≤ p− 1

0 otherwise

and

Bn =





(Z/pj+1)s ⊕ (Z/pj)p2−p−1−s if n = 2j(p2 − p) + 2s+ 2p− 3
with 0 < s ≤ p2 − p

0 otherwise.

3.5. The ku-homology of BD8.

In this section we shall compute ku∗BD8 as a module over

R = ku∗BD8

= ku∗[a, b, d]/(v4d3 − 6v2d2 + 8d, va2 − 2a, vb2 − 2b, ab− (b2 − vbd),
2ad, vad, 2bd− v2bd2, vbd− (4d− v2d2))

where a, b ∈ R2 and d ∈ R4 (Theorem 2.5.5). We shall use the short exact sequence
of R-modules

0 −→ T −→ R −→ Q −→ 0,

where Q is the image of R in K∗BD8 and T = Γ(2,v)R = Γ(2)R = Γ(v)R. The

R action on T factors through P = R/(2, v)R = F2[a, b, d]/(ab + b2), and it is
easy to see that T is the free P -module generated by ad ∈ R6. We write M∨ =
HomF2(M,F2) for the F2-dual of any P -module: note that if M is in positive
degrees, M∨ is in negative degrees, and vice versa, and that M∨ is again a P -
module.

The remainder of this section will be devoted to the proof of the following
theorem.

Theorem 3.5.1. As an R-module, k̃u∗BD8 = kuoddBD8 ⊕ k̃uevenBD8.

(1) k̃uevenBD8 = Σ−2H2
I (R) = Σ2P∨. Additively, k̃u2iBD8 = (Z/2)i.

(2) kuoddBD8 = Σ−1H1
I (R), with additive generators ai, bi, ci, and di in

ku2i−1BD8 for i > 0.
(a) ku1BD8 = (Z/2)2 =<a1> ⊕ <b1> , with d1 = a1 and c1 = 0.
(b) ku3BD8 = (Z/4)3 =<a2> ⊕ <b2> ⊕ <d2> and c2 = 2a2 + 2d2.
(c) ku5BD8 = (Z/8)3 =<a3> ⊕ <b3> ⊕ <d3> and c3 = 4a3 + 4d3.
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v a b d
ai 2ai+1 ai−1 bi−1 − 2ci−1 0
bi 2(bi+1 − εi+1ci+1) bi−1 − 2ci−1 bi−1 + 2εici−1 2ci−2

ci 2ci+1 0 (1 + εi)ci−1 ci−2

di 2di+1 − εici+1 0 ci−1 di−2

Figure 3.1. TheR-module structure of kuoddBD8. We let ε2i = 0
and ε2i+1 = 1.

(d) For i ≥ 4, ku2i−1BD8 = (Z/2i)3 ⊕ A2i−1 =<ai> ⊕ <bi> ⊕ <di>
⊕ A2i−1, where

(i) A4n−1 = (Z/2n−1) =<c2n + 2n(a2n + d2n)>
(ii) A4n+1 = (Z/2n−1) =<c2n+1 + 2n+1(a2n+1 + d2n+1)>

The R-module structure is given in Figure 3.1.

There is a simple heuristic which neatly describes the summands A2i−1. First
note that 2nc2n = 0 and 2nc2n+1 = 0. For any element x, write s(x) for 2i−1x if x
has order 2i. Then s(ci) = s(ai) + s(di). Thus, by adding the appropriate multiple
of ai + di to ci we obtain a summand whose order is half the order of ci.
Proof: Since R is concentrated in even degrees, ku∗BD8 splits as the sum of
the even and odd degree parts. We shall first calculate the local cohomology of
T and of Q, then use the long exact sequence of local cohomology to calculate
the local cohomology of R. We will show that H0

I (R) = ku∗ · ρ, which is a direct
summand of ku∗BD8. Since R has dimension 2, it follows that the local cohomology

spectral sequence must collapse to give isomorphisms k̃uevenBD8 = H2
I (R) and

kuoddBD8 = H1
I (R).

We start with T , which we have already observed is isomorphic to Σ6P , where
P = F2[a, b, d]/(ab + b2). (Our suspensions are cohomological; that is, T n+6 =
(Σ6P )n+6 = Pn.) It is easy to calculate directly that H0

I (T ) = H1
I (T ) = 0

and H2
I (T ) = Σ6H2

I (P ) = Σ6Σ−4P∨ = Σ2P∨. Note that P is isomorphic to
H∗(BD8; F2) under a degree doubling isomorphism. We could give an alternative
calculation of the local cohomology by arguing that H∗(BD8) is Cohen-Macaulay
and hence, from the local cohomology theorem, Gorenstein.

The local cohomological dimension of Q, like that of K∗BD8 = R[1/v], is 1
(see Lemma 3.5.5 for an explicit proof). Therefore, the long exact sequence for H∗I
gives an isomorphism H0

I (R) = H0
I (Q), which we shall show is ku∗ · ρ, just as in

3.1.5, and an exact sequence

0 −→ H1
I (R) −→ H1

I (Q) −→ H2
I (T ) −→ H2

I (R) −→ 0

Observe that the map in the middle will be completely determined by its behaviour
in the bottom degree (top codegree) because the dual of H2

I (T ) is monogenic.
We next compute H∗I (Q). It will help to have an explicit description of Q.

Lemma 3.5.2. Q = ku∗[a, b, d]/(ad, va2 − 2a, vb2 − 2b, b(a− b+ vd), d(4− vb−
v2d)), which is a free Z∧2 -module on the following basis:
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codegree basis
4n+ 2 a2n+1, vdn+1, bdn, b2n+1

4n a2n, dn, vbdn, b2n

6 a3, vd2, bd, b3

4 a2, d, vbd, b2

2 a, vd, v2bd, b
0 1, va, v2d, v3bd, vb

−2i, i > 0 vi times the basis for Q0

Remark 3.5.3. Since Q is a subring of K∗BD8, computations in Q can be
done in the representation ring. We will write elements of the representation ring
by giving their characters, where the character table has columns identity, center,
rotation, reflection, reflection, respectively. The images in the character ring of the
generators are:

va = (00022)

vb = (00202)

v2d = (04200)

Definition 3.5.4. Let y = d+ a2 ∈ Q4.

Lemma 3.5.5. The radical of (y) is I, and hence H∗I = H∗(y). There is an exact
sequence

0 −→ H0
I (Q) −→ Q −→ Q[1/y] −→ H1

I (Q) −→ 0.

Now, v2y = (04244) in the character ring, and is therefore nonzero on any
element which is not a multiple of the regular representation ρ = (80000). This
gives us a practical method for completing the computation.

Corollary 3.5.6. H0
I (Q) = ku∗ · ρ, the free ku∗-module generated by the

regular representation ρ = 8− 4va− 2v2d− v3bd. There is a short exact sequence

0 −→ Q/(ρ) −→ Q[1/y] −→ H1
I (Q) −→ 0.

This accounts for H0
I (R) = H0

I (Q). To describe H1
I (Q), let us temporarily use

the abbreviation Hn := H1,n
I (Q). Since multiplication by y is an isomorphism in

Q[1/y], and Qi = Q[1/y]i for i ≥ 4, we find that we can compute

H−4n = Q4/(yn+1Q−4n)

H−4n+2 = Q6/(yn+1Q−4n+2).

Then H−4n is spanned by

ã2n =
a2

yn+1
b̃2n =

b2

yn+1
c̃2n =

vbd

yn+1
d̃2n =

d

yn+1

and H−4n+2 by

ã2n−1 =
a3

yn+1
b̃2n−1 =

b3

yn+1
c̃2n−1 =

bd

yn+1
d̃2n−1 =

vd2

yn+1
.

Proposition 3.5.7. The top local cohomology H∗ = H1,∗
I (Q) is

• H2 = Z/2 =<b̃−1> , c̃−1 = b̃−1, and ã−1 = d̃−1 = 0.

• H0 = Z/2⊕ Z/2 =<ã0, b̃0> , c̃0 = 0, and d̃0 = ã0.
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• H−2 = Z/4⊕ Z/4⊕ Z/2 =<ã1, b̃1, c̃1> and d̃1 = 2ã1.

• H−4 = Z/8⊕ Z/8⊕ Z/8 =<ã2, b̃2, d̃2> and c̃2 = 4(ã2 + d̃2).

and in codegrees less than -4,

• H−4n = (Z/22n+1)3 ⊕ Z/2n−1 generated by ã2n, b̃2n, d̃2n, and c̃2n +

2n+1(ã2n + d̃2n), respectively.

• H−4n−2 = (Z/22n+2)2⊕Z/22n+1⊕Z/2n generated by ã2n+1, b̃2n+1, d̃2n+1,

and c̃2n+1 + 2n+1ã2n+1 + 2nd̃2n+1, respectively.

The same heuristic we used to describe the generators of the small summands

of ku∗BD8 works here as well. We have s(c̃i) = s(ãi) + s(d̃i). Thus, by adding the

appropriate (not equal) multiples of ãi and d̃i to c̃i we obtain a summand whose
order is half the order of c̃i.

Next we wish to determine the map H1
I (Q) −→ H2

I (T ). We shall write the
elements of H2

I (T ) = P∨ dual to aidj and bidj , respectively, as 1/aidj and 1/bidj .
Then we have

Proposition 3.5.8. The homomorphism H1
I (Q) −→ H2

I (T ) is

ãi 7→ 1/bi+1

b̃i 7→ 1/ai+1 + 1/bi+1

c̃2i 7→ 0 and c̃2i−1 7→ 1/di

d̃2i 7→ 1/bdi and d̃2i−1 7→ 0

Proof: The bottom class must map nontrivially by connectivity and collapse of the
local cohomology spectral sequence. Then the R-module structure of H1

I (Q) and
H2

I (T ) forces the rest of the map. �

The cokernel of this map is easily computed.

Proposition 3.5.9. The map H2
I (T ) −→ H2

I (R) is dual to the inclusion of
the ideal (ad) ⊂ P = F2[a, b, d]/(ab + b2) and this ideal is isomorphic to P , so
H2

I (R) = P∨, with bottom class in degree 4.

The kernel is also easy to compute, though it requires more work to describe.
Let us define

ai = 2ãi

bi = 2b̃i

c2i = c̃2i and c2i−1 = 2c̃2i−1

d2i = 2d̃2i and d2i−1 = d̃2i−1

Then clearly H1,2i
I (R) is generated by ai, bi, ci and di, and we have completed the

calculation of H∗I (R).
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Proposition 3.5.10. H1
I (R) is as follows:

H1,−4n
I (R) = (Z/22n)3 ⊕ Z/2n−1

= <a2n> ⊕ <b2n> ⊕ <d2n> ⊕ <c2n + 2n(a2n + d2n)>

H1,−4n
I (R) = (Z/22n+1)3 ⊕ Z/2n−1

= <a2n+1> ⊕ <b2n+1> ⊕ <d2n+1>

⊕ <c2n+1 + 2n+1(a2n+1 + d2n+1)>

The only thing left to compute in order to finish the proof of Theorem 3.5.1 is
the action of R, and this follows easily from the R action in Q[1/y]. �

The duality obtained by combining the local cohomology spectral sequence and
the universal coefficient spectral sequence says roughly that the v-torsion submod-
ules of ku∗(BD8) and ku∗(BD8) are dual and that their v-torsion-free quotients
are dual. To be precise, first note that each contains a copy of ku∗, and that these
are dual by

ku∗ = H0
I (ku∗BD8) = ku∗ · ρ

and

ku∗ = Homku∗
(ku∗BD8, ku∗).

The interest lies in the reduced groups. We have the short exact sequence of
ku∗BD8 modules

(4) 0 −→ T −→ k̃u
∗
BD8 −→ Q̃ −→ 0.

The local cohomology spectral sequence collapses to a short exact sequence

0 −→ Σ−2T∨ −→ k̃u∗BD8 −→ H1
I (k̃u

∗
BD8) −→ 0

and this is exactly the short exact sequence expressing k̃u∗BD8 as the extension of
the v-torsion submodule by the v-torsion-free quotient. Note that the top of T is in
degree −6, so that the bottom of Σ−2T∨ is in degree 4. Theorem 3.2.1 tells us that
the universal coefficient spectral sequence degenerates to the short exact sequence

0 −→ Ext2ku∗
(T∨, ku∗) −→ k̃u

∗
(BD8) −→ Ext1ku∗

(ΣH1
I (k̃u

∗
BD8), ku∗) −→ 0.

One may check that the Ext1 group is v-torsion free, and therefore this coincides
with our original extension (4), leading to the duality statements which follow.

Proposition 3.5.11. The short exact sequence for k̃u∗(BD8) from the local

cohomology spectral sequence is dual to the short exact sequence for k̃u
∗
(BD8) from

the universal coefficient theorem. More precisely,

Extiku∗
(T∨, ku∗) =

{
T if i = 2
0 otherwise

and

Extiku∗
(ΣH1

I (k̃u
∗
BD8), ku∗) =

{
Q̃ if i = 1
0 otherwise.
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�

Even more striking are the corresponding dualities in Section 4.12 for elemen-
tary abelian groups.

3.6. Tate cohomology.

As with any other theory, there is a Tate cohomology associated to ku [30] and
we have the norm sequence

· · · −→ ku∗(BG)
N−→ ku∗(BG) −→ t(ku)∗G −→ Σku∗(BG) −→ · · · .

It is of interest to calculate the Tate cohomology, partly for its own sake, and partly
because of the information it encodes about the relationship between homology and
cohomology. For ku, the Tate cohomology contains most of the information about
both homology and cohomology in the sense that the norm map N is nearly trivial.

Lemma 3.6.1. The image of the norm map ku∗(BG) −→ ku∗(BG) is the free
ku∗-module on the regular representation in R(G)∧J = ku0(BG).

Proof: First note that ku∗(BG) is in positive degrees, so in the range where the
image of the norm is non-trivial, ku∗(BG) −→ K∗(BG) is an isomorphism. The
result therefore follows from the corresponding fact for periodic K-theory. �

This means that we have an extension

0 −→ ku∗(BG)/(ρ) −→ t(ku)∗G −→ Σk̃u∗(BG) −→ 0.

This can conveniently be displayed by superimposing the Adams spectral sequence
for ku∗(BG) (which occupies the part of the upper half-plane specified by s ≥
(t−s)/2) and the Adams spectral sequence for Σk̃u∗(BG) (which occupies the part
of the upper half-plane specified by s < (t− s)/2). The additive extensions can be
added to this.

For periodic K-theory the extension is as non-trivial as possible in the sense
that t(K)∗G is a rational vector space, terms of which arise out of 0 −→ Z∧p −→
Qp −→ Z/p∞ −→ 0. This is characteristic of one dimensional rings as shown in
[24], and the argument of Benson and Carlson [7] shows that for rings of depth
2 or more, the extension is multiplicatively nearly trivial. However ku∗(BG) is of
depth zero, and it appears that the Tate extension is highly non-trivial.

