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Some remarks on the root invariant

ROBERT R. BRUNER

Abstract. We show how the root invariant of a product depends upon
the product of the root invariants, give some examples of the equivariant
definition of the root invariant, and verify a weakened form of the algebraic
Bredon-Löffler conjecture .

These remarks were worked out during the Stable Homotopy Theory Work-

shop at the Fields Institute in Toronto during January of 1996. The author

would like to thank the organizers and the Fields Institute for support and for

an environment conducive to doing mathematics.

1. The Definition and Some Examples

One of the most pleasing aspects of the equivariant point of view is the fact

that concepts which are obscure non-equivariantly sometimes have quite clear

equivariant meaning. Greenlees’ observation [3] that Bredon’s filtration of stable

homotopy by restrictions of equivariant maps is the same as Mahowald’s root

invariant filtration is a good example, as it leads to an elementary definition of

the root invariant as follows.

Let G = Z/2, let Rn+kξ be the G-representation which is trivial on n coordi-

nates and negation on k coordinates, and let Sn+kξ be the one point compacti-

fication of Rn+kξ. Let

φk : [Skξ, S0]Gn −→ [S0, S0]n = πnS0

and

Uk : [Skξ, S0]Gn −→ [Sk, S0]n = πn+kS0

be the fixed point and underlying map homomorphisms, respectively. Then [3,

Prop. 2.5] shows that if k is maximal such that x ∈ πnS0 is in Im(φk), then

R(x) = Uk(φ−1
k (x)).
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In other words, to compute R(x), extend x : Sn −→ S0 to an equivariant map

x̃ : Sn+kξ −→ S0 with k maximal. Then R(x) contains the underlying map

Uk(x̃) : Sn+k −→ S0. Note that Lin’s theorem, that S−1 ' lim
←−k

P−k, is not

required for this definition.

The simplicity of this definition suggests that we should easily be able to

see some examples. The Hopf maps bear this out. Let D be one of the division

algebras R, C, H or the Cayley numbers C, and let dD = 1, 2, 4, or 8, respectively.

The associated Hopf map hD : S2d−1 −→ DP 1 ∼= Sd given by h(z1, z2) = z1z
−1
2

is 2, η, ν, or σ, respectively. Each of these division algebras is two-dimensional

over the preceding one in the sequence. If we write such a pair as D1 ⊂ D2, then

the elements of D2 may be written a + be, with a, b ∈ D1, e ∈ D2 − D1, and

e2 = −1. We may then give D2 the G-action a + be 7→ a − be, with respect to

which hD2
is then an equivariant map S2d−1+2dξ −→ Sd+dξ whose restriction to

the fixed points is hD1
. This shows that R(2) = η, R(η) = ν, and R(ν) = σ, once

we verify that these extensions are maximal, which we will do in Corollary 3.

2. The Cartan Formula

The equivariant definition also allows an elementary proof of the Cartan for-

mula, independent of the theory worked out in [5], which we present now.

Theorem 1. Let αi ∈ πni
S0 and R(αi) ∈ πni+ki

S0, for i = 1, 2. Let k =

k1 + k2 and let i : S−k−1 −→ P−k−1 be the inclusion of the bottom cell of the

stunted projective space P−k−1.

(i) If i∗(R(α1)R(α2)) 6= 0 then R(α1)R(α2) ⊂ R(α1α2).

(ii) If i∗(R(α1)R(α2)) = 0 then R(α1α2) lies in a higher stem than does

R(α1)R(α2).

Proof: Let α̃i : Sni+kiξ −→ S0 be a maximal extension of αi for each i. Then

α̃ = α̃1 ∧ α̃2 is an extension of α = α1 ∧ α2 and, if it is maximal then R(α1α2)

contains Uk(α̃) = Uk(α̃1)Uk(α̃2) = R(α1)R(α2). To determine whether or not it

is maximal, we must analyze the relation between φk and φk+1.

Recall that the fixed point homomorphism [Skξ, S∞ξ]Gn −→ [S0, S0]n is an

isomorphism by elementary equivariant obstruction theory, so the inclusion of

fixed points i : S0 −→ S∞ξ induces the fixed point homomorphism φk.

[Skξ, S0]Gn
//i∗

''φk NNNNNNNNNNN
[Skξ, S∞ξ]Gn

��
∼=

[S0, S0]n

The G-equivariant cofiber sequence EG+ −→ S0 −→ S∞ξ allows us to embed

φk in a long exact sequence. Then, the cofiber sequence

Sk ∧ G+ −→ Skξ −→ S(k+1)ξ,
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allows us to compare φk and φk+1. Using the adjunction isomorphism [Sk ∧

G+, EG+]Gn
∼= [Sk, EG+]n, and the isomorphism [Sk, EG+]n ∼= [S0, S0]n induced

by the nonequivariant equivalence from EG+ to S0, we obtain the following braid

of long exact sequences relating φk and φk+1. (This is a piece of the diagram

used in [3] to show the equivalence of the two definitions of the root invariant.)