For groups which act freely on a sphere, we can solve this extension problem
by James periodicity [30, 16.1] :

(5) t(ku)G = lim
←−

(ku ∧ ΣP∞−n)

where P∞−n is the associated stunted projective space.

Theorem 3.6.2. (1) If G = Cn, the cyclic group of order n, then

t(ku)G
∗ = ku∗[[y]][1/y]/(ρ) = ku∗[[y]][1/y]/([n](y)).

(2) If Q = Q2n+2, the quaternion group of order 2n+2, then

t(ku)Q
∗ = ku∗(BQ)[1/q]

where q ∈ ku4(BQ) is the Euler class of a faithful 2-dimensional repre-
sentation.
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0 -2 -4246. . . . . . . .

. . . .. . . . 

yy
3 2

y 1
2

1/y 1/y

Figure 3.2. t(ku)∗C2
= Z∧2 [y, 1/y] with v = 2/y

Proof: James periodicity tells us that the limit (5) is simply ku∗BC[1/y] if C is
cyclic, and is ku∗BQ[1/q] if Q is generalized quaternion. Here y ∈ ku2BC and
q ∈ ku4BQ are as in Lemma 3.4.1. �

In these cases, the theorem tells us that t(ku)G
∗ is simply the periodic extension

of ku2BC with period 2, when C is cyclic, and of ku2BQ and ku4BQ with period
4 when Q is generalized quaternion. (See figures 2.5, 2.6, 2.7, and 2.12.)

This has a deceptively simple form when C is cyclic of prime order (see Figure
3.2), as shown by Davis and Mahowald.

Theorem 3.6.3. ([12]) If p is a prime then

t(ku)Cp =

p-2∨

j=0

Σ2j
∞∏

i=−∞

Σ2iHZ∧p .

Proof: Recall that p-locally, ku ' l ∨ Σ2l ∨ · · · ∨ Σ2(p−2)l. The Adams spectral
sequence shows that π2it(l)

Cp = Z∧p , generated by a class detected in cohomology,

as this is true of l2BCp. Let yi : t(l)Cp −→ Σ2iHZ∧p be such a cohomology class.
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The product over all i of the yi induces an isomorphism in homotopy and is there-
fore an equivalence. The result for ku follows. �

This splitting into Eilenberg-MacLane spectra is quite exceptional, however,
and is probably confined to cyclic groups of prime order.

Proposition 3.6.4. If G = Cpk for k > 1, Q2n for n ≥ 3, or SL(2, `), then

t(ku)G is not a generalized Eilenberg-MacLane spectrum.

Proof: The inverse limit description (5) of t(ku)G applies when G is Cpk or Q2n .
If G is SL(2, `) then transfer and restriction allow us to split the 2-localization of
t(ku)G off t(ku)Q2n , and to identify the relevant part of the inverse sequence for
t(ku)Q2n . Thus, in each case we have a description of the G-fixed points of the Tate
theory as an inverse limit. We shall show it is not a generalized Eilenberg-MacLane
spectrum (GEM) by using Goerss’s theorem on the homology of inverse limits.
Goerss shows in [20] that the homology of the inverse limit is the inverse limit
of the homologies in the category of comodules, (the inverse sequence is Mittag-
Löffler), and that this can be calculated by taking the inverse limit in the category
of vector spaces and restricting to those elements whose coproducts have only a
finite number of terms.

The comodule H∗(ku ∧ P−n) is the extended comodule H∗(ku)�E(1)H∗(P−n).
For G = Cpk , H∗(P−n) is a trivial E(1)-comodule. It follows that the homology

of the inverse limit t(ku)G is the finite coproduct part of the product of one copy
of H∗(ku) for each integer. Suppose p = 2. Then H∗(ku) is F2[ξ

4
1 , ξ

2
2 , ξ3, . . .]. It

follows that the homology of the inverse limit has the property that the coproduct
of any element of B = H∗t(ku)

G lies in F2[ξ
4
1 , ξ

2
2 , ξ3, . . .]⊗B.

The homotopy of t(ku)G, computed in Theorem 3.6.2, is a sum of copies of Z∧2
in each even dimension. Thus, if t(ku)G is a GEM, it is a product of HZ∧2 ’s. Now
H∗HZ∧2 = F2[ξ

2
1 , ξ2, ξ3, . . .], so the homology of such a GEM will have elements

whose coproduct contains terms of the form ξ21 ⊗ x. Since H∗(t(ku)
G) does not,

t(ku)G cannot be a GEM.
When p > 2, a similar argument applies with ξ21 replaced by τ1. When

G = SL(2, `), we also have that the relevant part of P−n has homology which is

a trivial E(1)-comodule, so the same argument applies. Finally, since t(ku)
SL(2,`)
(2)

splits off t(ku)Q2n , the latter cannot be a GEM either. �

Remark 3.6.5. For real connective K-theory, the issue is more easily resolved,
because there are often nontrivial multiplications by η. While t(ko)G is a GEM for
G cyclic of prime order ([12]), Bayen and Bruner ([6]) show that t(ko)G is not a
GEM for G = Q8, and similar calculations show this for any quaternion or dihedral
group.



CHAPTER 4

The ku-homology and ku-cohomology of

elementary abelian groups.

In this chapter we discuss elementary abelian groups, mostly at the prime 2.
These are the only class of examples of higher rank that we consider, but this
suffices to illustrate the complexity of the structure.

In Section 4.2 the Adams spectral sequence is used to calculate the cohomol-
ogy ring ku∗(BV ) for an arbitrary elementary abelian group V of rank r. As
usual, this is a mixture of the one dimensional part from periodic K-theory and
an r-dimensional part from mod p cohomology. However both of these pieces are
slightly modified from their simple form and the way they are stuck together is also
interesting.

The succeeding sections are the most complicated bits of commutative algebra
in this paper. The bulk of the work is involved in calculating the local cohomology
of ku∗(BV ), but it shows that it is a very remarkable module. Still more striking is
the way that although there are many differentials in the local cohomology spectral
sequence, they are all forced for formal reasons, and all but three columns are
wiped out before the E∞ term. This allows us to calculate ku∗(BV ) up to a single
extension and thereby to investigate the duality.

The results in this chapter are more cumulative than in previous cases, so we
start with Section 4.1 summarizing the results and the organization of the rest of
the chapter.

4.1. Description of results.

The aim of this chapter is to have a detailed understanding of the homology
and cohomology of BV for an elementary abelian group V of rank r. The basis for
this is the calculation in Section 4.2 of the cohomology ring R = ku∗(BV ). First
one may understand the mod p cohomology ring of BV over E(1) and, by Ossa’s
splitting theorem, the Adams spectral sequence for ku∗(BV ) collapses. One may
construct enough elements to deduce that there is a short exact sequence

0 −→ T −→ ku∗(BV ) −→ Q −→ 0

of R-modules. Here T is the ideal of (p, v)-torsion elements of R, and Q has no
p or v torsion. In fact Q is the image of R = ku∗(BV ) in K∗(BV ) and one may
describe it explicitly. Furthermore the ring homomorphism

R −→ K∗(BV )×H∗(BV ; Fp)

is injective, the image in K∗(BV ) is the Rees ring Q, and T maps monomorphically
into the second factor with an image that may be described explicitly as an ideal
in H∗(BV ; Fp).

79
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Now let p = 2 and consider the calculation of the homology of BV from the
augmented cohomology ring of BV using the local cohomology theorem. The prin-
cipal advantage of this approach is that it is essentially independent of a basis of V .
Accordingly, the combinatorics and homological algebra is intrinsic to the problem.
By contrast, in higher rank examples the combinatorics arising by conventional
means involves arbitrary choices and appears intricate and mysterious. Finally, the
homological and combinatorial structures emerging here suggest the lines of the
calculation for higher chromatic periodicities, such as BP 〈n〉 for n ≥ 2. We intend
to investigate this further elsewhere. The calculation of ku∗(BV ) is a substantial
enterprise and occupies Sections 4.3 to 4.11; we describe the argument in outline
before explaining the contents in more detail.

We let

I = (y1, y2, . . . , yr)

denote the ideal generated by the Euler classes yi, and note that by [23] this has
radical equal to the augmentation ideal ker(R = ku∗(BV ) −→ ku∗) . The local
cohomology theorem (in this case an immediate consequence of the fact that we
may use S(∞α1)× S(∞α2)× · · · × S(∞αr) as a model for EV ) states that there
is a spectral sequence

E2
p,q = H−p,−q

I (R)⇒ kup+q(BV ).

We view this as a spectral sequence concentrated in the first r + 1 columns of the
left half-plane. It therefore has r − 1 differentials, d2, d3, . . . , dr, with

di : Ei
p,q −→ Ei

p−i,q+i−1.

This is a spectral sequence of R-modules. We emphasize that the E2 term is a
functor of R, so exposes intrinsic structure, and the entire spectral sequence is
natural in V .

Accordingly, our first task is to calculate the local cohomology groups H∗I (R).
First we remark that the submodule T of (2, v)-torsion is equal to the submodule
of 2-torsion, or equally, to the submodule of v-torsion (4.2.3). We thus begin with
the short exact sequence

0 −→ T −→ R −→ Q −→ 0,

where T is the v-torsion and Q is the Rees ring (the image of R in K∗(BV )). It
turns out that T is a direct sum of r − 2 submodules T2, T3, . . . , Tr, with Ti of
projective dimension r − i.

Before proceeding, we outline the shape of the answer. One piece of terminol-
ogy is useful. To have property P in codimension i , means that any localization
at a prime of height i has property P. Thus Gorenstein in codimension 0 means
the localization at any minimal prime is Gorenstein, Gorenstein in codimension
1 is stronger, and Gorenstein in codimension r is the same as Gorenstein (since
Gorenstein is defined as a local property).

We shall see that Q has local cohomology only in degrees 0 and 1 (it is of
dimension 1) whilst Ti has depth i and only has local cohomology in degrees i
and r. Furthermore it is startling that the dual of Hi

I(Ti) is only one dimensional
rather than i dimensional as might be expected: thus Ti is Cohen-Macaulay in
codimension r − 2, and it turns out that T is Gorenstein in codimension r − 2.



4.2. THE ku-COHOMOLOGY OF ELEMENTARY ABELIAN GROUPS. 81

From this information it follows that the ith local cohomology of R agrees
with that of Ti except perhaps in dimensions 0, 1, 2 and r. Indeed, there is only one
connecting homomorphism between non-zero groups: H1

I (Q) −→ H2
I (T2). However

for V of rank ≥ 3 there are non-trivial higher differentials. It is natural to view the
above connecting homomorphism as d1, and in fact the only nonzero differentials all
originate in H1

I (Q), and each has the effect of replacingH1
I (Q) by twice the previous

one, so that Ei
−1,∗ = 2i−1H1(Q) for 1 ≤ i ≤ r and E∞−1,∗ = Er

−1,∗ = 2r−1H1(Q).

Furthermore the differentials d1, d2, . . . , dr−2 are all surjective: this can be deduced
from the module structure together with the fact that ku∗(BV ) is connective. This
means that the E∞ term is concentrated on columns 0,−1 and −r; the 0th column
is the direct summand ku∗, and in fact we obtain a rather complete and natural
description of the homology.

Theorem 4.1.1. The spectral sequence has E∞-term on the columns s = 0,−1
and −r, and this gives an extension

0 −→ Σ−4T∨ −→ k̃u∗(BV ) −→ Σ−1(2r−1H1
I (Q)) −→ 0

of GL(V )-modules, and the extension is additively split. Here T∨ = Hom(T,F2)
is the F2-dual and the suspensions are such that the lowest nonzero group in the
kernel is in degree 2 and the lowest nonzero group in the quotient is in degree 1.

The calculation is arranged as follows. In Section 4.2 the cohomology ring
ku∗(BV ) is calculated by the method of Chapter 2. In Section 4.4 we calculate the
local cohomology of Q, and deduce some facts about its 2-adic filtration in Section
4.5 for later use. The calculation of the local cohomology of T is more involved: in
Section 4.6 we describe a free resolution and use it in Section 4.7 to calculate the
local cohomology, with some Hilbert series calculations deferred to 4.8. In Section
4.10 we assemble the information to describe the local cohomology of R, and in
Section 4.11 we find the differentials in the spectral sequence.

Finally, with a complete description of the homology and cohomology Sections
4.12 and 4.13 we discuss the homotopy Gorenstein duality statement of Section 3.3
and the Tate cohomology of Section 3.6. In this case the duality statement turns
out to consist of the two isomorphisms

Ext2ku∗
(Σ−2T∨, ku∗) = T

and

Ext1ku∗
(2r−1H1

I (Q), ku∗) = Q̃

together with the fact that the other Ext groups vanish: the exact sequence from
the universal coefficient theorem corresponds to that from the local cohomology
theorem. The Tate cohomology displays both the extremely non-split behaviour of
periodic K-theory [30], and the split behaviour of mod 2 cohomology [7].

4.2. The ku-cohomology of elementary abelian groups.

Ossa [48] calculated the connective ku cohomology of an elementary abelian
group as a ku∗-module and described the ring structure of the image in periodic
K-theory. Here, we reproduce his results and use the Adams spectral sequence to
determine the ring structure, which greatly illuminates the additive structure. We
will use the notation and results of 2.2.

We start with a characteristic free algebraic result. Let E(1) be the exterior
algebra over a field k of characteristic p > 0 on odd degree generators Q0 and
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Q1. Let L be the infinite ‘string module’ (Figure 2.2) on a 0-dimensional class
determined by the string Q−1

0 Q1Q
−1
0 Q1Q

−1
0 Q1 . . . (also called a ‘lightning flash’).

In detail, L has a k basis {xn,i|i ∈ {1, 2}, n ≥ 0} with operations Q0(xn,1) = xn,2

and Q1(xn,1) = xn+1,2. The class x0,2 is the class from which all the others are
reached by means of the string

Q−1
0 Q1Q

−1
0 Q1Q

−1
0 Q1 . . . .

Lemma 4.2.1. With the diagonal E(1) action on the tensor product,

L⊗ L ∼= L⊕
⊕

n,m≥0

<xn,1 ⊗ xm,1>

where the L on the right has initial class x0,2 ⊗ x0,2, and the rest is the free E(1)-
module generated by the elements xn,1 ⊗ xm,1 .

Proof: First note that we have at least a 2-adic integers worth of choices in the
copy of L we use, since eachQ−1

0 has two possible monomial values. For definiteness,
let us choose {x0,2⊗ xn,i}. It is nontrivial but elementary to verify that the sum is
direct and fills out all of L⊗ L. �

Since H∗BCp is a sum of suspensions of L, as a module over E(1), the pre-
ceding lemma is the key to understanding the Adams spectral sequence for the
ku-cohomology of elementary abelian groups. We will use the following notation.

Notation 4.2.2. Let B = BCp, and let BV = B × · · · × B be the clas-
sifying space of a rank r elementary p-group V . Let N = {1, 2, . . . , r}. Write
H∗(B+) = E[x] ⊗ Fp[y] if p > 2, and F2[x] if p = 2. In the latter case, let
y = x2. In H∗BV let xi and yi be the corresponding elements in the ith fac-
tor. We shall have occasion to consider H∗BV as a module over the subring P =
Fp[y1, y2, . . . , yr]. Write the complex representation rings R(Cp) = Z[α]/(αp − 1)
and R(V ) = Z[α1, . . . , αr]/(α

p
1 − 1, . . . , αp

r − 1). For S ⊂ N, let

VS =
∏

i∈S

Vi

where Vi is the ith factor Cp in V.

As a formal consequence of the stable equivalence X×Y ' X ∨ Y ∨ X ∧Y
we have a decomposition

BV+ =
∨

S⊂N

B∧|S|.

functorial for permutations of the basis.
As a consequence, stable invariants such as ku∗, K∗ and H∗ of BV split in the

same way (as modules over the corresponding coefficients, but not as rings). There
is a corresponding additive splitting of the complex representation ring

R(V ) =
⊕

S⊂N

RS

where RS consists of those representations pulled back from VS but no smaller
quotient. That is, RS is spanned by the

∏

i∈S

αni

i

with each ni 6= 0 modulo p. At odd primes, we have the further splitting

(6) B = BCp = B1 ∨ · · · ∨ Bp−1,
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where Bi has cells in dimensions congruent to 2i− 1 and 2i modulo 2(p− 1). Thus

B∧k =
∨

1≤ij≤p−1

Bi1 ∧ · · · ∧Bik
,

with concomitant splittings of ku∗, K∗, and H∗ of B∧k and BV. The corresponding
splitting of RS is ⊕

1≤ij≤p−1

<αi1
1 · · ·αik

k >

when S = {1, . . . , k}, and similarly for other S. We therefore have compatible
splittings of ku∗, K∗, and H∗ of BV , and a similar splitting of R(V ), all indexed

on the basis {αi1
1 · · ·αir

r |0 ≤ ij < p} of R(V ). Therefore, to describe ku∗BV we
shall compute each of the ku∗(Bi1 ∧ · · · ∧ Bir

) and the multiplication which ties
them together.

Recall that the ku∧Bi are all equivalent up to suspension (Lemma 2.2.2). For
smash products of the Bi we have the following key consequence of Lemma 4.2.1,
due to Ossa [48].

Proposition 4.2.3. For each I = (i1, . . . , ik) there is a generalized mod p
Eilenberg-MacLane spectrum XI and an equivalence

ku ∧Bi1 ∧ · · · ∧Bik
' XI ∨ ku ∧Bi ' XI ∨ ku ∧Σ2i−2B1

where i = i1 + · · ·+ ik and we let Bj+p−1 = Σ2(p−1)Bj .

Proof: By induction and Lemma 2.2.2 it is sufficient to prove the Proposition for
k = 2 and i1 = i2 = 1. Since

H∗(ku ∧B1 ∧B1) ∼= H∗ku⊗H∗(B1 ∧B1) ∼= A ⊗
E(1)

H∗(B1 ∧B1),

and H∗(B1 ∧ B1) ∼= Σ2L ⊗ Σ2L ∼= Σ4(L ⊗ L), the E(1)-free summand in
Lemma 4.2.1 produces a corresponding A-free summand in H∗(ku ∧ B1 ∧ B1).
Margolis’ theorem [43] gives a correspondence between bases of A-free submodules
of H∗(X) and HFp wedge summands of X. This gives the generalized Eilenberg-
MacLane wedge summand. Let C be the other summand. We wish to show that
C ' ku∧B2. The diagonal map ∆ : B −→ B∧B induces the required equivalence

ku ∧B2 −→ ku ∧B ∆−→ ku ∧B ∧B −→ ku ∧B1 ∧B1 −→ C.

To see this, it suffices to check that, in cohomology, the composite

B2 −→ B −→ B ∧B −→ B1 ∧B1

maps the summand Σ4L from Lemma 4.2.1 isomorphically to H∗(B2). Since Σ4L
consists of {x0,2⊗xn,i}, which maps to {y}⊗H∗(B1) in H∗(B ∧B), ∆∗ maps this
to H∗(B2) as required. �

We can now describe all the ku∗-module structure of ku∗(BV ), and most of
its ring structure. The rank 2 case is shown in Figure 4.1. Note that in positive

Adams filtration we have constant rank 3, as in K̃∗(BV2), while in Adams filtration
0 we have polynomial growth as in H∗(BV2).

Theorem 4.2.4. (1) The Adams spectral sequence

Ext∗,∗
A

(H∗(ku), H∗(BV )) =⇒ ku∗(BV )

collapses at E2.
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(2) There is a set of generators for ku∗(BV ) as a ku∗-module which is mapped
monomorphically to a vector space basis by the edge homomorphism

ku∗(BV ) � Ext0(Fp, H
∗(BV )) = (Q0, Q1)−ann(H∗(BV )).

(3) The edge homomorphism maps the subalgebra

ku∗(B) ⊗
ku*

· · · ⊗
ku*

ku∗(B)

of ku∗(BV ) onto P = Fp[y1, . . . , yr] ⊂ (Q0, Q1)−ann(H∗(BV )).
(4) As a ku∗-module, there is a splitting

ku∗(BV ) ∼= M ⊕ ku∗(B) ⊗
ku*

· · · ⊗
ku*

ku∗(B)

such that if x ∈ M then then px = 0 = vx, and xp is in the tensor
product. The summand M is mapped monomorphically to H∗(BV ) by the
edge homomorphism.

Proof: Any nonzero differential would have to occur on a finite skeleton, so its
dual would occur in the Adams spectral sequence for ku∗(BV ). But this spectral
sequence collapses by the geometric splitting 4.2.3 since this is so for both B and
HFp.

Now (1) follows immediately from the collapse of the Adams spectral sequences
for B and HFp, while (2) follows because it is true in both these Adams spectral
sequences. Part (3) follows by naturality of the product.

The splitting in (4) also follows from the geometric splitting 4.2.3, since the
tensor product summand contains all the suspensions of ku ∧ B1 and some of the
HFp’s. Thus the summand M is a sum of π∗(HFp)’s, so is annihilated by p and v

and detected in Ext0. Since the pth power of (Q0, Q1)−ann(H∗(BV )) is contained
in Fp[y1, . . . , yr], if x ∈ M then xp is detected by an element of Fp[y1, . . . , yr]. By
(3), an element t of the tensor product subalgebra will be detected by this same
element of Fp[y1, . . . , yr], and hence xp − t will be detected in Adams filtration
greater than 0. But all such elements are in the tensor product subalgebra, hence
so is xp. �

Remark 4.2.5. The last item in this theorem gives a direct proof of the central
technical result of Chapter 1, Theorem 1.5.1 in this special case. This was the first
indication that such a result might be true in general.

Corollary 4.2.6. The map

ku∗(B) ⊗
ku*

· · · ⊗
ku*

ku∗(B) −→ ku∗(BV )

is a V-isomorphism.

We also have

Corollary 4.2.7. The natural maps induce an injective ring homomorphism

ku∗(BV ) −→ K∗(BV )×H∗(BV )

Remark 4.2.8. This allows us to finish computing the multiplicative structure
of ku∗(BV ) in principle. We shall have more to say about this shortly.

Remark 4.2.9. Consider p = 2. The generators of the tensor product subal-
gebra satisfy

2y2
i yj = vy2

i y
2
j = 2yiy

2
j and vy2

i yj = 2yiyj = vyiy
2
j .
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Figure 4.1. The E2 = E∞ term of the Adams spectral sequence
ExtE(1)(F2, H

∗(BV2)) =⇒ ku∗(BV2)

Since the v-torsion maps to 0 in the periodic K-theory of BV , we have y2
i yj = yiy

2
j

there. This rather neatly explains the ‘somewhat weird structure’ observed by Wall
in his calculation of the image of cohomology in periodic K-theory in 1961 [57], in
that it shows these relations follow immediately from the relation between 2 and v
in the individual factors.



86 4. ELEMENTARY ABELIAN GROUPS

Here is a more explicit description of the subset of H∗(BV ) which detects our
set of generators for ku∗(BV ). Recall that P = Fp[y1, . . . , yr] ⊂ H∗(BV ).

Proposition 4.2.10.

(Q0, Q1)−ann(H∗(BV )) = P + Im(Q0Q1).

Proof: Certainly the right hand side is (Q0, Q1)-annihilated. On the other hand,
Lemma 4.2.1 implies that we need only consider the (Q0, Q1)-annihilated elements
of the suspensions of L, which all lie in P , together with the (Q0, Q1)-annihilated
elements of E(1)-free summands which are exactly the image Im(Q0Q1). �

We shall also need to know what is annihilated by the smaller ideal (Q1Q0).

Proposition 4.2.11.

(Q1Q0)−ann(H∗(BV )) = Im(Q0) + Im(Q1) + P +
⊕

i

Pxi.

Proof: It is easy to check that the right hand side is annihilated by Q0Q1. Let

N = H̃∗(BC∧r
p ). It suffices to assume r > 1 and show (Q1Q0)−ann(N) = N ′,

where

N ′ = Q0(N) +Q1(N) + Py1 · · · yr + Py1 · · · yr−1xr.

Again it is clear that N ′ is annihilated by Q1Q0.
By the Künneth formula, H∗(N ;Q1) is the set of all cy1 · · · yr where c ∈ P has

degree less than p− 1 in each variable yj. Hence if Q1Q0m = 0 we deduce

Q0m = Q1n+ cy1 · · · yr,

where the dimension of n is smaller than the dimension of m. Applying Q0 gives
Q1Q0n = 0; by induction we conclude

Q1n ∈ Im(Q1Q0) + Py1 · · · yr.

Since H∗(N ;Q0) = 0 we obtain

m− cy1 · · · yr−1xr ∈ N ′

and the result follows. �

Remark 4.2.12. Again let p = 2. If I = (i1, . . . , ir) is a sequence of nonnegative

integers, let xI = xi1
1 . . . xir

r and let 2I = (2i1, . . . , 2ir). If S ⊂ N let xS =
∏

i∈S xi.

Then every monomial in the xi has a unique expression as x2IxS for some I and
S. One computes that

Q0Q1(x
2IxS) = x2IxS

∑

i,j∈S,i6=j

xix
3
j

Thus, as a module over F2[x
2
1, . . . , x

2
r ] = F2[y1, . . . , yr], the (Q0, Q1)-annihilated

elements are generated by the 2r elements qS = Q0Q1(xS). In fact, this is redun-
dant, since qS ∈ F2[x

2
1, . . . , x

2
r] if |S| < 3, so it suffices to use those qS with |S| ≥ 3.

Thus, the module M defined in 4.2.4 is generated as a module over the tensor prod-

uct subalgebra by 2r−1−r−
(
r
2

)
elements detected by these qS . A more precise

analysis of the entire 2-torsion (= v-torsion) submodule can be found in Section
4.6.
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For example, the first exotic generator (i.e., a class not in the tensor product
subalgebra) occurs when V has rank 3 and is the element q{1,2,3} ∈ ku7(BV ) = Z/2.

It is detected in Ext0 by

Q0Q1(x1x2x3) = x1x
2
2x

4
3 + x1x

4
2x

2
3 + x2

1x2x
4
3 + x2

1x
4
2x3 + x4

1x2x
2
3 + x4

1x
2
2x3

By Corollary 4.2.7, the square q2{1,2,3} ∈ ku14(BV ) is the unique element whose

image in periodic K-theory is 0, and which is detected by (Q0Q1(x1x2x3))
2 in

Ext0. The relations in ku∗(BV ) mean that this element has many representations,
e.g.,

q2{1,2,3} = y1y
2
2y

4
3 + y1y

4
2y

2
3 + y2

1y2y
4
3 − y2

1y
4
2y3 − y4

1y2y
2
3 − y4

1y
2
2y3

= y1y
2
2y

4
3 − y1y4

2y
2
3 + y2

1y2y
4
3 − y2

1y
4
2y3 − y4

1y2y
2
3 + y4

1y
2
2y3

This is GL(V )-invariant since q{1,2,3} is the unique nonzero element of ku7(BV ),
so is fixed by every automorphism. The referee points out that this can be written
in a transparently invariant form:

q2{1,2,3} = det




y1 y2 y3
y2
1 y2

2 y2
3

y4
1 y4

2 y4
3


 .

4.3. What local cohomology ought to look like.

We now begin the process of calculating the local cohomology of the ring R =
ku∗(BV ) when p = 2. This will occupy us until Section 4.11 and is principally
a local cohomology calculation. We therefore spend this short section building
appropriate expectations.

One of the attractions of our method is that our calculations do not involve
choices. The choice of basis used in the preceding section to calculate the Adams
spectral sequence for ku∗BV was a temporary expedient which has served its pur-
pose. What this freedom from arbitrary choices means in practice is that one can
identify additional structures. Most importantly, our answers are representations of
GL(V ). It is also practical to track naturality for group homomorphisms V −→ V ′,
and to identify the action of cohomology operations.

In describing local cohomology we should compare with that of the best behaved
modules. We describe the general behaviour of the I-local cohomology H∗IM of an
R-module M , and then impose the conditions giving the best behaviour. First,
the local cohomology modules vanish above the dimension d of the module M (i.e.,
above the Krull dimension of the ring R/ann(M)). On the other hand the local
cohomology H∗I (M) vanishes up to the I-depth of M , so that if there is an M -
regular sequence of length l in I we find Hi

I(M) = 0 for i < l, and the potentially
non-zero modules are

H l
I(M), H l+1

I (M), . . . , Hd
I (M).

Thus if we restrict to modules which have I-depth equal to the dimension d (the so-
called Cohen-Macaulay modules), the only non-vanishing local cohomology module
is Hd

I (M). The best case occurs when this has a duality property. We describe this
in the simplest case when (R, I, k) is a local ring and R is a k-algebra. Here the
duality property states

H∗I (M) = Hd
I (M) = ΣνM∨
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for some ν, where M∨ = Homk(M,k) is the k-dual of M . When this duality prop-
erty holds, we say that M is a Gorenstein module of Krull dimension d. However
we warn that there is usually no natural comparison map.

To give life to these remarks, we consider the polynomial ring R = k[W ] over
a field k, where W is a vector space of dimension r, concentrated in degree −2
(i.e., codegree 2). Thus R is of Krull dimension r, and of depth r, so that H∗I (R)
is concentrated in degree r. Choosing a basis of W it is easy to calculate Hr

I (R)
directly, and hence to check that R is Gorenstein with ν = −2r. More concretely,
we may take r = 1 and consider the ring R = k[x] with x of degree −2. Thus
H∗I (k[x]) = H1

I (k[x]) = k[x, x−1]/k[x]. This has dual Σ−2k[x] so that R is Goren-
stein. However if a cyclic group C = 〈g〉 acts on k[x] via g · x = λx for some scalar
λ, then g acts on the bottom element of H1

I (R) as 1/λ. The corresponding fact for
an arbitrary representation W of dimension r is the equivariant isomorphism

Hr
I (k[W ])

∨
= Σ−2rk[W ]⊗ det(W ).