[S(k+1)ξ, S0]Gn

++φk+1

$$IIIIIIIII
[S0, S0]n

&&MMMMMMMMMM

[S(k+1)ξ, EG+]Gn

88qqqqqqqqqqq

&&MMMMMMMMMMM
[Skξ, S0]Gn

;;

φk

wwwwwwwww

##

Uk

GG
GG

GG
GG

G
[S(k+1)ξ, EG+]Gn−1

[Skξ, EG+]Gn

::uuuuuuuuu

33
[Sk, EG+]n

88

∂k

qqqqqqqqqq

Commutativity of the right diamond shows that the obstruction to φk(α̃) being

in the image of φk+1 is exactly ∂kUk(α̃). Thus, cases (i) and (ii) of the theorem

are distinguished by the nontriviality or triviality, respectively, of the composite

S(k+1)ξ −→ Sk ∧ G+ −→ EG+

of the boundary map of the cofiber sequence and the free G-map induced by

Uk(α̃). To express this in more familiar terms, observe that naturality of Adams’

isomorphism gives a commutative square

[Sk, EG+]n //∼=

��
∂k

[Sk, S0]n //∼=
[S0, S−k]n

��
i∗

[S(k+1)ξ, EG+]Gn−1
//∼=
[S0, EG+ ∧ S−(k+1)ξ]Gn−1

//∼=
[S0, P−k−1]n−1

where i : S−k = ΣS−k−1 −→ ΣP−k−1 is inclusion of the bottom cell. This

implies the form of the theorem we have stated. In fact, we have proved the

following.

Proposition 2. Suppose φk(α̃) = α. Then α̃ is maximal, and hence R(α) =

Uk(α̃), if and only if 0 6= i∗Uk(α̃) ∈ πn−1P−k−1.

Corollary 3. R(2) = η, R(η) = ν, and R(ν) = σ.

Proof: Given the extensions of 2, η and ν produced in Section 1, we need only

verify that η, ν, and σ are nontrivial on the bottom cells of P−2, P−3, and P−5,

a task which is easily accomplished.

Previous versions of the Cartan formula have appeared in [9, 12], with the

condition for R(α1)R(α2) to be contained in R(α1α2) stated as R(α1)R(α2) 6= 0

rather than i∗(R(α1)R(α2)) 6= 0.

Here is an example which can be found in [10]. If µ ∈ π8S is detected by

Ph1, and κ̄ ∈ π20S detected by g ∈ Ext4,24 is chosen correctly then we have
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R(µ) = νκ̄. To compute R(ηµ) we thus consider the product R(η)R(µ) = ν2κ̄

This is nonzero in π26S = π9S
−17. However i∗(ν

2κ̄) = 0 in π9P−17, so we

conclude that R(ηµ) lies in a stem higher than π26.

The algebraic root invariant, discussed in the next section, exhibits the same

behavior. There, we have R(h1) = h2, R(Ph1) = h2g, and R(h1)R(Ph1) =

h2
2g 6= 0 in Ext(F2, F2). However,

i∗ : Ext(F2, F2) −→ Ext(H∗P−17, F2)

sends h2
2g to zero, so the algebraic root invariant R(h1Ph1) lies in a higher stem

as well. In fact, we can calculate that R(h1Ph1) = r, which lies in the 30-stem

and “lives on” the bottom cell of P−21. These calculations were done by com-

puting the induced maps of Adams spectral sequences for the spectra involved,

using the programs described in [1] and [2]. It was the anomolous behavior of

R(h1Ph1) in those calculations which alerted me to the correct formulation of

the Cartan formula.

In terms of the root invariant spectral sequence of [5], the ‘exceptional’ behav-

ior in case (ii) of the theorem is the usual behavior of products in an associated

graded when there are filtration shifts.

The condition for maximality allows us to make systematic conclusions, along

the lines of [11], generalizing the example above. Let us write |x| = n if x ∈

πnS0.

Corollary 4. For any x ∈ π∗S
0,

(i) |R(2x)| > 1 + |R(x)| if |R(x)| − |x| ≡ −1 (mod 4),

(ii) |R(ηx)| > 3 + |R(x)| if |R(x)| − |x| ≡ −2 (mod 8),

(iii) |R(νx)| > 7 + |R(x)| if |R(x)| − |x| ≡ −4 (mod 16).

Proof: The map η is trivial on the bottom cell of P−j−2 if −j − 1 ≡ −1 (mod

4). Similarly, ν is trivial on the bottom cell of P−j−3 if −j − 3 ≡ −1 (mod 8),

and σ is trivial on the bottom cell of P−j−5 if −j − 5 ≡ −1 (mod 16).

3. The Algebraic Bredon-Löffler Conjecture

As noted in [3], the equivariant definition of the root invariant also allows a

very simple proof of Jones’ [6] lower bound

|R(x)| ≥ 2|x|.