The case that most concerns us is k = F2, in which case the determinant is neces-
sarily trivial.

Even though not all modules are Cohen-Macaulay, the higher local cohomology
modules are always the most significant. More precisely, if M is finitely generated,

Hi
I(M) is an Artinian module so it is natural to consider its dual Hi

I(M)
∨

which

is a Noetherian module when R is local. It turns out that Hi
I(M)

∨
is of dimension

≤ i. In our case this has very concrete implications. Indeed, we will be working
over R = k[W ] with graded modules of finite dimension over a field in each degree;
in that case, being of dimension ≤ i means that the Hilbert series is bounded by a
polynomial of degree i − 1. We will find that the local cohomology modules that
arise in our examples deviate from the Gorenstein condition by much less than
this generic amount: the difference will consist of modules whose dual is only one
dimensional.

We pause to formulate some notation for suspensions. Firstly, we often use the
algebraists’ notation

M(n) = ΣnM

for typographical reasons. We also need to deal with modules M that are zero
above a certain degree; the dual M∨ of such a module will therefore be zero below
a certain degree. It is convenient to use the notation

Start(i)M∨

for the suspension of M∨ whose lowest nonzero degree is i. The notation Start(i)N
always implies that N is a non-zero bounded below module.

4.4. The local cohomology of Q.

The module Q is the image of ku∗(BV ) in K∗(BV ), and is therefore the Rees
ring of the completed representation ring for the augmentation ideal. It is thus
generated by 1, v, y1, . . . , yr; the elements yi are the images of the ku-Euler classes,
and therefore vyi = 1− αi.

We begin by giving a description of Q as an abelian group: this is the only part
of the calculation in which we are working over the integers rather than over F2.
First, Q is generated by monomials vsyI where I = (i1, . . . , ir). Next, note that
because we have factored out T , a monomial yI is determined by its degree and the
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subset Supp(I) = {s | is 6= 0} of indices which occur in it. Therefore, if S 6= ∅, we
write yn

S for the element of degree −2n in which the set of indices which occur is S.
We also permit y∅ = 1, although the empty set is exceptional at several points. By
construction yiy

n
S = yn+1

S∪{i}. Finally vyn+1
S = 2yn

S provided yn
S exists (i.e., provided

the subset S has ≤ n elements).

Lemma 4.4.1. As an abelian group, Q is the direct sum of Z[v] and a free mod-

ule over Z∧2 . The free module has basis the monomials yn
S with n ≥ |S| and viy

|S|
S

for i ≥ 0. �

Remark 4.4.2. It is helpful to display Q in the style of an Adams spectral
sequence. We filter it by powers of the ideal (2, v) and display the associated graded
module, with the subquotients of Qi in a column above i, each basis element of the
resulting graded vector space represented by a dot, and vertical lines representing
multiplication by 2. Thus if n ≥ |S|, the element yn

S contributes a dot at (−2n, 0)
and 2ivjyn

S contributes a dot at (−2n+ 2j, i+ j).

Although we want H∗I (Q) as a module over ku∗, the calculation of the abelian
group only requires the action of PZ = Z[y1, y2, . . . , yr], and it is convenient to let
Q′ be the PZ-submodule of elements of degree ≤ −2r. Thus as an abelian group,
Q′ is free over Z∧2 of rank 2r − 1 in each even degree ≤ −2r. We define Q′′ by the
exact sequence

0 −→ Q′ −→ Q −→ Q′′ −→ 0.

Since Q′′ is bounded below, it is I-power torsion and

H∗I (Q′′) = H0
I (Q′′) = Q′′.

Now let us turn to the module Q′. We place great value on making our answers
functorial in V , and in particular they should be equivariant for GL(V ). The action
on Q can be made explicit from the matrix form of an element of GL(V ) by using
formal addition in place of conventional addition. For example, if V is of rank 2,
the matrix (

0 1
1 1

)

takes

y2 7−→ y1 � y2 = y1 + y2 − vy1y2 = y1 + y2 − vy2
12.

Notice that the matrix entries are mod 2, whilst Q is torsion free. Since [2](yi) =
yi � yi = yi + yi − vy2

i = yi + yi − 2yi = 0, this is legitimate.
Evidently it is very useful to pick out an invariant element. We do this by

working from the obviously invariant element

ρ =
∑

α∈V ∨ α
= |V | −∑

α∈V ∨ veku(α)
=

∑r
i=0 2r−i(−v)i

∑
|S|=i y

i
S .

Lemma 4.4.3. The module Q contains a unique element y∗ ∈ Q−2r with the
property

vry∗ = |V | − ρ.
and this element is invariant under GL(V ).
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Figure 4.2. The module Q in rank 4.

Proof: Since v is a monomorphism on Q, there is at most one such element y∗,
and since ρ is GL(V )-invariant so is y∗. To show y∗ exists we note that

y∗ =
∑

S 6=∅

(−1)|S|yr
S

has the required property. �

Lemma 4.4.4. The element y∗ is Q′-regular and furthermore y∗ : Q′a −→ Q′a−2r

is an isomorphism when Q′a 6= 0.

Proof: It suffices to show vry∗ is regular. However the yi’s all annihilate ρ, so vry∗

acts as |V |. Since Q′ has no Z-torsion, y∗ is regular. Since vr acts as multiplication
by |V | we see that multiplication by y∗ is also surjective. �
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Lemma 4.4.5. The module Q′ is of dimension 1 and

H∗I (Q′) = H1
I (Q′) = Q′[1/y∗]/Q′.

Proof: We may begin by calculating local cohomology for the principal ideal (y∗) ⊆
I. From 4.4.4 we see

H∗(y∗)(Q
′) = H1

(y∗)(Q
′) = Q′[1/y∗]/Q′.

This is in particular bounded below, so I-power torsion, and hence equal to H∗I (Q′).
�

Remark 4.4.6. It seems that the module Q′ is also Gorenstein in the sense
that

H∗I (Q′) = H1
I (Q′) = Start(−2r + 2)(Q′)

∨
.

To establish this we might use the product

Q[1/y∗]⊗Q[1/y∗] −→ Q[1/y∗].

We then notice that the periodicity y∗ (of degree −2r) has an rth root, 2/v (of
degree −2). This allows us to pair complementary degrees to Q[1/y∗]0. Finally, we
need to show that this admits a map to Z∧2 giving a perfect pairing.

So far we have only checked this in rank 2. In this case the map is

λ1y
n
1 + λ2y

n
2 + λ12y

n
12 7−→ 2(λ1 + λ2) + λ12,

and the duality gives dual bases

{y−n
1 , y−n

2 , y−n
12 } and {yn

1 − yn
12, y

n
2 − yn

12,−yn
1 − yn

2 + 3yn
12}.

There is an obvious generalization of the augmentation to the general case, but to
see it is GL(V )-invariant and gives a duality, we need to describe it neatly in terms
of representation theory. But be warned that the image in periodic K-theory is not
the augmentation ideal, for which this construction does not work.

Proposition 4.4.7. The local cohomology of Q is given by

Hi
I(Q) =





ku∗ · ρ if i = 0
Q[1/y∗]/Q if i = 1
0 otherwise

For practical purposes, H1
I (Q) is best calculated by the exact sequence

0 −→ ku∗ · ρ −→ Q′′ −→ Q′[1/y∗]/Q′ −→ H1
I (Q) −→ 0.

We may make explicit what this is in degree −2r+2n. In negative degrees we have

H1
I (Q)−2r+2n = Z∧2 {y2n−2r

S | S 6= ∅}/(2|S|−r+ny2n−2r
S )

where negative powers of 2 are treated as 1. As an abelian group this is
(
r

r

)
Z/2n ⊕

(
r

r − 1

)
Z/2n−1 ⊕

(
r

r − 2

)
Z/2n−2 ⊕ · · · ⊕

(
r

1

)
Z/2n−r+1

where
(
r
i

)
is a binomial coefficient. In degree zero and above we have

H1
I (Q)−2r+2n = Z∧2 {y2n−2r

S | S 6= ∅}/(2|S|−r+ny2n−2r
S , vn−r)
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Figure 4.3. The first local cohomology of Q in rank 4.

where

vn−r = 2n−r ·


∑

S 6=∅

(−1)|S|y2n−2r
S


 .

As an abelian group this is
(
r

r

)
Z/2n−r ⊕

(
r

r − 1

)
Z/2n−1 ⊕

(
r

r − 2

)
Z/2n−2 ⊕ · · · ⊕

(
r

1

)
Z/2n−r+1.

Proof: First consider H0
I (Q). By definition Q has no v torsion, and since T is v-

power torsion, Q is a submodule of ku∗(BV )[1/v] = K∗(BV ). Hence H0
I (Q) is the
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submodule of H0
I (K∗(BV )) = K∗ · ρ consisting of elements from ku∗(BV ). This

calculates H0
I (Q) = ku∗ · ρ.

Consider the exact sequence

0 −→ Q′ −→ Q −→ Q′′ −→ 0.

This shows that Q is of dimension 1, and gives an exact sequence

0 −→ ku∗ · ρ −→ Q′′ −→ H1
I (Q′) −→ H1

I (Q) −→ 0.

The image of vn−r is identified from the fact that |V | − ρ = vry∗ and the fact that
ρ is trivial in Q[1/y∗]. �

4.5. The 2-adic filtration of the local cohomology of Q.

In the analysis of the spectral sequence we need a number of facts about the sub-
quotients 2i−2H1

I (Q)/2i−1H1
I (Q), and we prove them here. We need their Hilbert

series and an estimate for the degrees of generators.

Lemma 4.5.1. For i = 2, 3, . . . , r, the graded F2-vector space

(2i−2H1
I (Q)/2i−1H1

I (Q))
∨

has Hilbert series t2r−2i+2((1 + x)r − xr−i+1)/(1− x), where x = t2.

Proof: In 4.4.7 we calculated H1
I (Q) as an abelian group. We immediately deduce

the subgroup 2i−2H1
I (Q) in degree −2r+2n. Note first that H1

I (Q) has an element
of order 2r−1, so that in all cases H1

I (Q) is non-zero in some negative degree. We
write the group as a sum of cyclic groups Z/2j with the convention that if j ≤ 0
the contribution is zero. In negative degrees it is

(
r

r

)
Z/2n−i+2 ⊕

(
r

r − 1

)
Z/2n−i+1 ⊕

(
r

r − 2

)
Z/2n−i ⊕ · · · ⊕

(
r

1

)
Z/2n−r−i+3

In degree zero and above it is
(
r

r

)
Z/2n−r−i+2 ⊕

(
r

r − 1

)
Z/2n−i+1 ⊕

(
r

r − 2

)
Z/2n−i ⊕ · · · ⊕

(
r

1

)
Z/2n−r−i+3.

Now consider the dimension of the graded vector space 2i−2H1
I (Q)/2i−1H1

I (Q)) as
the degree increases through the even numbers. It is zero until degree −2r+ 2i− 2
(i.e., n = i − 1), when it adds the binomial coefficients

(
r
r

)
,
(

r
r−1

)
, . . . ,

(
r
0

)
in turn,

except that as we pass zero the number added is one less. This corresponds exactly
to the calculation of ((1 + x)r − xr−i+1)(1 + x+ x2 + x4 + · · · ). �

The quotients of the 2-adic filtration of the local cohomology of Q are naturally
modules over P = F2[y1, y2, . . . , yr].

Lemma 4.5.2. The P -module (2i−2H1
I (Q)/2i−1H1

I (Q))
∨

is generated by its el-
ements in degrees ≥ 0.

Proof: Let H = 2i−2H1
I (Q)/2i−1H1

I (Q). This is a module concentrated in even
degrees ≥ −2r + 2i− 2. The statement to be proved is equivalent to showing that
if j > 0 then any map η : H(−2j) −→ F2 factors as H(−2j) −→ H −→ F2 where
the first map is multiplication by an element of P .

On the other hand, our calculation of H1
I (Q) as a quotient of Q[1/y∗] shows

that a basis of H2j is given by the images of 2i−2yS for i− j − 1 ≤ |S| ≤ r− 1 and
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|S| = r if j ≥ i− 1. It suffices to deal with maps η = ηj
S from the dual basis, and

we do this by induction on j.
Suppose then that the elements ηj

S are all realized, and consider the problem of

realizing ηj+1
S . There are three cases according to which subsets S qualify to give

generators for j and j + 1.
If the same subsets qualify as generators for j and j + 1 (i.e., if j ≥ i − 1),

we argue by induction on |S|. Suppose that ηj+1
|T | is realized if |T | < |S|; this is

vacuously true if |S| = 1. Now choose s ∈ S and notice that

ηj
Sys = ηj+1

S + ηj+1
S\{s}.

In the other cases 2s−2y{1,2,...,r} does not qualify as a basis element and by
4.4.7 is equal to the sum of all basis elements.

The next case is if the new subset qualifying for j + 1 is {1, 2, . . . , r} (i.e., if
j = i− 2). Then we note that all proper subsets qualify for j. Note first that

ηj
{1,2,...,r}\{s}ys = ηj+1

{1,2,...,r} + ηj+1
{1,2,...,r}\{s}.

Now argue by induction on |S|, assuming ηj+1
T is realized for |T | < |S| ≤ r; this is

vacuously true if |S| = 1. Now choose s ∈ S and note that

ηj
Sys = ηj+1

S + ηj+1
S\{s} + ηj+1

{1,2,...,r} + ηj+1
{1,2,...,r}\{s}.

The final case is if the new subsets qualifying for j + 1 are the smallest (ie if
0 ≤ j ≤ i − 3). To start with, if |S| = r − 1 we let t 6∈ S be the omitted number
and then

ηj
Syt = ηj+1

S .

Now we argue by downwards induction on |S|, supposing that ηj+1
T is realized for

r > |T | > |S|. Again we choose t 6∈ S and note that

ηj
S∪{t}yt = ηj+1

S + ηj+1
{1,2,...,r}\{t} + ηj+1

S∪{t}.

This completes the proof. �

Remark 4.5.3. The critical use of the relation for y{1,2,...,r} shows that the
proof does not extend to showing H∨ is generated in strictly positive degrees.

4.6. A free resolution of T .

We now turn to the (2, v)-power torsion submodule T . We first recall that T
is exact (2, v)-torsion. Thus all calculations in this section are mod 2, and indeed
over the polynomial ring P = F2[y1, y2, . . . , yr]. The action of GL(V ) on P is now
standard. The action of GL(V ) on local cohomology has not been made explicit.
However since the discussion is in terms of the polynomial ring, it can be read off
in a straightforward way.

The structure now becomes more intricate. We recall that we may view the
polynomial ring PE = F2[x1, x2, . . . , xr] in elements xi of degree 1 as a module
over P = F2[y1, y2, . . . , yr] where yi acts via x2

i . As such PE ∼= P ⊗ E where E is
an exterior algebra on x1, x2, . . . , xr , and PE is a free P -module on the square-free
monomials in x1, x2, . . . , xr.
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Now T is the P -submodule of PE generated by certain elements qS of degree
−|S|− 4, where S is a subset of {1, 2, . . . , r} with at least 2 elements. By definition

qS = Q1Q0xS where xS =
∏

s∈S

xs.

One calculates that

qS = xS

∑

s,t∈S

(xsx
3
t +x

3
sxt) =

∑

s,t∈S

xS\{s,t}(x
2
sx

4
t +x

4
sx

2
t ) =

∑

s,t∈S

xS\{s,t}(ysy
2
t +y2

syt).

Now consider the submodules

Ti = (qS | |S| = i).

Since every monomial in the x’s in qS has exactly |S| − 2 odd exponents, it follows
that Ti lies in the free P submodule of PE on the degree i− 2 part of E. Hence in
particular, the submodules Ti have trivial intersection, and

T =

r⊕

i=2

Ti.

We now set about constructing a free P -resolution of Ti: it will turn out that
a suitable truncation of a double Koszul complex will give the presentation.

We will need to consider modules
(
r
j

)
P (−k), where

(
r
j

)
is the binomial coefficient

counting j-element subsets of a set with r elements. We use the basis {xk(S)}S
where S runs through subsets of {1, 2, . . . , r} with exactly j elements. The subscript
gives the degree.

Lemma 4.6.1. There is a presentation(
r

i+ 1

)
P (−i− 6)⊕

(
r

i+ 1

)
P (−i− 8)

〈d0,d1〉−→
(
r

i

)
P (−i− 4) −→ Ti −→ 0,

where
d0(xi+6(T )) =

∑

t∈T

ytxi+4(T \ {t})

and
d1(xi+8(T )) =

∑

t∈T

y2
txi+4(T \ {t})

Remark 4.6.2. This immediately shows that Tr is free on a single generator
of degree −r − 4. All other modules require more detailed analysis.

Proof: By definition Ti is generated over P by
(
r
i

)
generators of degree −i − 4.

This establishes exactness at Ti.
The key to exactness at the next stage is that the action of Q1Q0 is P -linear,

together with the fact (4.2.11) that

ker(Q1Q0) = im(Q1) + im(Q0) + P +
r⊕

i=1

Pxi.

First we note that the composite at
(
r
i

)
P (−i− 4) is zero. We calculate

εd0xi+6(T ) = ε
∑

t∈T ytxi+4(T \ {t})
=

∑
t∈T ytqT\{t}

= Q1Q0

∑
s∈S ytxT\{t}

= Q1Q0(Q0xT )
= 0.
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Similarly εd1xi+8(T ) = Q1Q0(Q1xT ) = 0.
Now suppose

ε(
∑

S

λSxi+4(S)) =
∑

S

λSqS = 0.

By P -linearity of Q1Q0, the last equality is of the form

Q1Q0(
∑

S

λSxS) = 0.

Now the submodule of PE annihilated by Q1Q0 is the sum of P + ⊕Pxi and the
images of Q1 and of Q0. Since

∑
λSxS lies in the part of PE spanned by monomials

with |S| odd exponents, and |S| = i ≥ 2, we see that
∑

S

λSxS = Q1z1 +Q0z0.

Since

Q0xT =
∑

t

ytxT\{t},

if we write z0 =
∑

T µ
0
TxT , and similarly z1 =

∑
T µ

1
TxT with the sums over T with

|T | = i+ 1, then

λS =
∑

T=S∪{t}

ytµ
0
T + y2

tµ
1
T

and

d(
∑

T

µ0
Txi+6(T ) + µ1

Txi+8(T )) =
∑

S

λSxi+4(S)

as required. �

Now that we have the start of a resolution visibly related to the Koszul com-
plexes for the regular sequences y1, y2, . . . , yr and y2

1 , y
2
2 , . . . , y

2
r it is not hard to

continue it.

Proposition 4.6.3. The module Ti has a free resolution

0 −→ Fr−i −→ Fr−i−1 −→ . . . −→ F0 −→ Ti −→ 0,

where

Fs =

(
r

i+ s

)
[P (−i− 4− 2s)⊕ P (−i− 6− 2s)⊕ · · · ⊕ P (−i− 4− 4s))] .

Note that this involves generators xj(S) where S has i+ s elements and

• j ≡ i mod 2 and
• 2|S| < j < 4|S|

The differential is

d(xj(S)) =
∑

s∈S

ysxj−2(S \ {s}) + y2
sxj−4(S \ {s}),

where xj(T ) is interpreted as zero unless the two displayed conditions are satisfied.

Remark 4.6.4. It follows that the rank of Ti is
(
r−2
i−2

)
.
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20P(-7) 15P(-11) 10P(-15)  P(-19)

15P(-9) 10P(-13)  P(-17)

10P(-11)  P(-15)

P(-13)

Figure 4.4. The double complex resolution for T3 in rank 6.

Proof: We construct the above resolution as a truncation of an exact complex. For
definiteness, we give the argument for T2k in detail, and explain the modifications
for Tj with j odd.

Indeed, we form the double Koszul complex K as the free P -module on gener-
ators yk(S) of internal degree −2k. We may define two differentials

d0yk(S) =
∑

s∈S

ysyk−1(S \ {s})

and
d1yk(S) =

∑

s∈S

y2
syk−2(S \ {s}).

It is easy to verify that d2
0 = 0, d2

1 = 0 and d0d1 = d1d0. We thus obtain a
differential d = d0 + d1. Now the homological degree of yk(S) is |S|, and it is
convenient to display K with yk(S) at (k−|S|, 2|S|−k). This means that d0 moves
down one step and d1 moves left one step. This suggests introducing a filtration by
left half-planes:

· · · ⊆ Kp ⊆ Kp+1 ⊆ Kp+2 ⊆ · · · ⊆ K
where

Kp = 〈yk(S) | k − |S| ≤ p〉.
This gives rise to a spectral sequence

E0
p,q = Hp,q(Kp,Kp−1),

standard in the homological grading, so that the differentials d0 and d1 defined
above are named so as to fit the standard spectral sequence notation.

Note that by construction Kp/Kp−1 is the Koszul complex for the sequence
y1, y2, . . . , yr. Accordingly, since y1, y2, . . . , yr is a regular sequence in P , it follows
that d0 is exact except in the bottom nonzero degree in each column. Since this is
in homological degree 0, there are no other differentials. We conclude that (K, d)
is exact except in homological degree 0.

Now the proposed resolution S = S(T2k) of T2k is the quotient complex of K
represented in the plane by the first quadrant with bottom corner generated by
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yk+2(S) with |S| = 2k (i.e., at (2−k, 3k−2)). From 4.6.1 we know that the bottom
homology of S is T2k, and it remains to show that S is exact except at the bottom.
We deduce this from acyclicity of K. Indeed, since Sp/Sp−1 is a truncation of
a Koszul complex, E1(S) is a chain complex C concentrated at the bottom edge
(i.e., q = 3k − 2), and a diagram chase establishes that d1 is exact on C except
at the bottom. Suppose x ∈ C is a d1-cycle not in the bottom degree; we show
that x is a d1-boundary. By definition of C, x = [x̂] for some x̂, where [·] denotes
d0-homology classes. Since x is a cycle, there is ẑ so that d1x̂ = ŷ and d0ẑ = ŷ.
Now d(x̂ + ẑ) = d0x̂ + d1ẑ. Since d0x̂ and d1z are d-cycles, and we are above
homological degree 0, there are elements s, u with ds = x̂ and du = ẑ, and we find
d(x̂+ ẑ + s+ u) = 0. Hence there is a v with dv = x̂+ ẑ + s+ u. Resolving v into
its components we find x̂ = d0v

′ + d1v
′′ and so

x = [x̂] = [x̂+ d0v
′] = [d1v

′′] = d1[v
′′]

as required.
Finally, note that the only fact about P used above was that y1, y2, . . . , yr is

a P -regular sequence. We may therefore replace P by the odd degree part of PE
and obtain the desired conclusion for Tj with j odd. �

Example 4.6.5. (i) If r = 2 then T = T2 is free of rank 1 over P on a generator
of degree −6.
(ii) If r = 3 then T = T2 ⊕ T3 where T3 is free of rank 1 over P on a generator of
degree −7, and T2 admits a resolution

0←− T2 ←−
(

3

2

)
P (−6)←−

(
3

3

)
[P (−8)⊕ P (−10)]←− 0.

(iii) If r = 4 then T = T2 ⊕ T3 ⊕ T4 where T4 is free of rank 1 on a generator of
degree −8, T3 has presentation

0←− T3 ←−
(

4

3

)
P (−7)←−

(
4

4

)
[P (−9)⊕ P (−11)]←− 0

and T2 has a presentation

0←− T2 ←−
(

4

2

)
P (−6)←−

(
4

3

)
[P (−8)⊕ P (−10)]

←−
(

4

4

)
[P (−10)⊕ P (−12)⊕ P (−14)]←− 0.

(iv) If r = 5 then T = T2⊕T3⊕T4⊕T5 where T5 is free of rank 1 on a generator
of degree −9, T4 has a presentation

0←− T4 ←−
(

5

4

)
P (−8)←−

(
5

5

)
[P (−10)⊕ P (−12)]←− 0,

T3 has a resolution

0←− T3 ←−
(

5

3

)
P (−7)←−

(
5

4

)
[P (−9)⊕ P (−11)]

←−
(

5

5

)
[P (−11)⊕ P (−13)⊕ P (−15)]←− 0.
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and T2 has a resolution

0←− T2 ←−
(

5

2

)
P (−6)←−

(
5

3

)
[P (−8)⊕ P (−10)]

←−
(

5

4

)
[P (−10)⊕ P (−12)⊕ P (−14)]

←−
(

5

5

)
[P (−12)⊕ P (−14)⊕ P (−16)⊕ P (−18)]←− 0.

4.7. The local cohomology of T .

Now that we have detailed homological control over T , we may calculate its
local cohomology. Quite generally, if we have a free resolution

0 −→ Fr −→ Fr−1 −→ · · · −→ F0 −→M −→ 0

this gives a means of calculating H∗I (M); this is really just local duality, but it
is helpful to make it explicit. Indeed, we tensor the resolution with the stable
Koszul complex and obtain a double complex. Both the resulting spectral sequences
collapse (because the stable Koszul complex is flat and P is Cohen-Macaulay) thus

Hi
I(M) = Hr−i(H

r
I (F∗)).

When M = T , we have a finitely generated free resolution whose terms Fi each
have generators in a single degree di and are therefore Gorenstein:

Hr
I (Fi) = Start(di + 2r)Fi

∨.

However, local cohomology is covariant, so the maps in the complex are not duals.
We may revert to the case of a general finitely generated module for the answer.

Lemma 4.7.1. (Local duality) The 2rth desuspension of the complex

Hr
I (Fr) −→ Hr

I (Fr−1) −→ · · · −→ Hr
I (F0)

is obtained from
Fr −→ Fr−1 −→ · · · −→ F0

by taking P -duals and then F2-duals, that is by applying

HomF2(HomP (·, P ),F2))

Remark 4.7.2. Of course F2-duality is exact, so the essential step is the initial
P -duality. The more compact formulation of the lemma is the statement

Hi
I(M) = Extr−i(M,P )

∨
(2r),

and it is this statement that is usually known as local duality, but for calculational
purposes we use the form in the lemma.

Proof: This is an exercise in duality. If we choose bases and represent the maps by
a matrix it is enough to consider a map x : P (a) −→ P (b) given by multiplication
with an element x of P (of degree a− b). The matrix of the new complex has this
replaced by

(·x)∗ : Start(a+ 2r)P∨ −→ Start(b + 2r)P∨,

where the effect on f ∈ Start(a+ 2r)P∨ = Hom(Σa+2rP,F2) is

(·x)∗(f)(y) = f(xy).

Applying F2 duals we recover the original matrix. �
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20P(-5)15P(-1)10P(3)P(7)

15P(-3)10P(1)P(5)

10P(-1)P(3)

P(1)

Figure 4.5. The double complex for the local cohomology of T3

in rank 6.

From this we can deduce the local cohomology of T . As before, it is convenient
to phrase the result in terms of the dual local cohomology modules, since these are
Noetherian. It is worth alerting the reader to the fact that each of the statements
in the following theorem represents quite exceptional behaviour, and left the au-
thors incredulous on discovery. The second and third statements were suggested
by calculations with the commutative algebra package Cocoa [9].

Theorem 4.7.3. The local cohomology of Ti is as follows

(1) Ti only has local cohomology in degrees i and r.
(2) For i = 2, 3, . . . , r − 1

Hr
I (Ti)

∨
= Tr−i+2(−r + 4)

and

Hr
I (Tr)

∨
= P (−r + 4).

(3) The dual of Hi
I(Ti) is only one dimensional, and has Hilbert series

[Hi
I(Ti)

∨
] = t3i−2r−4((1 + x)r − xr−i+1)/(1− x)

where x = t2 and t is of degree −1.

Remark 4.7.4. It follows from Part 2 that if we take T ′ =
⊕r−1

3 Ti then

Hr
I (T ′)

∨
= T ′(−r + 4)

so that T ′ is quasi-Gorenstein (the ‘quasi’ refers to the fact that T ′ is not of depth
r). In fact the inclusion T2(−r+4) −→ P (−r+4) has a one dimensional quotient, so
that the error in replacing T ′ by T in the above statement is only one dimensional.
Furthermore, since the lower local cohomology is only one dimensional, T itself is
Gorenstein in codimension ≤ r − 2.

Proof: To calculate the local cohomology of Ti we consider the resolution S = S(Ti)
from the proof of 4.6.3. By 4.7.1 we need only reverse the direction of the arrows and
change the suspensions to obtain a complex S∨ calculating the local cohomology.
This immediately gives an algorithm for calculating it.
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Lemma 4.7.5. The extreme local cohomology modules of Ti are described as
follows.

(i) The bottom local cohomology Hi
I(Ti)

∨
has a presentation

rP (2− i)⊕ rP (4 − i)⊕ · · · ⊕ rP (2r − 3i) −→
P (4− i)⊕ P (6− i)⊕ · · · ⊕ P (2r − 3i+ 4) −→ Hi

I(Ti)
∨ −→ 0;

in particular it is generated by elements in degrees 4− i, 6− i, . . . , 2r − 3i+ 4.
(ii) The top local cohomology lies in an exact sequence

0 −→ Hr
I (Ti)

∨ −→
(
r

i

)
P (4− i) −→

(
r

i+ 1

)
[P (6− i)⊕ P (8− i)].