Namely, any x : Sn −→ S0 occurs as the fixed points of x ∧ x : Sn+nξ =

Sn ∧Sn −→ S0∧S0 = S0, where the smash products are given the action which

interchanges factors. The Bredon-Löffler Conjecture is the upper bound

|R(x)| ≤ 3|x|

when |x| > 0. By [3], this is equivalent to the assertion that the map ηk : S0 −→

ΣP−k induces a monomorphism of πj for 0 < j < k/2. The Adams spectral
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sequence gives an algebraic analog, which we call the Algebraic Bredon-Löffler

Conjecture, namely, that

η∗k : Exts,t
A (F2, F2) −→ Exts,t

A (H∗ΣP−k, F2)

is a monomorphism for 0 < t−s < k/2. We are able to prove the following much

weaker assertion.

Theorem 5. η∗k is a monomorphism for 0 < t − s < −2 +
√

3 + k/2.

Proof: Let ρr be the natural transformation ExtA −→ ExtAr
induced by the

inclusion Ar −→ A of the subalgebra generated by Sq1, . . . , Sq2r

. We will show

that ρrη
∗

k is a monomorphism of Exts,t
A in the stated range if r is minimal such

that n = t − s < 2r − 1. We shall use several facts from [8]. Let L = F2[x, x−1]

and let jk : L−k = H∗P−k −→ L be the obvious inclusion. Let λ : ΣL −→ F2

be the coefficient of x−1. It is easy to see that λjk = η∗k : ΣL−k −→ F2. Further,

we have:

(i) The induced homomorphism λ∗ : ExtA(F2, F2) −→ ExtA(ΣL, F2) is an

isomorphism [8, Theorem 1.1].

(ii) There is an isomorphism

ExtAr
(ΣL, F2) ∼=

⊕

j∈Z

ExtAr−1
(Σj2r+1

F2, F2).

See [8, Theorem 1.1] and [4, Theorem 2.1].

(iii) The lower left square in the following diagram commutes. That is, the

preceding isomorphism composed with λ∗ and projected onto the zeroth

component, is induced by the inclusion Ar−1 −→ Ar [8, Lemma 1.6].

ExtA(F2, F2) //∼=

λ∗

��
ρr

**

η∗

k

$$

ρr−1

ExtA(ΣL, F2)

��
ρr

//
j∗
k

ExtA(ΣL−k, F2)

��
ρr

ExtAr
(F2, F2) //

λ∗

��

ExtAr
(ΣL, F2)

��
∼=

//
j∗
k

ExtAr
(ΣL−k, F2)

ExtAr−1
(F2, F2)

⊕
j∈Z

ExtAr−1
(Σj2r+1

F2, F2)oo π0

The left hand map ρr−1 is a monomorphism on Exts,t
A (F2, F2) since n =

t − s < 2r − 1. Hence ρrλ
∗ is as well. Now Adams’ vanishing line implies that

Exts,t
A (F2, F2) = 0 unless s < (n + 4)/2, so we will be done if we can show

that the lower map j∗k is a monomorphism in these filtrations. This will be

true if s < (n + k)/(2r+1 − 2), because then Exts,t
Ar

(Σ(L/L−k), F2) = 0. This

follows by filtering L/L−k by degrees and using the fact that Exts,t
Ar

(F2, F2) = 0
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if s < n/(2r+1 − 2) by the May spectral sequence, c.f. [4, proof of Theorem 2.1].

Thus, it suffices to have
n + 4

2
<

n + k

2r+1 − 2
.

Since r is minimal with respect to n < 2r − 1, we have 2r − 1 ≤ 2n, so it suffices

that 2n2 + 7n < k, which holds if n < −2 +
√

3 + k/2.

Of course this is far from the actual conjecture, but is a first step toward it.

In fact, the calculations in [3] suggest the following sharpening of the algebraic

Bredon-Löffler conjecture.

Conjecture 6. ( Strong Algebraic Bredon-Löffler Conjecture) The map η∗k
is a monomorphism if

s < (k − n)/2.

This conjecture is based on calculations of root invariants [3]. The sparsity of

elements in some bidegrees introduces an element of uncertainty in the intercept,

but the slope of −1/2 and the approximate intercept n = k are clearly evident

for n < 40.

Adams’ vanishing line intersects this line at about n = k/2, so this conjecture

implies the algebraic Bredon-Löffler conjecture (see Figure 3). Since k/2 is the

last entire stem which is mapped monomorphically, this is the dimension one

sees in homotopy.

This conjecture also correctly predicts that part of the 0-stem which maps

monomorphically according to Landweber [7], unlike the algebraic Bredon-Löffler

conjecture which says nothing about the 0-stem.

s
alg. B. L.

conj.

strong alg.
B. L. conj.

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ Adams’
vanishing line

OO

//

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
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t − s
0 k/2 k

Figure 1. Conjectured limits to the range in which η∗k is a monomorphism.
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alg. B. L. conj.

0 n 2n 3n

Figure 2. Root invariants of the n-stem

Finally, note that this confines root invariants to a narrow band,

2|x| + s ≤ |R(x)| ≤ 2|x| + 2s,

as in Figure 3. Here, the lower bound follows from the result of [9, 2.5], that

R(x) = Sq0(x) (if the latter is nonzero on the appropriate cell of projective

space), and the upper bound is equivalent to the strong algebraic Bredon-Löffler

conjecture.
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