The map is described by

ξk(S) 7−→
∑

t6∈S

(ytξk+2(S ∪ {t}) + y2
t ξk+4(S ∪ {t})).

To see that Ti only has local cohomology in degrees i and r, we we may use the
same argument as in 4.6.3, since the dual of a Koszul complex is again a Koszul
complex. The only difference is that we are truncating the Koszul complex at the
other end: the Koszul complex only has homology in degree 0, so if we remove the
lower modules (as in 4.6.3) it still only has homology at the bottom end. If we
remove the upper end (as here) it retains its homology in degree 0, but also has
homology at the upper end.

This completes the proof of Part 1. Since Tr
∼= P (−r−4), the statement about

its local cohomology is clear, and we may suppose i ≤ r− 1. Part 2 is therefore an
immediate consequence of the following.

Lemma 4.7.6. If i = 2, 3, . . . , r − 1 then there is an exact sequence

0 −→ Tr−i+2 −→
(

r

r − i

)
P (i− r) −→

(
r

r − (i+ 1)

)
[P (i− r + 2)⊕ P (i− r + 4)],

where the map is described by

ξk(S) 7−→
∑

t6∈S

ytξk+2(S ∪ {t}) + y2
t ξk+4(S ∪ {t}).

Proof: If we choose as basis of
(

r
r−i

)
P (i − r) the products xi(1)xi(2) · · ·xi(r−i) of

r − i distinct x’s then the inclusion of Tr−i+2 is standard. The exactness of the
sequence now follows exactly as in 4.6.1. It is a zero-sequence since Q0(qS) =
Q0(Q1Q0xS) = 0 and Q1(qS) = Q1(Q1Q0xS) = 0. It has no homology because
ker(Q1) ∩ ker(Q0) = im(Q1Q0) + P . Since i 6= r, the term P makes no contribu-
tion. �

To complete the proof of 4.7.3, it remains to establish the Hilbert series for
Hi

I(Ti) and hence its dimension. This is done in the following section. �
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4.8. Hilbert series.

We shall be discussing Hilbert series of Noetherian modules over the polynomial
ring P . We write

[M ] =
∑

n

tn dim(M−n).

We have chosen t of degree −1, so this is a Laurent series in t. We let x = t2 so
that [P ] = 1/(1 − t2)r = 1/(1 − x)r . We shall only be discussing Hilbert series
of Noetherian modules, so the Hilbert series is a rational function of t. Indeed,
it is immediate from a resolution that the Hilbert series takes the form [M ] =
p(t)/(1− x)r for some polynomial p(t). This section consists of entirely elementary
manipulations with rational functions.

Definition 4.8.1. For 0 ≤ i ≤ r, we define truncations of the polynomial
(1− x)r by

(1− x)r
[i] =

(
r

i

)
(−x)i +

(
r

i+ 1

)
(−x)i+1 + · · ·+

(
r

r

)
(−x)r.

The identity (−x)r(1 − (1/x))r = (1 − x)r gives a useful duality property for
the truncations.

Lemma 4.8.2. The truncated binomials have the following duality property

(−x)r(1− (1/x))r
[i] + (1 − x)r

[r−i+1] = (1− x)r . �

Lemma 4.8.3. The Hilbert series of Ti is

[Ti] = (−t)−i+4((1− x)r
[i] − x1−i(1− x2)r

[i])/(1− x)r+1.

Proof: Directly from the resolution in 4.6.3, we calculate

(1− x)r [Ti] =
(
r
i

)
ti+4 −

(
r

i+1

)
(ti+6 + ti+8) +

(
r

i+2

)
(ti+8 + ti+10 + ti+12)− · · ·

= (−t)−i+4[
(

r
i

)
(−x)i +

(
r

i+1

)
(−x)i+1(1 + x)

+
(

r
i+2

)
(−x)i+2(1 + x+ x2) + · · · ]

= (−t)−i+4[
(

r
i

)
(−x)i(1− x) +

(
r

i+1

)
(−x)i+1(1− x2)

+
(

r
i+2

)
(−x)i+2(1− x3) + · · · ]/(1− x)

= (−t)−i+4[(
(

r
i

)
(−x)i +

(
r

i+1

)
(−x)i+1 + · · · )

−(1/xi−1)(
(

r
i

)
(−x2)i +

(
r

i+1

)
(−x2)i+1 + · · · )]/(1− x)

= (−t)−i+4[(1 − x)r
[i] − x1−i(1 − x2)r

[i]]/(1− x)

as required. �

We are now ready to deduce the Hilbert series of various dual local cohomol-
ogy modules. It is worth reminding readers that the ideal behaviour enjoyed by
Gorenstein modules M is that one should have [Hr

I (M)∨] = (−1)rtj [M ](1/t) for
some j.

Lemma 4.8.4. For i = 2, 3, . . . , r − 1 we have

[Hr
I (Ti)

∨] = (−1)r[Ti](1/t)− (−1)r−i[Hi
I(Ti)

∨
].

Proof: Take the resolution F∗ of Ti from 4.6.3. We have [Ti] = χ([F∗]). By local
duality 4.7.1, the cohomology of the 2r-th desuspension of the dual of F∗ is the
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local cohomology. Finally, by 4.7.3, since the local cohomology is only in degrees i
and r we find

[Hr
I (Ti)

∨
] + (−1)r−i[Hi

I(Ti)
∨
] = χ([Hom(F∗, P )])

= (−1)rχ([F∗])(1/t) = (−1)r[M ](1/t)

as required. �

From the calculation in 4.7.3 we deduce the Hilbert series of Hi
I(Ti)

∨
.

Corollary 4.8.5. For i = 2, 3, . . . , r − 1 we have

[Hi
I(Ti)

∨
] = t3i−2r−4((1 + x)r − xr−i+1)/(1− x).

Proof: Combining 4.7.3 Part 2 with 4.8.4, we find

(−1)r−i[Hi
I(Ti)

∨
] = (−1)r[Ti](1/t)− tr−4[Tr−i+2].

Let us record first that by 4.8.3

tr−4[Tr−i+2] = (−1)r−iti−2[(1− x)r
[r−i+2] − xi−r−1(1 − x2)r

[r−i+2]]/(1− x)r+1

= (−1)r−iti−2[(1− x)r
[r−i+1] − xi−r−1(1 − x2)r

[r−i+1]]/(1− x)r+1.

Now we use 4.8.3 and 4.8.2 to deduce

(−1)r[Ti](
1
t ) = (−1)r(−t)i−4[(1 − 1

x )r
[i] − xi−1(1− 1

x2 )r
[i]]/(1− 1

x)r+1

= −(−t)i−4[xr+1(1− 1
x )r

[i] − xr+i(1− 1
x2 )r

[i]]/(1− x)r+1

= −(−t)i−4[x(−1)r((1 − x)r − (1− x)r
[r−i+2])

−xi−r(−1)r((1− x2)r − (1− x2)r
[r−i+2])]/(1− x)r+1

= (−1)r−iti−4x[−((1 − x)r − xi−r−1(1− x2)r)
+((1− x)r

[r−i+1] − xi−r−1(1− x2)r
[r−i+1])]/(1− x)r+1).

Subtracting tr−4[Tr−i+2] we obtain the desired result. �

4.9. The quotient P/T2.

When V is of rank 1, the module T2 is zero, so we suppose r ≥ 2 for the rest
of the section. When V is of rank 2, we see T ∼= Σ−6P (and quickly check this
isomorphism is untwisted).

The confusing thing about T2 is that its generators are not monomials, so we
let

T̂ = (yiyj | i < j)

and define U and A by the exact sequences

0 −→ T −→ T̂ −→ U −→ 0

and

0 −→ T̂ −→ P −→ A −→ 0.

First note that A is the ‘axis quotient’ of P (of dimension 1 in degree 0 and of
dimension r for each negative even degree).
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Now we turn to the module U . This has an F2 basis consisting of elements yn
S

of degree −2n, where S is a subset of the possible indices {1, 2, . . . , r} with at least
two elements, and n ≥ |S|:

U = (yn
S | n ≥ |S| ≥ 2).

The action of P is given by

yiy
n
S = yn+1

S∪{i}.

This is very reminiscent of the description of Q′, the formal difference being
that we are now working mod (2, v). The principal difference in detail is that only
subsets with 2 or more elements give rise to basis elements.

Now we have a GL(V )-invariant filtration

U = U2 ⊃ U3 ⊃ · · · ⊃ Ur ⊃ Ur+1 = 0

where

Ui = (yn
S | |S| ≥ i).

Lemma 4.9.1. The subquotient Ui/Ui+1 is non-zero in negative even dimen-
sions ≤ −2i, and is of dimension

(
r
i

)
in each such degree. �

We leave the reader the straightforward exercise of using the contents of this
section to give an alternative proof that T2 only has local cohomology in degrees
2 and r, and that Hr

I (T2) = P (−r + 4) provided r ≥ 3. One ingredient is that
the element y∗ is U -regular. The disadvantage of this method is that it only gives
H2

I (T2) up to extension.

4.10. The local cohomology of R.

We reassemble the local cohomology of R from the short exact sequence

0 −→ T −→ R −→ Q −→ 0.

First, Q is of dimension 1, and so has local cohomology only in degrees 0 and 1.
Next T = T2⊕ T3⊕ · · · ⊕Tr, and Ti is of depth i and dimension r; by 4.7.3 Ti only
has local cohomology in degrees i and r. Accordingly the only possible non-trivial
connecting homomorphism is

δ : H1
I (Q) −→ H2

I (T2).

In fact we shall see in 4.11.5 that this is surjective with kernel equal to 2 ·H1
I (Q).

To avoid special cases, in the general discussion, we make explicit the examples
r ≤ 3.

Example 4.10.1. (i) If r = 2 then H0
I (R) = ku∗ · ρ and there is an exact

sequence

0 −→ H1
I (R) −→ H1

I (Q)
δ−→ Start(−2)P∨ −→ H2

I (R) −→ 0.

The map δ is determined by its effect in degree −2, since the codomain is dual
of a free module on a single generator of degree 2. In this case H1

I (Q) is one
dimensional in degree −2, so it suffices to show it is non-trivial. We may argue
using topology. Indeed, the local cohomology spectral sequence collapses, so we
need to ensure H2

I (R) is zero below degree 2, since ku∗(BV ) is connective. The
map δ is calculated on x ∈ H1

I (Q)−4+2n by taking δ(x) ∈ P∨−2+2n to be the map
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P−2n+2 −→ F2 given by acting on x. A short calculation allows us to deduce δ is
an isomorphism in degrees 0 and −2, and in general

H1
I (R) = 2 ·H1

I (Q)

and

H2
I (R) = Start(4)(y2

1y2 + y1y
2
2)
∨ ∼= P∨(4).

(ii) If r = 3 then H0
I (R) = ku∗ · ρ and there is an exact sequences

0 −→ H1
I (R) −→ H1

I (Q)
δ−→ H2

I (T ) −→ H2
I (R) −→ 0

and

H3
I (R) = H3

I (T2)⊕H3
I (T3) = P∨(6)⊕ P∨(−1).

In fact we shall see that δ is surjective, and hence

Hi
I(R) =





ku∗ · ρ if i = 0
2 ·H1

I (Q) if i = 1
0 if i = 2
P∨(6)⊕ P∨(−1) if i = 3

The general result is as follows.

Proposition 4.10.2. The local cohomology of R is

Hi
I(R) =





ku∗ · ρ if i = 0
2 ·H1

I (Q) if i = 1
0 if i = 2
Hi

I(Ti) if 3 ≤ i ≤ r − 1
Hr

I (T ) if i = r

Remark 4.10.3. By 4.7.3 we have a presentation ofHi
I(Ti), we know its Hilbert

series and that it is one dimensional. We also know

Hr
I (T )

∨
= (P ⊕ T3 ⊕ T4 ⊕ · · · ⊕ Tr)(−r + 4).

Proof: This is immediate except for degrees 1 and 2. For these, it suffices to
identify the connecting homomorphism.

Lemma 4.10.4. The map δ : H1
I (Q) −→ H2

I (T2) is surjective.

We will prove a more general statement in 4.11.5 below.
It then immediately follows that H2

I (R) = 0. Furthermore H1
I (R) = 2 ·H1

I (Q)
since certainly 2 · H1

I (Q) lies in the kernel of δ. On the other hand H1
I (Q)/2 and

H2
I (T2) are both graded F2 vector spaces of the same finite dimension in each de-

gree: their duals both have Hilbert series t2−2r((1 + x)r − xr−1)/(1 − x) by 4.5.1
and 4.7.3. �

4.11. The ku-homology of BV .

Before treating the general case, we make the cases of rank 1, 2 and 3 explicit.
This should help the reader to get a picture of the spectral sequence, as will be
necessary follow the general argument.

Example 4.11.1. If V is of rank 1 the local cohomology spectral sequence obvi-
ously collapses. Hence kuev(BV ) = H0

I (R) = ku∗ · ρ, and kuod(BV ) = Σ−1H1
I (R).

This is cyclic of order 2n in dimension 2n− 1.
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Example 4.11.2. Quite generally, we know H0
I (R) = ku∗ · ρ survives. Hence

the spectral sequence also collapses if V is of rank 2. Hence

kuev(BV ) = H0
I (R)⊕ Σ−2H2

I (R) = ku∗ · ρ⊕ Start(2)P∨

and

kuod(BV ) = Σ−1H1
I (R) = 2 ·H1

I (Q),

which is (
2

1

)
Z/2n ⊕

(
2

2

)
Z/2n−1

in degree 2n− 1.

Because of the grading in the local cohomology spectral sequence, if Hi
I(R)

is non-zero below degree i there must be a differential. Accordingly the spectral
sequence does not collapse for r ≥ 3.

Example 4.11.3. In the rank 3 case, the differential can be inferred from this
information. Indeed, since H1

I (R) is in even degrees, the differential is

d2 : H1
I (R) −→ Σ−1(H3

I (R)od).

Since the codomain Σ−1(H3
I (R)od) = Σ−1H3

I (T3) = Σ−2P∨ is the dual of a free
module, the differential is determined by its restriction to the bottom non-zero
degree (namely H1

I (R)−2) where it must be an isomorphism since ku∗(BV ) is con-
nective. A short calculation allows us to deduce

cok(d2) = Start(10)(y2
1y2 + y1y

2
2 , y

2
1y3 + y1y

2
3, y

2
2y3 + y2y

2
3)
∨

= Start(10)T2
∨

and

ker(d2) = 4 ·H1
I (Q)

Accordingly,

kuev(BV ) = H0
I (R)⊕ Σ−2H2

I (R)⊕ Σ−3(H3
I (R)od/d

2)
= ku∗ · ρ⊕ Σ−3(H3

I (T3)od/d
2)

= ku∗ · ρ⊕ Start(8)T2
∨

For kuod(BV ) we have an exact sequence

0 −→ Σ−3(H3
I (R)ev) −→ kuod(BV ) −→ Σ−1 ker(d2) −→ 0,

and since H3
I (R)ev = H3

I (T2) ∼= P∨(6), a split exact sequence

0 −→ P∨(3) −→ kuod(BV ) −→ Start(1)(4 ·H1
I (Q)) −→ 0.

From these descriptions it is easy to identify the abelian group in each degree, and
the action of GL(V ), at least up to extension in the final case.

We are now ready to describe the behaviour of the spectral sequence in general.

Theorem 4.11.4. The spectral sequence has E∞-term on the columns s = 0,−1
and −r, and this gives an extension

0 −→ Start(2)T∨ −→ k̃u∗(BV ) −→ Start(1)(2r−1H1
I (Q)) −→ 0

of GL(V )-modules, and the extension is additively split.
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Proof: We prove the theorem by showing that the only differentials are those orig-
inating on the s = −1 column and all but the last of these are epimorphisms. We
may include the connecting homomorphism δ : H1

IQ −→ H2
I T2 in the discussion by

treating it as d1.

The most obvious fact is that the codomain of each differential is annihilated
by 2, and so the kernel of each differential includes all multiples of 2. We show by
induction that this is precisely the kernel, and that there are no other differentials.
Suppose then that this has been proved for differentials d1, . . . , di−2 (the assumption
is vacuous for i = 2).

We choose to index our induction by the degree of local cohomology involved
as the codomain. Thus at the ith stage we have

di−1 : 2i−2H1
I (Q) −→ Hi

I(Ti)(2 − i),
and this factors through the F2-vector space 2i−2H1

I (Q)/2i−1H1
I (Q). It is natural

to replace this map between Artinian modules by the dual map

d′i−1 : Hi
I(Ti)

∨
(i− 2) −→ (2i−2H1

I (Q)/2i−1H1
I (Q))

∨

between Noetherian modules.
We may now treat the cases i = 2, . . . , r − 1 together, but the case i = r is

slightly different and we return to it at the end.

Proposition 4.11.5. For i = 2, . . . , r − 1 the dual differential

d′i−1 : Hi
I(Ti)

∨
(i− 2) −→ (2i−2H1

I (Q)/2i−1H1
I (Q))

∨

is an isomorphism.

Proof: By 4.7.3 and 4.5.1 these two modules have the same Hilbert series if i ≤ r−1
so that if the map is an epimorphism it is an isomorphism.

By 4.5.2, it therefore suffices to show that d′i is an epimorphism in positive
degrees. The idea here is that the subgroup of H1

I (Q) in degree t ≤ 0 must die
in the spectral sequence, since it contributes to kut−1(BV ). The only differentials

that affect the (−1)-column are the differentials di and the way to make the Ei+1
−1,t

term as small as possible is to ensure di is surjective. By counting we see that this
gives exactly enough to kill H1

I (Q)t with nothing left over: there are therefore no
other differentials involving these groups, and the differentials di are all surjective.

Lemma 4.11.6. The order of H1
I (Q) in any degree −2j ≤ 0 is exactly equal to

the order of

H2
I (T2)−2j+1 ⊕H3

I (T3)−2j+2 ⊕ · · · ⊕Hr
I (Tr)−2j+r−1,

and Hr
I (Ti)−2j+r−1 = 0 for i ≤ r−1. Accordingly, all differentials di on H1

I (Q)−2j

are surjective.

This completes the proof of 4.11.5. �

Finally, we must understand

d′r−1 : P (2) = P (4− r)(r − 2) = Hr
I (Tr)

∨
(r − 2) −→ (2r−2H1

I (Q)/2r−1H1
I (Q))

∨
.

Evidently the map is determined by the image of the generator in degree 2, and it is
easily verified that the codomain is one dimensional in that degree. Since ku∗(BV )
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Figure 4.6. The local cohomology spectral sequence for

ku∗(BV ) with V of rank 8. The (−1)st and (−2)nd columns
start in degrees −2r+ 2. After this, the start increases in steps of
3. The bottom nonzero entry of the (−r)th column is in degree r−4
(coming from Hr

I (Tr) = P∨(r− 4)). The subsequent contributions
are Start(r + 3)T3

∨, Start(r + 4)T4
∨, . . . , Start(2r)Tr

∨ = P∨(2r).
In the picture, the differential di connects the lowest nonzero
groups in their respective columns on the Ei-page.
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is connective, the d′r−1 is surjective in degree 2, and hence by 4.5.2 it is surjective
in all degrees.

Lemma 4.11.7. The kernel of d′r−1 is precisely T2(2) ⊆ P (2).

Proof: Since the two monomials in a generator y2
i yj + yiy

2
j of T2 involve the same

set of generators {yi, yj} and are of the same degree they map to the same place in

the module (2r−2H1
I (Q)/2r−1H1

I (Q))
∨
. Thus ker(d′r−1) contains T2. On the other

hand we see from 4.8.3 and 4.5.1 that P/T2 and (2r−2H1
I (Q)/2r−1H1

I (Q))
∨

have
the same Hilbert series. �

Finally, we have not established that the components of dr−1 involving Hr
I (Ti)

with i ≤ r − 1 are non-zero. However, since d′r−1 is surjective, the E∞ term is
determined up to isomorphism. �

4.12. Duality for the cohomology of elementary abelian groups.

In this section we implement the discussion from Section 3.3 for elementary
abelian groups. It is generally considered that the homology of a group is more
complicated than its cohomology since it involves various forms of higher torsion.
However, one of the lessons of the local cohomology approach is that, after duality,
the two contain very similar information. In fact the local cohomology spectral
sequence is a manifestation of a remarkable duality property of the ring ku∗(BG).
For ordinary mod p cohomology the corresponding duality implies, for example,
that a Cohen-Macaulay cohomology ring is automatically Gorenstein. Since ku∗ is
more complicated than HF∗p, the statement is more complicated for connective K
theory, but the phenomenon is nonetheless very striking. This is reflected again in
Tate cohomology. As with ordinary cohomology, the advantages of Tate cohomology
are most striking in the rank 1 case.

More precisely, we view the local cohomology theorem

H∗I (ku∗(BG))⇒ ku∗(BG)

as the statement
RΓI(ku

∗(BG)) = ku∗(BG),

and the universal coefficient spectral sequence

Ext∗,∗ku∗
(ku∗(BG), ku∗)⇒ ku∗(BG),

as the statement
RDku∗

(ku∗(BG)) = ku∗(BG)

where Dku∗
(·) = Homku∗

(·, ku∗) denotes duality, and R denotes the right derived
functor in some derived category. Combining these two we obtain a statement of
the form

(RDku∗
) ◦ (RΓI)(ku

∗(BG)) = ku∗(BG).

This states that the ring ku∗(BG) is “homotopically Gorenstein” in some sense.
We give this heuristic discussion substance by showing what this means in practice
for elementary abelian groups.

Remarkably, it is a profound reflection of the obvious formal similarity between
the sequences

0 −→ T −→ ku∗(BV ) −→ Q −→ 0
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and

0 −→ Start(2)T∨ −→ k̃u∗(BV ) −→ Start(1)(2r−1H1
I (Q)) −→ 0.

It turns out these sequences correspond closely to the homological properties of
ku∗(BV ) as a module over ku∗. It is convenient to remove the summand ku∗ from
both homology and cohomology: since Homku∗

(ku∗, ku∗) = ku∗, this fits into the
universal coefficient spectral sequence pattern as described in Section 3.2, with

S = Start(2)T∨ and P = Start(1)(2r−1H1
I (Q)).

As remarked in Section 3.2 the spectral sequence collapses to the short exact se-
quence

0 −→ Ext2ku∗
(Σ2S, ku∗) −→ k̃u

∗
(BV ) −→ Ext1ku∗

(ΣP̃ , ku∗) −→ 0.

The main result of this section shows the resemblance is no coincidence. It is
convenient have notation for the reduced quotient Q̃ = Q/ku∗, where ku∗ is the
submodule generated by 1.

Proposition 4.12.1. The short exact sequence for k̃u∗(BV ) from the local co-

homology spectral sequence is dual to the short exact sequence for k̃u
∗
(BV ) from

the universal coefficient theorem. More precisely

Exti
ku∗

(Start(4)T∨, ku∗) =

{
T if i = 2
0 otherwise

and

Extiku∗
(Start(2)(2r−1H1

I (Q)), ku∗) =

{
Q̃ if i = 1
0 otherwise

Proof: We essentially repeat the proof of 3.2.1 with the relevant particular values of
S and P , and then continue far enough to calculate the non-vanishing Ext groups.

It is natural to use the injective resolution

0 −→ ku∗ −→ ku∗[1/p, 1/v] −→
ku∗[1/p]/v∞ ⊕ ku∗[1/v]/p∞ −→ ku∗/(p∞, v∞) −→ 0

of ku∗.
The statement about T∨ then follows directly. Since T∨ is 2 and v torsion, it

follows that

Exti
ku∗

(Start(4)T∨, ku∗) = Ext2ku∗
(Start(4)T∨, ku∗)

= Homku∗
(Start(4)T∨, ku∗/p∞, v∞)

= HomF2(Start(4)T∨,Σ−2F2)
= Start(−6)T = T.

Now consider M = Start(2)M = 2r−1H1
I (Q). First note that it is 2-power

torsion and hence its Ext groups are the cohomology of the sequence

0
d0

−→ Homku∗
(M,ku∗[1/v]/p∞)

d1

−→ Homku∗
(M,ku∗/p∞, v∞).

For the term in cohomological degree 1, we note

Homku∗
(M,ku∗[1/v]/p∞) = Homku∗

(M [1/v], ku∗[1/v]/p∞)

= HomZ(M [1/v]0,Z/p
∞).

However M [1/v] = (K∗(BV )/ρ)/p∞, so the resulting group of homomorphisms is
(R(V )/(ρ))∧p in each even degree.
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For the term in cohomological degree 2, we note that M starts in degree 2, and
that for k ≥ 0 multiplication by v includes M2k in M2k+2 as 2M2k+2. Hence

Hom2k
ku∗

(M,ku∗/p∞, v∞) = HomZ(M2k,Z/p
∞).

Next note that M2k contributes to ku2k−1(BV ), and maps monomorphically under
inverting v to

K2k−1(BV ) = H1
I (R(V )) = (R(V )/ρ)/p∞.

Hence the differential d1 is surjective. It follows that Ext2ku∗
(M,ku∗) = 0, and that

Ext1,2k
ku∗

(M,ku∗) = HomZ([(R(G)/ρ)/p∞]/M2k,Z/p
∞).

As an abelian group this is certainly right, but we should also consider the
action of v. We have shown that

Ext1,2k+2
ku∗

(M,ku∗)
v−→ Ext1,2k

ku∗
(M,ku∗)

corresponds to

v : M2k+2
v←−M2k.

The former is therefore an isomorphism for k ≤ −1, and a monomophism with
cokernel M2k+2/2 for k ≥ 0. This precisely corresponds to the quotient

Q̃2k+2 v−→ Q̃2k

of

ku2k+2(BV )
v−→ ku2k(BV ). �

4.13. Tate cohomology of elementary abelian groups.

In this section we combine our calculations of the ku-homology and cohomology
of BV with the completely known norm sequence for periodic K theory to deduce
t(ku)∗V , at least up to extension.

Proposition 4.13.1. If V is an elementary abelian 2-group there is an exten-
sion of ku∗(BV )-modules

0 −→ T ⊕ Start(2)T∨ −→ t(ku)∗V −→ N −→ 0

where N has no v-torsion and is additively (Z∧2 )|V |−1 in each even degree.

Proof: There is certainly an exact sequence of the form

0 −→ Γvt(ku)
∗
V −→ t(ku)∗V −→ N −→ 0,

and we will show this is as stated in the proposition.
The norm sequence gives

0 −→ ku∗(BV )/(ρ) −→ t(ku)∗V −→ Σk̃u∗(BV ) −→ 0.

We compare this with the norm sequence for periodic K, noting that by 1.1.1, the
latter is obtained by inverting v. By, 4.2.7, the v-power torsion in ku∗(BV )/(ρ) is

T , and by 4.11.4, the v-power torsion in k̃u∗(BV ) is S = Start(2)T∨. Since the
v-power torsion functor is not right exact, we need a further argument to check all
of S comes from v-power torsion in Tate cohomology. A comparison of the norm
sequences for ku and K gives a six term exact sequence by the Snake Lemma. In
this exact sequence, the group S (the kernel in homology) maps to the cokernel of
ku∗(BV )/(ρ) −→ K∗(BV )/(ρ). However, the latter is entirely in negative degrees
since the cofibre of ku −→ K is in negative degrees. Since S is in positive degrees,
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the map in the snake sequence is zero, and the v-power torsion is an extension of
T by S; since T is in degrees ≤ −6 and S is in degrees ≥ 2 we find

Γvt(ku)
∗
V = T ⊕ Start(2)T∨,

as claimed.
Recall that by [30, 19.6] t(K)∗V is a Q2-vector space of dimension |V | − 1 in

each degree. Its subgroup N = t(ku)∗V /Γvt(ku)
∗
V therefore has no Z-torsion. Since

we have an exact sequence

0 −→ Q̃ −→ N −→ P̃ −→ 0,

and in each even degree Q̃ is (Z∧2 )|V |−1 and P̃ is finite, the asserted structure of N
follows. �

The proof of 4.13.1 gives further information about the product structure
on t(ku)∗V , and its structure as a module over ku∗(BV ). To start with, N =
t(ku)∗V /Γvt(ku)

∗
V is a subring of t(K)∗V , and with the Adams spectral sequence we

can identify it explicitly.

Proposition 4.13.2. (i) The image of ku∗(BV ) in K∗(BV ) = R(V )∧J [v, v−1]
is the Rees ring of R(V )∧J for the ideal J . This is the subring generated by E = vJ
and v.
(ii) The image of

t(ku)∗V −→ t(K)∗V = R(V )∧J/(ρ)[1/2][v, v−1]

is the subring generated by E = vJ and v together with vr+nEi/2n+1 for n ≥ 0
and 1 ≤ i ≤ r − 1 and v2r+n

E
r/2n+r+1 for n ≥ 0. In particular it is not finitely

generated for r ≥ 2.

Remark 4.13.3. (i) The statement covers the case r = 1 when t(ku)∗V =
Z∧2 [y, y−1], since in this case y−1 = v2y/4 is of filtration 0. This is exceptional in
being a finitely generated algebra over Z∧2 [y].

One may similarly make other cases explicit. For example, when r = 2,

N = Z∧2 [y1, y2, v
n+1y1/2

n+1, vn+1y2/2
n+1, vn+2y1y2/2

n+2 | vy2
i = 2yi, n ≥ 0].

(ii) The reader is encouraged to identify these rings in the display of Q as in 4.4.2
and 4.3. This gives a picture of Part (i), since the image is Q. For Part (ii), the
image of t(ku)∗V is the subring of Q[1/y∗] consisting of Q/(ρ) together with all
elements of filtration ≥ r. However, it is important to note the rather exceptional
behaviour of Er. Indeed, since ρ = 0 the expression given before 4.4.3 gives

vr
E

r ⊆
r−1∑

i=1

v2r−i
E

i/2r−i+1.

Proof: Part (i) is immediate from the fact that ku∗(BV ) is generated as a ring by
v and the Euler classes y1, . . . , yr.

For Part (ii) we may include v and the Euler classes y1, . . . , yr. Evidently it

suffices to add classes that map to a generating set in ΣP̃ = 2r−1H1
I (Q). �

We know various things about the action of N on Γvt(ku)
∗
V . Firstly, it factors

through N/(2, v)N . Secondly, it is consistent with the action of F2[y1, . . . , yr] =
Q/(2, v)Q on T from ku∗(BV ). The action of the positive degree elements mapping
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onto the elements of P of order 2 are rather mysterious. Note that N preserves S,
since the negative part of N is generated by degree −2 classes. Accordingly, the
action of N on S = Start(2)T∨ follows by Tate duality.

Next the product of two elements of T is known, since it comes from coho-
mology, where the product comes from that in the polynomial ring F2[x1, . . . , xr],
and the identification of S with Start(2)T∨ shows how T acts on S. Finally, in all
cases with T 6= 0 (i.e., for r ≥ 2), T has a regular sequence of length 2. Hence the
arguments of Benson-Carlson [7, 2.1,3.1] apply precisely as in group cohomology
(despite the unusual-looking dimension shifts) to give the triviality of the remaining
products.

Proposition 4.13.4. If s, s′ ∈ S and t ∈ T then ss′ = 0 and if |st| < 0 then
st = 0. �





APPENDIX A

Conventions.

A.1. General conventions.

Unreduced: All homology and cohomology is unreduced unless the con-
trary is indicated by a tilde.

Degree and codegree: All homological (lower) indices are called degrees,
and all cohomological (upper) indices are called codegrees. These are
related by Mi = M−i.

Mod p cohomology: Unless otherwise indicated, coefficients of ordinary
cohomology are in Fp for some prime p.

Suspension: We have indicated suspension in three different ways, accord-
ing to what is convenient. The algebraic and topological suspensions are
related by

ΣnM = M(n) = Σ−nM.

We also write Start(n)M for the suspension in which the lowest non-zero
entry is in degree n. Use of the notation implies that M is non-zero and
bounded below.

Representations: (i) IfH is the normal subgroup generated by s in G, with
cyclic quotient G/H , then ŝ denotes a one dimensional representation of
G with kernel H .
(ii) The trivial one dimensional complex representation is denoted ε.

A.2. Adams spectral sequence conventions.

As usual our Adams spectral sequences

Es,t
2 = Exts,t

A
(H∗(Y ), H∗(X))⇒ [X,Y ]t−s

are displayed with the topological degree t − s horizontally and the homological
degree s vertically.

We are particularly concerned with the special case when Y is the Adams
summand l of ku when the spectral sequence reads

Es,t
2 = Exts,t

E(1)(Fp, H
∗(X))⇒ ls−t(X),

and is module valued over the case X = S0,

Es,t
2 = Fp[a0, u]⇒ l∗

where a0 ∈ E1,1
2 , u ∈ E1,2p−1

2 .
The rest of this section is restricted to the prime p = 2, where the spectral

sequence reads

Es,t
2 = Exts,t

E(1)(F2, H
∗(X))⇒ kus−t(X)

115
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and the corresponding spectral sequence for homology reads

Es,t
2 = Exts,t

E(1)(H
∗(X),F2)⇒ kut−s(X)

(where the A action onH∗(X) is twisted as detailed in Section 2.1 when determining
Bockstein differentials). These are both module valued over the case X = S0,

Es,t
2 = Fp[h0, v]⇒ ku∗

where h0 ∈ E1,1
2 , v ∈ E1,3

2 .
The conventions have the effect that for a space X , the non-zero entries for

calculating ku∗(X) are on, above and to the left of the line of slope 1/2 through
the origin. The Adams spectral sequence

Es,t
2 = Exts,t

E(1)(H
∗(X),Fp)⇒ kut−s(X)

is concentrated in the first quadrant at E2, while at E∞ it will be concentrated
below and to the right of a line of slope 1/2 with s intercept roughly the exponent
of the p-torsion in the integral homology of X .

Each dot or open circle in the displays corresponds to a basis element of the
corresponding Es,t

r as an F2-vector space.
Multiplication by h0 is indicated by a vertical line, and a dotted vertical line

indicates an ‘exotic’ extension not arising from multiplication in E2.
Multiplication by v is indicated by a line of slope 1/2 and is explicitly shown

only at the bottom of an h0-tower.
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Indices.

B.1. Index of calculations.

We summarize where to find the calculations for various specific groups. The
blanks in the first two columns correspond to well known facts we have not recorded.
The blanks in the last two columns refer to calculations we have not done.

Group Name R(G) H∗(G) ku∗(BG) ku∗(BG) t(ku)∗G
Cn cyclic 2.2 2.2 2.24 3.4.3 3.6.2
Gp,q non-abelian pq 2.3 2.3 2.3.21 - -
Q8 quaternion 2.4 2.4 2.4.6 3.4.3 3.6.2
Q2n quaternion 2.4 2.4 2.4.5 3.4.3 3.6.2
SL2(3) special linear - - 2.4.12 - -
SL2(`) special linear - - 2.4.112 - -
D8 dihedral 2.5 2.5 2.5.5 3.5.1 -
D2n dihedral 2.5 2.5 2.5.4 - -
A4 alternating 2.6 2.6 2.6.2 - -
Σq symmetric, q prime - - 2.3.3 - -
V elementary abelian - 4.2 4.23 4.1.1 4.13.1

Notes: (1) Special cases p = q − 1, (q − 1)/2 and p = 2 are given more explicitly
in 2.3.3, 2.3.4 and following discussion.
(2) Only 2-local information.
(3) The ring structure is determined by 4.2.6, but no presentation is given.
(4) An alternative presentation is given in the paragraph preceding 2.3.3.

B.2. Index of symbols.

� formal multiplication x� y = x+ y − vxy
[n](x) (1− (1− vx)n)/v the multiplicative n-series
M∨ vector space dual Homk(M,k)
|V | V with the trivial action
W ↑G induced representation
[M ] Hilbert series
(1− x)r

[i] 4.8.1 truncation of (1− x)r

M(n) n-fold suspension of M
x̂ natural representation of the quotient by 〈x〉
X(n) n-skeleton

117
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B.3. Index of notation.

A

a 2.4 (1) generator of ku∗(BQ2n), a = eku(ψ0 − 1)
2.5 (2) generator of ku∗(BD2n+2), a = eku(ŝt)

a0 Adams spectral sequence counterpart of p
A4 alternating group of degree 4
α generic one dimensional representation
A mod p Steenrod algebra

B

b 2.4 (1) generator of ku∗(BQ2n), b = eku(χ)
2.5 (2) generator of ku∗(BD2n+2), b = eku(ŝ)

Bi 2.2, 2.3, 4.2 indecomposable summand of BCp

BSS(a) 1.4.1 Bockstein spectral sequence for a
BP 〈n〉 coefficient ring Z(p)[v1, . . . , vn]
β (1) generic one dimensional representation

2.3 (2) p-dimensional representation of Gp,q

C

cHi 1.3 Chern class in H∗(BG)
cRi 1.3 Chern class in R(G)

cKG

i 1.3 Chern class in K∗G
cKi 1.3 Chern class in K∗(BG)
cku
i 1.3 Chern class in ku∗(BG)
Cn cyclic group of order n

Ĉh(G) 1.1 the completed character approximation
χ 2.4 (1) representation of Q2n

4.9 (2) Euler characteristic

D

d 2.5 generator of ku∗(BD2n+2), d = eku(σ1)
di 2.5 element of ku∗(BD2n+2), di = eku(σi)
Dku∗

3.3 Dku∗
(·) = Homku∗

(·, ku∗)
D2n dihedral group of order 2n

E

eH 1.3 Euler class in H∗(BG)
eR 1.3 Euler class in R(G)
eKG

1.3 Euler class in K∗G
eku 1.3 Euler class in ku∗(BG)
eK 1.3 Euler class in K∗(BG)
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E(t1, . . . , tn) exterior algebra on generators t1, . . . , tn
E(1) exterior algebra E(Q0, Q1)
EG contractible free G-space

ẼG the join S0 ∗ EG
ε the trivial one dimensional representation
η the generator of the stable 1-stem
E(G) 2.1 ideal generated by Euler classes

F

Fp field with p elements

G

G generic notation for a finite group
Gp,q non-abelian group of order pq
Gm 1.3 multiplicative group scheme
γt 1.3 Grothendieck γ operations
ΓIM I-power torsion in M

H

h0 the Adams spectral sequence counterpart of 2
H∗I (M) 3.1 local cohomology of M
HFp mod p Eilenberg-MacLane spectrum
HZ integral Eilenberg-MacLane spectrum
HZ∧p p-adic Eilenberg-MacLane spectrum

I

iV the inclusion S0 −→ SV

I augmentation ideal I = ker(ku∗(BG) −→ ku∗)

J

J augmentation ideal J = ker(R(G) −→ Z)

K

k (1) generic notation for a field
1.1 (2) generic notation for a ku∗-algebra

K periodic complex K-theory
ku complex connective K-theory
ko real connective K-theory
κ 1.5 Künneth comparison map

L
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l 2.1 Adams summand of ku
L 2.1 string module
Lm

A [27] universal ring for multiplicative A-equivariant formal group laws
λi 1.3 i-th exterior power

M

MRees(G) 1.3 modified Rees ring, generated by Chern classes

N

nil(S) 1.1 topologically nilpotent elements of S
νp(n) largest power of p dividing n

O

P

P 4.2 (1) the polynomial ring Fp[y1, . . . , yr]
4.3-4.11 (2) the polynomial ring F2[y1, . . . , yr] where yi = x2

i

3.5 (3) R/(2, v)R, where R = ku∗BD8

3.2, 4.12-4.13 (4) Start(1)(2r−1H1
I (Q))

(5) generic Sylow p-subgroup
PE 4.6 the polynomial ring F2[x1, . . . , xr]
PZ 4.4 the polynomial ring Z[y1, . . . , yr]
℘C 1.2 prime with support C
ψi 2.4 representation of Q2n

Q

q (1) q = 2(p− 1)
2.4 (2) generator of ku∗(BQ2n), q = eku(ψ1)

qi 2.4 element of ku∗(BQ2n), qi = eku(ψi)
Q the image of ku∗(BG) −→ K∗(BG), usually the completed modified

Rees ring
Q′ 4.4 part of Q in degrees below −2r
Q′′ 4.4 quotient of Q by Q′

Q2n quaternion group of order 2n

Q0 Bockstein, Sq1 if p = 2
Q1 First higher Milnor Bockstein, Sq1Sq2 + Sq2Sq1 if p = 2
qS 4.2 Q1Q0(

∏
i∈S xi)

R

r p-rank of group
R generic notation for a ring, or for ku∗(BG)
R(G) complex representation ring
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Rees(R, J) 1.3 Rees ring of R: subring of R[v, v−1] generated by R, v and 1/v · J
ρ (1) the regular representation

2.4 (2) generator of a quaternion group

S

S 3.2, 4.12-4.13 (1) Γ(v,|G|)ku∗BG
4.2-4.11 (2) subset of {1, . . . , n}

ŝ, ŝt 2.5 representations of D2n

spec(R) prime spectrum of R
spf(R) 1.1 Homcts(R, ·) formal spectrum of R
Start(n) suspension so as to have lowest entry in degree n
S(V ) unit sphere in V
SV one point compactification of V
Sk2n−1 1.5 Skeletal filtration Sk2n−1 = ker(ku0(BG) −→ ku0(BG2n−1))
σi 1.3 (1) ith symmetric function

2.5 (2) representation of D2n

Σ suspension

T

t̂ 2.5 representation of D2n

T v-torsion submodule of ku∗(BG)
Ti 4.6 summand of T in the elementary abelian case
t(ku)∗G 3.6 ku-Tate cohomology
t(ku)G

∗ 3.6 ku-Tate homology

U

u u = vp−1

V

v the Bott element
V (1) generic notation for elementary abelian group

(2) generic notation for complex representation
V4 Klein 4-group

W

W generic notation for a complex representation

X

xi codegree 1 generator of H∗(BV )
X(G) 1.1 the formal spectrum of ku∗(BG)
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Y

y Euler class as generator of cohomology
y∗ 4.4 modified reduction of J
yi Euler class of αi

yn
S 4.4

Z

ζ root of unity
Z the integers
Z/n the cyclic Z-module of order n
Z∧p the p-adic integers

B.4. Index of terminology.

A

Adams spectral sequence 2.1
alternating group, A4 2.6

B

Bockstein spectral sequence 1.4
Bott element v

C

Chebyshev polynomials 2.4.4, 2.5.3
Chern class 1.3 characteristic class of a representation
codegree cohomological degree, upper index
Cohen-Macaulay ring with depth equal to dimension
connective homotopy zero in negative degrees
connective K theory 0.1 et seq.
cyclic group Cn

D

degree homological degree, lower index
dihedral group D2n

duality 3.3,4.12

E

elementary abelian a group of the form (Cp)
r for some p and r

Euler class 1.3
exotic 4.2 unexpected to the naive
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G

Gorenstein 4.3 duality condition for rings
– in codimension i 4.1 duality condition for rings

H

Hilbert series 4.8 also known as Poincare series
homotopy Gorenstein 3.3 duality condition for rings up to homotopy

K

Künneth theorem 1.5

L

lightning flash 2.1 certain E(1)-module
local cohomology 3.1 Grothendieck’s method of calculating cohomology with

support

M

minimal primes 1.2
modified Rees ring 1.3.8 Subring of K∗G generated by 1, v and Chern classes

N

nonabelian pq 2.3 A non-abelian semidirect product Cq o Cp

O

P

periodic K-theory periodic complex K-theory K∗(·)
Poincare series See Hilbert series

Q

quaternion group Q2n

R

rank size of largest elementary abelian subgroup
Rees ring 1.3.8 Subring of R[v, v−1] generated by 1, v, 1/v · J
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S

string module 2.1 certain E(1)-module

T

Tate cohomology 3.6 combination of ku∗(BG) and ku∗(BG)

U

universal coefficient theorem 3.2

V

V-isomorphism 1.1 map inducing isomorphism of varieties

W

weird 4.2 Discussion of Wall’s ‘somewhat weird structure’
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